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Automatically determining when a person falls asleep from easily available vital signals
is important, not just for medical applications but also for practical ones, such as traffic
safety or smart homes. Heart dynamics and respiration cycle couple differently during
sleep and awake. Specifically, respiratory modulation of heart rhythm or respiratory sinus
arrhythmia (RSA) is more prominent during sleep, as both sleep and RSA are connected
to strong vagal activity. The onset of sleep can be recognized or even predicted as the
increase of cardio-respiratory coupling. Here, we employ this empirical fact to design
a method for detecting the change of consciousness status (sleep/awake) based only
on heart rate variability (HRV) data. Our method relies on quantifying the (self)similarity
among shapelets – short chunks of HRV time series – whose “shapes” are related to the
respiration cycle. To test our method, we examine the HRV data of 75 healthy individuals
recorded with microsecond precision. We find distinctive patterns stable across age and
sex, that are not only indicative of sleep and awake, but allow to pinpoint the change
from awake to sleep almost immediately. More systematic analysis along these lines
could lead to a reliable prediction of sleep.

Keywords: respiratory sinus arrhythmia, time series analyses, shapelets, onset of sleep, heart rate variability,
logRSA

INTRODUCTION

Determining the status of consciousness (being awake or asleep) is usually done in a sleep lab by
sophisticated polygraphic recordings (Quintana-Gallego et al., 2004). Under real life conditions
it would be preferable to do this online from automated analysis of vital signs recorded with
minimally obtrusive sensor systems. In fact, several approaches have already been explored
(Canisius and Penzel, 2007; Romine et al., 2019; Sadek et al., 2019) to achieve this. Various medical
applications are easy to imagine, but perhaps more important are practical applications in which
vigilance plays an important role. An obvious example is transportation, where the driver of a bus,
train or a plane must stay awake at all times. Such an algorithm could be also translated into an
alarm system that activates when the algorithm ‘recognizes’ that the driver is at risk of falling asleep.
Statistics show that a significant number of car accidents were probably due to driver falling asleep
(Horne and Reyner, 1995; Royal, 2003; Ftouni et al., 2012).

Any algorithm that automatically determines whether a person is awake or asleep (awake
status) needs constant access to the body’s vital signals. Those signals (data) should be processed
continuously, so that patterns in the data that indicate sleep (or reduced vigilance) could be spotted
immediately. Of course, the practical interest is to detect the change in consciousness status as
soon as possible. Even more useful would be to predict the onset of sleep, so that the alarm can
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be triggered in a timely manner. In such a setting, false positives
(alarm goes off, but the driver is awake) are far less dangerous
than false negatives (the opposite).

The precision in determining consciousness status involves
two aspects: (i) correctly recognizing the onset of sleep or
reduction of vigilance and minimize the rate of false positives
(accuracy), and (ii) recognizing the onset as quickly as possible, or
even better, predicting it. Both depend on the quality of available
data as well as the sophistication of data analysis. A myriad of new
data analysis approaches rose in the last decades in response to
increased availability and richness of datasets in varying domains
of society, science, and technology. Modern methods of time
series analysis are able to identify, quantify and compare virtually
any pattern of interest with great accuracy and even from noisy
data (Richman and Moorman, 2000; Yaffee and McGee, 2000;
Bevington and Robinson, 2003; Small, 2005; Bendat and Piersol,
2010; Grote et al., 2019; Zou et al., 2019).

Besides data analysis, quality of this determination will also
depend on whether any prior data of vital signs for that person
are available. Ideally, an algorithm should establish the status of
consciousness without prior data from the same person, which is
a very challenging task given that body processes related to falling
asleep differ from person to person considerably (Ogilvie, 2001).
In contrast, with the prior data available, the awake status will
be identifiable faster and with better precision. Another factor is
the presence of noise and incompleteness in the vital sign data:
fortunately, these can be significantly reduced thanks to modern
measuring equipment.

Which vital signal or signals are most useful for such an
algorithm? The best choices to measure vigilance are vital
signals that are easy to measure with good precision and signals
that change in synchrony with the sleep and awake states or
at least indicate a transition between these states. One such
signal is the phase and frequency coordination (synchrony)
between respiratory and heart rhythm known as respiratory sinus
arrhythmia (RSA), which is observed in the sequence of time
intervals between consecutive heart beats (Moser et al., 1994, 1995;
Yasuma and Hayano, 2004; Bartsch et al., 2005; Denwer et al.,
2007). Modern Holter (or similar) devices can measure RSA with
microsecond precision, which more than suffices for application
to the problem considered here (Lynn et al., 2013; Barrett et al.,
2014; American Heart Association, 2015). Measuring RSA can be
done with minimal hinderance of the person’s normal activities
by belt or glue electrodes from a unipolar ECG taken from the
chest or hands. There are also other forms of coupling related to
cardio-respiratory phase synchronization and cardio-respiratory
time delay stability (Bartsch et al., 2014), but these involve the high
resolution and synchronized recordings of respiration, which is
usually not available in clinical settings. This suggests that RSA
is a more suitable choice of vital data for our study, where we
choose not to quantify vagal activity via RSA, but to investigate the
similarity of sequences of HRV data carrying different amounts of
RSA information.

But how to precisely define sleeping vs. awake from RSA
data? The gold standard for determination of being asleep
including sleep staging is polygraphy, including EEG, ECG,
EMG, respiration, and movement sensors (Kaplan et al., 2017;

National Institute of Neurological Disorders and Stroke, 2019).
On the other hand, first bodily signs of sleep are shown at
the autonomic level, as brainstem activity controls the sleep
stages and the brain centers for respiration and circulation are
anatomically close to sleep-induction centers. Additionally, heart
and respiratory cycle are coupled differently during the sleep and
awake states (Moser et al., 2006). While falling asleep, the heart
rhythm gets gradually more modulated by respiration, which
indicates increasing vagal control of the heart (Chouchou and
Desseilles, 2014; Niizeki and Saitoh, 2018). This is illustrated in
a sleep onset recording done on a 10-year-old boy (Figure 1),
measured before and after falling asleep.

During deep sleep, heart and respiratory oscillations are
maximally coupled to one another, which corresponds to
maximal RSA and is a reliable indicator of autonomic regulation
of sleep. RSA indicates the presence of strong vagal oscillations
synchronous to respiration, which regulates (speeds up or slows
down) the heart rhythm (Moser et al., 1994). The increase of
cardio-respiratory coupling (the increase of order of RSA) is
hence the first sign that the body is falling asleep. For the purpose
of this work, we identify the onset of sleep with the onset of RSA.
This onset is detectable from heart rate variability (HRV) data,
which is the main topic of this paper.

However, identifying the onset of RSA from HRV data alone is
challenging and requires a good choice of data analysis methods.
In contrast to previous studies (Billman, 2011; Billman et al.,
2015), rather than considering time and frequency domain
parameters of RSA, we employ shapelet analysis, which has
several advantages and was revealed as useful in analyzing
biomedical data (Xi et al., 2006; Ye and Keogh, 2009; Hills
et al., 2013, 2014; Rakthanmanon and Keogh, 2013). Shapelets
are short segments of HRV time series that are repetitively
compared to prior and past parts of the original time series. Their
self-similarity and pairwise distances can be precisely classified,
including the similarity to any pre-selected shapelet. Using this
framework, we identify the shapelet whose distances to all other
time intervals generates the best distinction between sleep and
awake. We examine how this self-similarity changes as the subject
transits from awake to sleep, which allows us to pinpoint the onset
of sleep (change of consciousness status) with good precision.

The aim of this paper is to propose a new methodology for
analyzing awake-to-sleep transition and discuss its merits for a
practical and useful algorithm. We construct a shapelets-based
method relying on standard approaches in non-linear time series
analysis. Then, using the statistics of shapelet comparison, we
define a similarity threshold that we show is a reliable indicator
of the change of awake status. As an intermediate step in our
analysis we identify the best shapelet – the most self-similar
shapelet in the HRV time series – and show that its length is
comparable to the multiple length of a typical respiration cycle.
This confirms that HRV time series at the onset of sleep are
most self-similar at the RSA time-scale, as expected from the
definition of RSA.

To test our methods, we use the data from 75 healthy
individuals of varying age and sex whose circadian (diurnal)
24 h HRV data were recorded with microsecond precision. Our
data also include the self-reported information about when the
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FIGURE 1 | Example of the transition from awake state to non-REM sleep and later to REM sleep in a 10-year-old boy. In this spectral analysis of HRV, one can
clearly see the gradual formation and increase of RSA as a band around 0.25 Hz. Although the total activity is higher during awake state, the activity in the RSA band
stands out during the non-REM sleep – falling asleep qualitatively resembles a phase transition normally studied in physics (Bartsch et al., 2012; Penzel et al., 2016).
This process is reversed when entering the REM stage (from minute 63 on). This figure is not a part of the study reported in this paper, but it was done
independently, as part of another study reported in Bonin et al. (2004).

subject fell asleep and when he/she woke up. This narrows our
search since we look for the onset of RSA close to the time when
subject declared going to sleep. We show that our method can
pinpoint the change of awake status with a good precision using
only HRV data – but of course, only as long as a representative
sample of a person’s 24 h HRV data was available. As our
subject sample is relatively small, we were unable to make any
substantial prediction of the onset of sleep. However, we were
able to identify that a subject was asleep almost immediately after
he/she fell asleep. We found that HRV self-similarity patterns
relevant for this identification are fairly stable across age and
sex. This suggests that a more systematic analysis with larger and
more diverse sample sets could lead to automating this procedure,
possibly even without prior data. Along the same lines, this is a
step toward an algorithm for early-warning of falling sleep.

SUBJECTS AND MEASUREMENTS

Subjects
The data was collected within the setting of workplace-related
health assessment. We made 24 h-measurements of HRV from
75 participants, 40 men (age 16–57, mean ± SD: 34.7 ± 11.0)
and 35 women (age 16–56, mean ± SD: 37.0 ± 13.5). All
subjects declared themselves to be in good general health, and
with no prior history of cardiologic problems or other medical
conditions that would influence heart or autonomic activity.
Each subject agreed to wear a portable Holter monitor for an
entire day, while carrying on with his/her routine activities on
that day, including sleeping during the night. Subjects had given
their written consent to participate in the study beforehand
and received feedback on their results after completion. The
study protocol complied with the guidelines of “good clinical
practice” (ICH-GCP) following the declaration of Helsinki and
with the regulations of the National Data Protection Act (Section
14 Abs. 1DSG 2000). Since this study involved only healthy
subjects without endangering their health, and since it involved

no medical diagnoses, interventions or treatments, according
to the local legislation in Austria the study did not require an
approval from the University’s ethics committee.

Heart Rate Variability Measurements and
Data
We used a single-channel high-precision ECG monitor
(ChronoCord1, 7th generation, Joysys, Weiz, Austria, sample
rate: 8000 Hz, resolution: 16 bit) (Joysys, 2018) to continuously
record intervals between heartbeats (Noble et al., 1990; Gallasch
et al., 1996, 1997; Pinnell et al., 2007; Surawicz and Knilans, 2008).
For the continuous measurements, three adhesive electrodes
were applied on the trunk of the participants (sternum, 5th
left intercostal space, and a reference electrode on the right
side of the trunk between 11th and 12th rib) (Klabunde, 2012;
Medical Training and Simulation LLC, 2017). The device was
then attached to a belt or the waistband of the subject. During a
24-h period, the device assessed the intervals between heart beats
with precision of several microseconds. Data have been stored on
an SD card for further evaluation. The subjects were instructed
to note the time of light off in the evening and light on in the
morning as a best available proxy for falling asleep. Heart beats
were detected from ECG by device during recording. For further
analysis, they were expressed as R-wave-to-R-wave (RR) intervals
(time intervals between two consecutive R waves of heart beat)
(Amani et al., 2011). Smaller (respectively, larger) RR values
indicate that heart works faster (respectively, slower; Hurst,
1998; Iaizzo, 2005). After the measurements were completed,
we extracted for each person the time series (sequence) of RR
values. Each of these 75 time series contained about 110,000 RR
values. For easier interpretability and with no loss of generality
we converted the data from RR intervals to heart rate, expressed
in beats per minute (b/min). To reduce above described errors,
we removed RR values that were smaller than the minimum ECG

1We confirm that we have obtained the permission from the copyright holder of
this device to use the name of the device (ChronoCord) in this manuscript.
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value (40 bmp) or higher than 180 bmp, in accordance with the
standard procedures in medical sciences (Perski et al., 1992; Krul
et al., 2013; Sarzynski et al., 2013). This resulted in removal of
the 0.63% of the data (basically negligible).

Preliminary Analysis
We first show some sample results to better illustrate the data. In
Figures 2A–D we show four examples of HRV beat-to-beat time
series. The values of heart rate (in bpm) are shown as function
of time during 24 h of recordings. We show two typical examples
for younger subject (male and female, above) and two for middle-
aged subjects (below). We indicate in each plot the part of the day
when the subject slept (according to self-reported information).
In general, the heart beats faster (higher bpm) when a person
is awake compared to asleep. While sleeping, heart beat meta-
oscillations seem steadier than while awake, especially during
non-REM phases. These meta-oscillations indicate autonomic
nervous system activity (Moser et al., 1994, 2008) mediated via
vagal and sympathetic branches to the sinus node. All plots
display quite intense fluctuations during the entire 24 h, which
is somewhat more prominent for younger subjects.

In Figures 2E,F we show scatter plots of mean heart rate (HR,
shown on y) vs. age (shown on x), for male and female subjects,
respectively. Sleep and awake mean HR are calculated separately
for each subject (according to self-reported information) and
shown by different colors in each scatter plot. Clearly, the heart
on average beats slower while asleep. This preliminary analysis
shows that while there are qualitative differences in heart activity
between sleep and awake, determining the status of consciousness
from HRV alone is not sufficient, since none of these simple
parameters discriminate it precisely. This stresses the need for
more sophisticated data analysis approaches, to which we devote
the rest of this paper.

SHAPELET ANALYSIS

In this section we introduce shapelet analysis as our main
methodological tool (Xi et al., 2006; Ye and Keogh, 2009; Hills
et al., 2013, 2014; Rakthanmanon and Keogh, 2013). In general,
our approach belongs to unsupervised learning from data (James
et al., 2013; Längkvist et al., 2014; Celebi and Aydin, 2016). We
search for the best way to divide a time series in two parts (classes)
such that self-similarity of the time series is maximal within each
class, and minimal between the classes. In fact, a long-standing
challenge in time series classification is how to find the most
efficient measure of similarity between two (or more) time series
or parts thereof. Many methods in the literature strive to meet
these criteria (Kin-Pong and Wai-Chee Fu, 1999; Costa et al.,
2005; Liao, 2005; Aboy et al., 2007; Ding et al., 2008; Batista
et al., 2011; Yentes et al., 2013), including shapelet analysis, which
we chose for its good record in recognizing physical activities
from biomedical time-resolved data. In this regard, shapelet
analysis is conceptually somewhat similar to wavelet analysis
(Daubechies, 1992). Shapelets rely on a simple quantification of
similarity/difference between time series, they are fast to compute
and provide easily interpretable results with very good accuracy.

We developed our own programing codes for the entire analysis
that follows without resorting to any specific software.

What Are Shapelets?
We explain the concept of shapelets by referring directly to
our HRV data. We take a time series of RR values (similar
analysis could be done with time series of frequencies). We
decompose this time series into segments (chunks) of 2 min in
length (duration). That yields about 700 segments during 24h,
depending on the subject. We assume that at least qualitatively,
the heart activity does not drastically change within 2 min, i.e.,
that it is (relatively) stationary during each segment2. This is our
starting resolution to detect changes of the consciousness status.

Now we consider one 2-min segment and divide it into smaller
parts that we call shapelets. In other words, a shapelet is a short
sub-interval of a 2 min segment and hence of the original 24 h
time series. When dividing a segment into shapelets, we do so in
three ways:

• Division into two equal halves, each 1 min long (“level 1”),
• Division into four equal quarters, each 30 s long (“level 2”),
• Division into eight equal eighths, each 15 s long (“level 3”).

So, each following level is made of shapelets with half-length
of the previous level. At level 1 we obtain 2 shapelets from
each segment, each covering a half of the segment, without
overlapping. Similarly, at levels 2 and 3 we obtain 4 and
8 shapelets, respectively, jointly covering the entire segment,
without overlapping. Besides this main division, at each level we
also consider an additional set of shapelets, obtained by shifting
the shapelets by half-length at that level. That is to say, at level
1 we obtain one additional shapelet of 1 min length, which is
centered at mid-point between the two main shapelets. Similarly,
at levels 2 and 3 we obtain 3 and 7 more shapelets, respectively,
centered at mid-points between the main set shapelets at each
level. We clarify this scheme by illustration in Figure 3, where
different shapelets are illustrated by varying tones of gray. We
considered additional levels of division, but found them not to
contribute to the results: heart activity varies too much on the
time scale above 2 min, while below 15 s the resolution becomes
too poor. We also examined shapelets down to 1/128 of segment
and found no improvement of results.

Choosing the shapelet level defines the resolution of our
analysis. For example, at average respiratory rates during sleep,
one shapelet of level three will contain about 3–4 respiratory
cycles of 4 s duration. Selecting one of the possible resolutions,
we can divide all segments of a given time series into shapelets.
We can do that also for all levels, obtaining a large ensemble of
shapelets, to which we refer as pool of shapelets.

Measuring Distances Between Shapelets
Since we wish to construct a framework for comparing time series
(or parts of them, shapelets and segments), we next introduce

2Choice of 2 min as the fundamental segment length is somewhat arbitrary. This
choice involves two factors. Too short segments increase the computational cost,
while too long segments deteriorate the resolution of analysis. By carrying out the
shapelet analysis (described in rest of the manuscript) we found 2 min to be the
best compromise.
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FIGURE 2 | (A) Time series of beat-to-beat HRV data (heart rate as function of time) over a day (24 h) for a male subject, 21 years of age. Part of the day when the
subject slept is indicated in blue (self-reported information). (B) The same data but for a female subject, 23 years of age. (C) The same data for another male subject,
49 years of age. (D) The same data for another female subject, 50 years of age. (E) Scatter plot of age (shown on x) vs. mean heart rate (HR, shown on y) for all
male subjects in our sample. Each male subject is represented as two points, one for sleep mean HR and the other of awake mean HR. Mean value and standard
deviation are indicated by the cross symbol next to the scatter plot. (F) The same as in (E) but for all female subjects in our sample.

FIGURE 3 | Dividing a 2 min segment of the original 24h time series into shapelets. The length of the entire interval in figure is 2 min, as indicated. Each level contains
equally sized adjacent shapelets without overlapping. The original set of shapelets is illustrated as the top sequence at each level. Additional set of shapelets
obtained by shifting by half shapelet length is illustrated as bottom sequence at each level. For clarity, shapelets show different shades of gray. In later computations
we consider all these shapelets equally, no matter to which level they belong. We call ‘pool of shapelets’ this entire ensemble of shapelets cumulatively.

a distance between a shapelet and a segment. Segments and
shapelets can be seen as two time series of different length
(duration): a segment is always 2 min long, while shapelet length

depends on the level (15 s, 30 s, or 60 s). We first equip ourselves
with a measure of similarity between a pair of time series of equal
length. We adopt the general Euclidean measure and define the
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FIGURE 4 | Searching for best matching location between the shapelet S
(red) and the segment T (black). Shapelet is translated (shifted) along T from
the start to the end, step by step (point by point). At each location we
measure the distance D between S and the corresponding chunk
(sub-segment) of the whole segment T, which we generically denote with T’.
The length of T’ is always equal to the length of S. In this illustration the best
matching location of T’ is shown, where the distance D is minimal. This
minimal distance D is then taken as the distance δ between S and T.

distance D between time series T1 and T2 as (Faloutsos et al.,
1994; Goldin et al., 2004; Deza and Deza, 2009):

D(T1, T2) =

√∑
i

(xi − yi)2,

where xi are the values belonging to the time series T1, and yi to
the time series T2. The sum runs along the index i for the entire
length of T1 and T2. Distance D is zero if the time series are
identical to one another at each point. In any other case the
distance is greater than zero.

Now we generalize this into a distance between a shapelet and
a segment called δ. Let us (generically) denote the shapelet with
S and the segment with T. Based on the above definition of D,
we introduce δ by aligning the shapelet’s first data point with
the segment’s first data point. When S and T are positioned like
this, we can use D to measure the distance between S and the
initial chunk (sub-segment) of T that is of the same length as S
(we denote this chunk with T’). This will yield some value for
the distance. Now we shift S along T by one data point (toward
later time). S is now aligned with a different chunk of T (which
overlaps with the previous chunk except in one point on the left
and one on the right). We measure that distance and obtain a
new value. We keep repeating this procedure: translate (shift) S
along T point by point and measure the distance D at each step.
We finish this when the end point of S aligns with the end point
of T. The process is illustrated in Figure 4. We now define the
distance δ between S and T simply as the minimal distance found
during this shifting process (Xi et al., 2006; Ye and Keogh, 2009;
Hills et al., 2013):

δ(S, T) = minT′ [D(S, T′)].

Here, we denote with T’ the consecutive chunks of the segment
T, so that δ is the minimal distance D when all possible T’ are
considered. Thus defined δ meets the requirements for distance
in the mathematical sense.

Note that this minimal distance is found when S is aligned with
a specific chunk of T. In other words, the distance δ between S and
T is actually the distance D between S and the chunk of T that
is most similar to S. Therefore, there is a specific best matching

location for S along T, at which it overlaps with chunk T’ to which
it has minimal distance, as illustrated in Figure 4. So, when some
S and some T are close, it means that T includes a chunk that is
very similar to S. Note that the interpretation of δ also depends on
the level of shapelet S. It is easier for δ to be small when S is short.

Now, for each member in the pool of shapelets we can measure
the distance to all segments in the time series. Note that the
distance between a shapelet and the segment to which it belongs
is always zero, for all levels. Shapelets having small distances
to other segments will be more “characteristic” for that time
series. For example, shapelets belonging to sleep segments will
typically have small distances to other sleep segments, since many
HRV patterns recur during sleep. Similarly, “awake” segments
will typically be similar to other awake segments. The relevance
of these distances can be tuned by varying the resolution,
i.e., changing the shapelet level. This property can be used
to put together all segments belonging to sleep in one class
and segments belonging to awake in another class, i.e., make
classification of segments.

Circadian (Diurnal) Patterns in Heart
Rate Variability Data From Shapelet
Distance Matrices
We next look at all-to-all distances between segments (for
simplicity we call it distance between segments, even though by
definition the distance is measured only between a shapelet and
a segment). We create a matrix of distances between all pairs of
segments as follows. We take a shapelet from the first segment of
the measurement, and calculate the distance from that shapelet
to all other segments in 24 h. These values fill up the first row in
our matrix. Then, we take a shapelet from the second segment,
and calculate the distances to all other segments in 24 h, filling up
the second row in our matrix. Repeating this process, we arrive
to the last segment and pick one of its shapelets, whose distances
to all other segments fill up the last row in our matrix. Note that
this is a square matrix and its size is the number of segments in
24 h. In our matrix, the element i-j reports the distance from a
shapelet belonging to the i-th segment to the j-th segment (which
we here confuse with the distance between i-th and j-th segment).
Meanwhile, the element j-i will report the distance from a
shapelet belonging to j-th segment to the i-th segment. Note that
this matrix is not (necessarily) symmetric, since it depends on the
choices of shapelets. However, in further analysis this matrix will
be considered as symmetric, since our calculations indicate that
this non-symmetry mismatches are negligible.

This setup depends on the choice of shapelet, specifically
since we wish our distances to be interpretable as distances
between pairs of segments. To this aim we consistently take an
equivalently positioned shapelet in every segment. Specifically,
we chose the last one in the first row of level 2 (cf. Figure 3).
We tried several options for this analysis and this choice gave
the most interpretable results (we do not report the entire
choosing procedure).

Proceeding with the computations as described above, we
obtain a distance matrix for each subject. We represent it as a
heat-map (color-map), where the color in each matrix element
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FIGURE 5 | Distance matrices for four selected subjects visualized as heat-maps. (A) Male subject, 21 years of age, (B) Female subject, 23 years of age. (C) Male
subject, 49 years of age. (D) Female subject, 50 years of age. All matrices have 24 h of measurements indicated both horizontally and vertically. The color of each
matrix element indicates the distance between the two segments, identifies as x and y coordinate of that matrix element (we neglect the asymmetry of this matrix,
see section “Discussion” in the text). Darker colors represent shorter distances and brighter colors larger distances, so that darker cells indicate that two segments
have similar heart activity, while brighter colors connect segments with different heart activity. It can be noted that sleep shows more self-similarity than awake.

i-j indicates the distance between the i-th and j-th segment. In
Figure 5 we show matrices for the same four typical subjects
from Figure 2. All matrices offer a clear picture of sleep/awake
difference: (almost) all sleep segments are similar to most other
sleep segments (dark), but different from most awake segments
(light), with corresponding comparisons obtaining for awake
segments. The timing of falling asleep and waking up can also
be identified for all four subjects and it agrees well with the self-
reported information. Some qualitative patterns vary between
younger subjects (top two panels) and middle-aged subjects
(bottom panels). Of course, segments that are far apart have
different heart activity, whereas those that are close have similar
heart activity. In addition to the main sleep and awake stages,
we see many short periods of opposite stage within both sleep
and awake. For example, the person can relax or “take a nap”
for a short period of time during the day, which is visible
as different coloring within otherwise awake stage. Similarly,
shallow sleep, arousals or even shortly waking up is seen in all
panels. Interestingly, besides these intermittent changes of status,
sleep state shows distinct patterns that might reflect various

sleep phases (REM vs. deep sleep). This suggest the presence of
short arousals/awakenings during sleep, possibly in relation to
(Dvir et al., 2018).

DETERMINING THE ONSET OF SLEEP
VIA BEST SHAPELET

We now extend the above analysis and construct a method to
pinpoint precisely the onset of sleep using shapelet analysis. That
amounts to finding in a time series the point (or points) during
24h where the time series (heart activity) qualitatively changes
the most. We can safely claim that these points correspond to the
changes of awake status. Namely, since the subjects observed their
normal daily routines (refraining from sport and exercises) we do
not expect these changes to reflect anything else. There are at least
two such points in 24 h, one for falling asleep and one for waking
up. However, as noted earlier with Figure 5, there could be more
such points. In practice, we wish to classify all 2 min segments
into two distinct groups based on the similarities of their time
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series patterns quantified via shapelet analysis. These two classes
should (roughly) correspond to the parts of distance matrices
colored differently. Note that this information on the onset of
sleep will be independent from the self-reported information.

Identifying the Best Split Point Between
Sleep and Awake
Below we describe our procedure step by step. First, we take one
shapelet, belonging to any segment and any level. We compute
the distance δ from this shapelet to all segments in the time series.
We put all those distances in a histogram. An example for a
typical subject is shown in Figure 6. In such a histogram, small
distances will cluster in one (or more) peaks near zero, whereas
large distances will accumulate in other peak(s) away from zero.
In fact, such grouping is seen in Figure 6, one peak around
0.03 and the other around 0.45. The reason for this grouping is
clear: segments with short distances are chiefly those belonging
to the same consciousness state as the chosen shapelet (sleep,
for illustration), whereas segments with large distances are by
and large belonging to the opposite state (awake, for illustration).
What we want in our histogram, is that these two peaks are as
separated as possible, so that the corresponding segments can be
classified in two distinct groups as clearly as possible.

How to split the histogram into two optimally distinct
parts? In formal terms we are looking for the optimal split
point: the point on the horizontal axis at which the histogram
can be most meaningfully divided into two parts. This is an
optimization/classification problem that can be approached in
several ways. We resort to information theory (MacKay, 2005;
Cover and Thomas, 2006; Delgado-Bonal and Martín-Torres,
2016) and proceed as follows. We examine a tentative split point
between two adjacent bins and compute the information gain (IG)

for the corresponding division. IG quantifies how meaningful it
was to split the histogram this way. To compute IG we label the
two classes of segments with A and B. Segments with distances
smaller than the split point belong to class A, and segments with
larger distances to class B. To compute IG, we first define the
entropy E of such a division as (Uğuz, 2011; Sonka et al., 2015;
Shapiro, 2019):

E(D) = −p(A) · log2(p(A))− p(B) · log2(p(B)).

Proportions of the segments in class A and B are p(A) and
p(B), respectively. We have p(A) + p(B) = 1. That is to say, for
each division of segments into two classes, we can define the
entropy E of such a division via the above formula. Naturally, the
above defined entropy is maximal when the segments are split
in two equal classes, while it is minimal when all segments are
in one class and none in the other class. Entropy will be used to
determine information gain.

Before proceeding further, we recall that sleeping and awake
segments are not homogeneous time-wise, since subjects can
briefly change their consciousness status during “formal” sleep
and awake. However, we are interested in distinguishing the sleep
from awake states, regardless of when and in how many pieces
it occurs. That is to say, “taking a nap” during the day is to be
classified as sleep. A typical situation is illustrated in Figure 7.

Still, our focus is determining the onset of the real sleep, when
the subject intentionally fell asleep. Namely, other changes of the
awake status are not intentional and it is not clear how will they
be reflected in the data. Hence, our next step is to improve the
way we determine the optimal split point by including the self-
reported information.

FIGURE 6 | Example of a histogram of all distances between the selected shapelet (taken from sleep, just for illustration) and all segments in a time series. Two main
peaks mentioned in the text are visible, one for smaller distances, one for larger distances (denoted as “sleep” and “awake” for easier orientation). To find the optimal
split point we test all tentative split points between each two histogram bins. We do so by computing the information gain corresponding to each tentative split point
and choose the one that gives the best (maximal) information gain. The optimal split point for the histogram above is marked by a vertical red line. Segments whose
distances are smaller (respectively, larger) than the optimal split point are defined as belonging to the first (respectively, second) class. After repeating this procedure
for the entire pool of shapelets we define the best shapelet as the one, whose optimal split point gives the maximal information gain. We call this best split point and
consider it the output of our method for determining the onset of sleep.
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FIGURE 7 | Conceptual (illustrative) representation of the classification of
segments. Red and blue lines represent sleep and awake stages, respectively,
obtained via our classification. Self-reported information is indicated in boxes.
Actual sleep and awake stages overlap only partially with the stages as
reported by the subject.

Considering a tentative split point, most segments classified
as A belong to either self-reported sleep or self-reported awake
stage. Let us assume for a moment that A belong to sleep. Then,
most segments classified as B will belong to self-reported awake,
but not all (see Figure 7). Similarly, there will be some segments
classified as A, which will according to self-reported information
belong to awake. We wish our optimal split point to account
for this as best possible. We want to minimize the number of
“misclassified” segments, or at least to have them as similar
as possible to “correctly” classified segments of the same kind.
In other words, we want to improve the information provided
by the subject. We thus define IG starting with the general
formula (Mitchell, 1997; Carmel et al., 2002; Ye and Keogh, 2009;
Rakthanmanon and Keogh, 2013):

IG = E(D)before − E(D)after,

which states that IG is the difference in entropy before and
after the splitting. More precisely, IG, as the difference of these
two entropy values, is also weighted average entropy of both
subsets after splitting, and can be expressed via formula:

IG = E(D)−
nawake

ntotal

∗

E(Dawake)−
nsleep

ntotal

∗

E(Dsleep).

Here, E(D) is calculated via previous formula, ntotal is the
total number of segments in 24h, nawake and nsleep are the total
number of segments classified in the class where majority of
segments, respectively, belong to awake and sleep according to
self-reported information. Values E(Dawake) and E(Dsleep) are
obtained by considering the fact that “misclassified” segments
represent a splitting of its own within self-reported sleep and
awake stage. Hence, we calculate them using the earlier formula
for Entropy, but now considering “correctly” classified vs.
“misclassified” segments.

To sum up, for any tentative split point, IG quantifies how
much are we better off considering that split point than self-
reported split point. Then, the optimal split point is defined as
the one for which the information gain is maximal. Such split
point represents the best improvement of information obtained
via splitting with respect to the self-reported information. With
this in mind, we try each tentative split point, calculate the IG
associated with it, and identify the split point leading to maximal
IG as the optimal split point.

Furthermore, we note that the above procedure allows us
to find the optimal split point for any shapelet in the pool

of shapelets. Each optimal split point comes with its own IG.
But these values of IG can be compared, and in particular, the
maximum among them can be identified. We call it best split point
and the shapelet corresponding to it the best shapelet. It is the
shapelet whose optimal split point comes with the maximal IG
compared to IGs associated with all other shapelets. Such shapelet
provides a natural way to divide the original time series into two
groups (classes) of segments with qualitatively distinct properties.
It is in accordance with the best shapelet that we make the definite
classification of segments into sleep and awake in what follows.

But before proceeding, we note that the above procedure could
depend on the choice of bin size in our histogram. A histogram
bin may be larger or smaller, so to test how appropriate was
our choice, we employ the Levene’s test (Bland and Altman,
1996; Zimmerman, 2010; NIST, 2017). This test will assess the
equality of variances for two groups with respect to bin size.
The first group consists of 1%, 2%, 3% grades and the second
10%, 20%, 30% grades. Data in first group and in second group
have different variance (p-value 0,029). Next we perform the
Levene’s test and establish the difference in variance of group with
histogram resolutions (1%, 2%, and 3%). In short, we found that
the choice of bin size plays little or no role for our analysis. To
close this description, we illustrate this entire procedure in a block
diagram for easier orientation.

Classification of Time Series via Best
Shapelet
To illustrate the classification into sleep and awake via best
shapelets we consider the same four subjects as in Figure 2.
Of course, computation on each of their HRV data leads to a
different best shapelet, characteristic for their time series. We
obtain the classification as described above explained in more
details in Figure 8 and show the results in Figure 9 (left panels).
Consciousness status determined by our approach is shown
vertically (red line) as a function of time during 24 h. The green
dashed line denotes the self-reported information. Our method
correctly indicates that the subject is sleeping when (most likely)
he/she is indeed sleeping, with some exception in Figure 9A,
where the subject has had somewhat erratic sleep. In contrast,
awake status is determined less precisely, since we see many
intermittent intervals of sleep stage, which possibly account for
subject relaxing or resting with reduces vigilance. Actually, this
“conservatism” in establishing wakefulness is desirable in the
context of, for example, traffic applications, where one needs an
alarm system that goes off at the initial stage of fading vigilance.

To see how our method’s output aligns with shapelet distance,
we show the distance from the best shapelet for the same four
subjects in Figure 9 (right panels, blue line). Noisy profiles
are smoothed for better clarity (black line). Indeed, the first
subject seems to have had “shallow” sleep, as his heart activity
seems less qualitatively different during sleep. This conclusion
comes from observation that even the best shapelet was not
discriminatory enough to establish a clear separation in distance
statistics, which explains why the method found his sleep to be
less stable. However, even in this case, our method identified
many (potential) changes of awake status, even if some of them
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FIGURE 8 | Schematic representation (block diagram) of the entire procedure
of our shapelet analysis and identification of best shapelet. It is shown here for
easier orientation. Illustration is again done for a shapelet selected from sleep.

are identified incorrectly. Other subjects’ sleep was more stable,
as correctly found by our method. This confirms that our method
is made to indicate awake status only when that status is perfectly
clear and that all intermediate stages of subject’s consciousness
are defaulted as sleep.

Pinpointing and Predicting the Onset of
Sleep
The simplest way to put our method to practical use is to
make the alarm go off each time the above analysis indicates
that the subject is asleep. Since our method robustly predicts
wakefulness, we can reliably claim that a subject is indeed awake
whenever our method indicates him/her to be awake. In formal
terms this means we have many false positives – instances of
the method indicating sleep while subject is (most probably)
awake. Of course, from the practical viewpoint, false positives are
more desirable than false negatives – instances when the method
indicates wakefulness while the subject is asleep. Nevertheless,
for our method to be of practical use, we need to examine how
false positives can be reduced. To this aim we study more closely

the performance of our method in the vicinity of the onset of
sleep. We report again the data from Figure 9 but this time
zooming to the time window of 2 h around the self-reported
time of falling asleep (1 h before and 1 after). The results are
shown in Figure 10, where we magnify the information from the
panels on the left side of Figure 9, around the onset of sleep.
Recall that this determination of awake status is independent
from subject’s self-reported information. For the case (a), our
method indicates that subject is classified asleep much before he
reported to be asleep. While such a conservative determination
is in principle desirable for practical purposes, this situation
is a false positive that can hinder the operation of the alarm
system. On the other hand, our method performs best in case
(c), where the subject’s status comes out as awake almost entire
actual awake time and as sleep almost immediately after the
subject (most likely) fell asleep. Cases (b) and (d) are again
showing the conservative performance of our method, indicating
that subjects are asleep before they (most likely) were actually
sleeping. This could be due to them relaxing for the bed time,
which is reflected in their cardiorespiratory interaction that
gradually becomes more “sleep-like.” Nevertheless, in the context
of realistic applications of our method, excessive relaxation can
lead to fading of vigilance so triggering an alarm in such a
situation could be a good strategy.

To further improve the precision of detecting the exact
moment of fading vigilance, we note that above results are
obtained using only one shapelet. And even if this shapelet is
the best shapelet, it is likely that classification via other shapelets
will also contain useful information. Therefore, it makes sense
to average the results obtained via several different shapelets
(not necessarily best), expecting that each of them (depending
on its size and position) will contribute additional information.
To this aim we re-do the analysis from Figure 10, but now we
average over 50 randomly chosen shapelets. Randomization is
done not just via level, but we also introduce a random shift
(not just half length as in Figure 3), and take shapelets from
random location during 24 h. Averaging over all 50 thus obtained
classifications, we obtain the results shown in Figure 11, where
consciousness state is a continuous value ranging between 0
(sleep) and 1 (awake). Lines, colors and time window are as
in Figure 10.

This insight clearly gives more flexibility in determining
the consciousness status. For example, one could adjust the
alarm to go off at a prescribed value between 0 and 1, when
the vigilance level is deemed too low. Note that pure sleep
and awake in these plots mean that almost all 50 shapelets
indicate them as such, which offers a more stable classification.
But still, confronting with self-reported information (green
curve), the actual correlation is weak. This suggests that
focusing on the timing of the onset of sleep might not be
so useful for practical applications. Perhaps simply quantifying
the vigilance might be a better defined and more useful
problem to solve. We carried out the same analysis for all
75 subjects in our sample. Findings were similar to the four
representative subjects in above two figures. Our method
is systematically quick to signals sleep. What is also very
clear, is that the heart activity at the onset of sleep strongly
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FIGURE 9 | (A, left) Sleep and awake stages determined by our method for the case of a male subject, 21 years of age. Red lines indicate consciousness status as
a binary value (sleep or awake) as a function of time over 24 h of measurement. (A, right) Raw data of distances from the best shapelet as function of time for the
same subject (blue line), smoothed via Butterworth filter (black line) for better clarity. Green dashed line shows the self-reported information in both plots. (B) The
same plots for a female subject, 23 years of age, (C) a male subject, 49 years of age, and (D) a female subject, 50 years of age.

depends on the particularities of each individual. Universal
trends that could be used to standardize our method are
very hard to find.

We next examine how good our method is in predicting
(anticipating) the moment of a subject falling asleep. It is clear
from the previous figure that this is hard, since at the onset
of sleep our method indicates frequent transitions between
sleep and awake. Yet for practical purposes the first such
transition is important, since it suggests that the subject is
definitely less vigilant, if not already asleep. Hence, we use our
method to approximate the time of falling asleep as follows:
We take the self-reported time of falling asleep and search
for the nearest continuous interval composed of at least five
consecutive segments of sleep (10 min). The beginning of
such an interval is taken as the approximation for the time
of falling asleep. If subject falls asleep exactly as he/she has
indicated, the values will coincide. Now, we scatter plot the

self-reported time of falling asleep against the time approximated
as just described. The results for men are shown in Figure 12A
and for women in Figure 12B. In most cases our method
correctly identifies the transition (almost) immediately after it
has occurred or even slightly before. However, in some cases
our method is significantly too early or too late in determining
the onset of sleep. As already discussed, that is due to large
differences in sleeping transition from person to person. Our
method (at this stage of development) is not sensitive to it.
Yet, the fact that most subjects still lie along the diagonal
is a promising sign. Our approach can, at least in principle,
establish the onset of sleep for man and woman of any age and
confirms that the increase of cardiorespiratory interaction starts
before sleep occurs.

To finalize our analysis, we define a measure to quantify
the discriminative power of our shapelet-based classification.
To this end we consider again the histogram of distances from
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FIGURE 10 | (A) Zoom to the onset of sleep for male subject, 21 years of age. Red line indicates the consciousness status determined by our method as a binary
value (sleep or awake) within time window of 1 h prior and 1 h after the self-reported time of falling asleep. Green dashed line is the self-reported information. (B) The
same for female subject, 23 years of age. (C) The same for male subject, 49 years of age. (D) The same for female subject, 50 years of age.

FIGURE 11 | Zoom to the onset of sleep as in Figure 10, but this time calculated via 50 randomly chosen shapelets as described in the text (not via single best
shapelet). The consciousness status is no longer binary (0 or 1), but a continuous value ranging between sleep (0) and awake (1). (A) Male subject, 21 years of age.
(B) Female subject, 23 years of age. (C) Male subject, 49 years of age. (D) Female subject, 50 years of age.

best shapelet (as shown earlier). Such histogram has two peaks,
corresponding to two consciousness states, separated by the
optimal split point. Now, for each subject we calculate the
separation between those two peaks. Large separation means
that heart activity is very different during sleep as opposed to
awake, whereas small separation means the contrary. We scatter
plot the values of this separation against the age for all subjects
are show the results in (Figure 13). As expected, we find a
good correlation for men. Interestingly, a negative correlation
is significant for men, but not for women. It appears that the
discriminatory power of heart activity to differentiate between

sleep and awake decreases a lot more with age for men than
for women.

DISCUSSION

We proposed a new method for automatically determining the
consciousness status (sleep or awake) of a person from heart rate
data only. Our method is based on shapelet analysis which looks
for self-similarities in the data. By finding the best shapelet – the
chunk of time series whose self-similarity properties allow for
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FIGURE 12 | (A) Scatter plot of self-reported time of falling asleep (shown horizontally) vs. time of falling asleep calculated via best shapelet as described in the text
(shown vertically) for male subjects. Each subject is shown as one point. The diagonal is marked for easier orientation. For simplicity and easier comparison, we took
only subjects who fell asleep between 19:00 and 00:00. (B) The same for female subjects.

FIGURE 13 | The value of mean distance from the best shapelet for one class minus the mean distance from the best shapelet for the other class (shown on y) is
scatter plotted against the age (plots A for men and B for women). Regression lines are indicated in black, along with the respective values of R2 and p-value.

the best split of time series into two classes – we determine the
awake and sleep states independently of information provided
by the subjects, i.e., relying on HRV data only. The length of
the best shapelet for most subjects is close to three lengths of a
typical respiration cycle. This was somewhat expected, since RSA
(synchronous modulation of heart by respiration rhythms) is
known to be a reliable indicator of strong vagal activity and hence
a reliable indicator of autonomic state (Moser et al., 2008). The
method is developed to offer an individually optimal detection,
but it can probably be extended to a longitudinal analysis of
patterns, so that changes in behavior can be detected.

One of the applications of the approach is foreseen
in public and general safety. Namely, our method can be
developed into an alarm system that is triggered in case the
system recognizes that the person under observation could
be falling asleep. The paramount interest here is to have
zero rate of false negatives. Our method seems to have
covered this aspect rather well. In contrast, another goal

is to minimize the number of false positives, but in this
aspect, we encountered several limitations where there is room
for improvement.

First, the proper way of calibrating our method would mean
to have access to the precise timing of a subject falling asleep
(“ground truth”). Note that while self-reported information is
useful in narrowing our search, it is really not the ground
truth: subjects can only report the time when the wanted to
fall asleep, but not the time when they actually did. More
complex experiments are needed to establish a reliable ground
truth of the onset of sleep. A subject in a sleep laboratory
could be simultaneously measured by Holter and by another
device capable of independently determining the consciousness
status. However, this will inevitably involve equipment that can
disturb the sleep itself and the HRV measurements. Also, it is
unlikely that any ground truth will be available in any practical
(applicative) situation, so the ultimate interest are the methods
that operate only with HRV data.
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Second, further improvements of our method are possible
through novel data analysis approaches. Specifically, note that
in this work we used only the best shapelet to compute self-
similarities. However, as a side result we found that splitting
into just two classes of sleep and awake does not depend
heavily on the choice of shapelet. In fact, many other shapelets
have similar classification power. This means that one could
cumulatively use several shapelets for classification, which would
allow classification not as a binary value, but also to classify
intermediate stages. Moreover, instead of 2 min segments,
one can start with segments of shortened initial length and
improve the resolution.

Third, another limitation of our method revolves around
using prior data for individual subjects. In commercial
applications this might be difficult, since the market might
need an alarm system to work immediately and without prior
data. This, however, is a very challenging task, especially due to
particularities of each individual’s heart activity as he/she is falling
asleep. On the other hand, having prior data for a period even
longer than 24 h would allow for far more precise determination
of consciousness status. In fact, this should also enable to predict
the onset of sleep minutes ahead, rather than establishing the
onset after it had happened.

Fourth, we realize that there are two different way of looking at
the problem of determining the consciousness status. One way is
to make determination for individuals only based on their prior
data. Another is the search for universal patterns in everyone’s
data and try to extract a universal method from those. Our work
has shown that the first approach might be more promising in
the short term. For any serious approach to the second approach
one would need a far larger and more diverse sample of subjects.
However, it is clear that the second way is more promising in
terms of applications.

Fifth, we stress that we have focused on just one possible
method of determining the onset of sleep from many conceivable
methods. Clearly, a pressing issue revolves around comparing
such methods and establishing which works best depending on
the situation and the available information. Detailed comparison
of these methods, while very important, is beyond the scope
of this paper. But we note that such comparison might not be
simple, since it will involve methods that operate on different
foundations, for example, with or without ground truth.

Finally, our work has confirmed that shapelet analysis of
cardiorespiratory interactions as present in HRV data is a useful
tool. Except for methodological improvements mentioned above,

this opens up further research questions. One of them has been
mentioned already, namely, sleep phases could be studied via
shapelet analysis. Shapelet distance matrices in Figure 5 reveal
distinct patterns within sleep for all subjects, whose more detailed
study is warranted.
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