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Cardiovascular risk is elevated in divers, but detailed information of cardiac function
during diving is missing. The aim of this study was to apply an intact rat model with
continuous monitoring of cardiac left ventricular (LV) function in a simulated diving
experiment. Thirteen rats were inserted with a LV pressure–volume catheter and a
pressure transducer in the femoral artery to measure hemodynamic variables, and
randomly assigned to diving (n = 9) and control (n = 4) groups. The diving group
was compressed to 600 kPa in air, maintained at pressure for 45 min (bottom phase),
and decompressed to surface at 50 kPa/min. Data was collected before, during, and
up to 60 min after exposure in the diving group, and at similar times in non-diving
controls. During the bottom phase, stroke volume (SV) (−29%) and cardiac output
(−30%) decreased, whereas LV end-systolic volume (+13%), mean arterial pressure
(MAP) (+29%), and total peripheral resistance (TPR) (+72%) increased. There were
no changes in LV contractility, stroke work, or diastolic function. All hemodynamic
variables returned to baseline values within 60 min after diving. In conclusion, our
simulated dive experiment to 600 kPa increased MAP and TPR to levels which caused
a substantial reduction in SV and LV volume output. The increase in cardiac afterload
demonstrated to take place during a dive is well tolerated by the healthy heart in our
model, whereas in a failing heart this abrupt change in afterload may lead to acute
cardiac decompensation.

Keywords: cardiac function, decompression, diving, hyperbaric, left ventricular, rattus norvegicus

INTRODUCTION

In diving, the body must adjust to hyperbaric environments. There are changes in ambient pressure
and breathing gas density, partial gas pressures and thermal conductivity, and added strain from
physical exertion, psychological stress, and immersion (Mack and Lin, 1986; Lango et al., 1996;
Leffler, 2001; Bennett and Rostain, 2003; Boussuges et al., 2007). As a consequence cardiovascular

Frontiers in Physiology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 1597

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.01597
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.01597
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.01597&domain=pdf&date_stamp=2020-01-13
https://www.frontiersin.org/articles/10.3389/fphys.2019.01597/full
http://loop.frontiersin.org/people/862981/overview
http://loop.frontiersin.org/people/400805/overview
http://loop.frontiersin.org/people/417695/overview
http://loop.frontiersin.org/people/397393/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01597 January 13, 2020 Time: 12:44 # 2

Gaustad et al. Hemodynamic Monitoring in Simulated Diving

function is altered and the diver is exposed to; bradycardia,
altered stroke volume (SV), reduced cardiac output (CO) and
increased vascular resistance (Bove et al., 1974; Wilson et al.,
1977; Shida and Lin, 1981; Molenat et al., 2004; Boussuges et al.,
2006; Dujic et al., 2006). Human experiments have reported
increased afterload, decrease in LV preload, and decrease in
systolic performance after diving (Molenat et al., 2004; Boussuges
et al., 2006). Animal experiments have documented increased
cardiac contractility when assessed as maximal velocities of LV
pressure rise (Stuhr et al., 1989; Risberg et al., 1995).

The sum of environmental stress factors encountered
in diving can augment cardiovascular risk (Bove, 2011).
While the vast majority of divers have no history of heart
disease and active divers score better than the general
population on known risk factors (Buzzacott et al., 2018),
cardiovascular problems were reported as being prominent –
second only to drowning – as cause of diver fatalities in the
Divers Alert Network’s annual diving report (Buzzacott and
Denoble, 2018). Prior human experimental studies of dive-
induced cardiovascular changes have largely been limited to
recording of baseline and post-dive data (Marabotti et al.,
1999; Boussuges et al., 2006; Dujic et al., 2006). Thus, limited
knowledge of functional parameters exist to describe the
progression of cardiovascular changes taking place during the
dive, which may be important for the tolerance of diving
stress and outcome.

In this study, we report the set-up and application of a
method for continuous monitoring of hemodynamic parameters
in an intact, spontaneously breathing rat model. Simulated diving
tests were done in an air-filled hyperbaric chamber for animal
research. In this model we monitored LV pressure–volume
relationship during all phases of a 600-kPa dry air dive: pre-dive,
bottom phase, decompression, and post-dive.

MATERIALS AND METHODS

Ethics
The research protocol was approved in advance by the
Norwegian Council for Animal Research (approval ID 2111).
All experimental procedures conformed to The European
Convention for the Protection of Vertebrate Animals used for
Experimental and Other Scientific Purposes (ETS 123).

Animals
Adult female Sprague Dawley rats (Weight 259 ± 6.3 g)
were obtained from Charles River Laboratories (Charles River
Laboratories Inc., Sulzfeld, Germany). The animals were
controlled at a 12 h dark-12 h light cycle with access to a
standard rodent diet and water ad libitum. In order to limit
stress, the same person handled the animals throughout the
study and all experimental procedures were performed during the
animals’ dark cycle.

Anesthesia
Anesthesia was induced by an i.p. bolus injection of sodium
pentobarbital (50 mg/kg + Fentanyl 0.05 mg/kg body weight).

One hour later, a second bolus injection (25 mg/kg + Fentanyl
0.025 mg/kg body weight i.p.) was given. The rats remained under
anesthesia for the duration of the invasive procedures and the
experimental diving protocol, after which they were sacrificed
by decapitation.

Respiratory Support
To secure patent airways, the trachea was opened and a
small-size metal tube (13G) inserted. Following surgery, the
animals rested for 60 min to regain hemodynamic stability
before the simulated diving commenced. All animals maintained
spontaneous ventilation throughout the experiment.

Catheterization for Hemodynamic
Monitoring
A microtip pressure–volume (P–V) catheter (SPR-838, 2.0
F, Millar Instruments, Houston, TX, United States) was
inserted into the right carotid artery and gently advanced
into the LV under pressure guidance. A similar microtip
catheter measuring the mean arterial pressure (MAP) was
positioned in the left femoral artery. MAP, and pressure–
volume signals were digitized at 1 kHz and recorded using
ADInstruments LabChart DAQ software (AD Instruments,
Hastings, United Kingdom). This software displays P–V raw data
in a scrolling strip chart format and plots parameters against
each other in real-time, ensuring continuous monitoring of
P–V loop data. Data is saved to a hard disk on request. The
recorded data; HR, maximal LV systolic pressure, LV end-
diastolic pressure, maximal slope of LV systolic pressure
increment (dP/dtmax) and diastolic pressure decrement
(dP/dtmin), time constant of LV pressure decay, Tau (τ),
SV, end-diastolic volume, end-systolic volume, CO, and stroke
work were analyzed off-line using a cardiac pressure–volume
analysis program (PVAN 3.6, Millar Instruments, Houston,
TX, United States). Data were collected during steady-state
baseline conditions, and during transient inferior vena cava
occlusions performed to vary LV preload for determination of
load-independent indices of systolic function such as preload
recruitable stroke work (PRSW). Respiration frequency was
determined by analyzing respiration-dependent, cyclic changes
in the LV pressure curve.

Temperature Monitoring
The animals were placed in a supine position on an electric heat
pad to maintain appropriate temperature (37◦C) throughout the
experiment. Their core temperature was continuously monitored
using a thermocouple wire with the sensor tip positioned in
the lower 1/3 of the esophagus and connected to a digital
thermometer (Thermoalert, Columbus Instruments, Columbus,
OH, United States). For diving animals, the thermocouple
controller was placed inside the hyperbaric chamber and
monitored through an armored window.

Simulated Diving Protocol
On each day of simulated diving, individual rats were randomly
assigned to one of two groups: one diving (n = 9) and one
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FIGURE 1 | Depiction of pressure volume loop (PV-loop) recordings in an anesthetized rat during simulated diving. A Millar catheter was inserted into the left ventricle
and femoral artery. Illustration made on request by MGS studios.

non-diving control group (n = 4). Anesthetized rats were exposed
to simulated diving one at a time in hyperbaric air in a pressure
chamber for animal research (Sira Engineering, Trondheim,
Norway). The experimental set-up is illustrated in Figure 1.
Compression was done at a rate of 200 kPa min−1 to a pressure
of 600 kPa (corresponding to 50 m water depth). The rat was
maintained at pressure for 45 min while breathing air, before
being decompressed to the surface over 10 min at a linear rate
of 50 kPa min−1. The decompression was followed by a 60 min
observation phase at surface pressure.

Hemodynamic Data Recording
In the diving group, hemodynamic data were recorded at baseline
(pre-dive), at 1, 2, 2.5, 5 min during the bottom phase, and
subsequently every 10 min until 45 min when the bottom phase
ended. During the decompression, recordings were done every
2 min, and during the post-dive observation phase, the rats were
monitored after 2 min and then every 10 min up to 60 min.
In the control group, hemodynamic parameters were recorded
60 (baseline), 120 and 180 min after the trachea surgery and
hemodynamic catheterization.

Vascular Bubble Detection
Immediately after the completion of decompression, the
pulmonary artery and aorta of diving rats were insonated
using a GE Vingmed Vivid i ultrasonic scanner (GE Vingmed
Ultrasound, Horten, Norway), with a 10 MHz transducer as
previously described (Wisloff and Brubakk, 2001). Ultrasound
images were graded according to a method described previously
(Eftedal and Brubakk, 1997). The insonation was repeated at
10-min intervals up 60 min post-dive.

Statistics
Statistical analysis was done in SigmaPlot software (Systat
Software Inc., San Jose, CA, United States). Normal distribution
was checked using Shapiro–Wilk test. Within groups,
hemodynamic data were analyzed by one-way repeated measures
ANOVA for normal distributed variables and by Friedman
repeated measures ANOVA on ranks for non-normal distributed
variables. If the intragroup difference among values was greater
than would be expected by chance, Dunnett’s test was used
to evaluate differences between baseline value and responses
to simulated diving at different time points. Differences were
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FIGURE 2 | Determinants of cardiac afterload and respiration. (A) Total peripheral resistance (TPR), (B) mean arterial pressure (MAP), (C) left ventricular (LV)
end-systolic pressure and (D) respiration rate (RR) in rats exposed to simulated diving (n = 9). Data were assessed using one-way repeated measures ANOVA for
normal distributed variables and Friedman repeated measures ANOVA on ranks for non-normal distributed variables. Values are mean ± SEM. #p < 0.05 compared
to intragroup baseline.

considered significant at p < 0.05. Results are presented as
means± SEM.

RESULTS

At baseline, after surgery and 60 min rest, there were
no differences in hemodynamic variables between diving
and non-diving animals. The stability of the model was
demonstrated as no change in hemodynamic variables in
time-matched, non-diving controls. All animals survived the
experimental protocol.

General Stress Assessment
For diving animals, respiration rate (RR) was significantly
decreased 2.5 min after reaching the bottom pressure at 600 kPa
and remained below baseline throughout the bottom phase
(Figure 2D). At surface, after decompression, RR exceeded
baseline values before returning to normal within 15 min.

Vascular bubbles were observed in two rats during the post-dive
observation period; both with max bubble grade 2 on the Eftedal-
Brubakk scale (Eftedal and Brubakk, 1997).

LV Hemodynamic Function
During diving, MAP and total peripheral resistance (TPR)
increased by 29 and 72%, respectively, and remained elevated
throughout the bottom phase (Figures 2A,B). During the bottom
phase a linear reduction in SV took place in parallel with a
reduction in CO. At 5 min bottom time SV was decreased
by 29% (Figure 3B). Heart rate remained stable throughout
the experiment (Figure 3C) and thus the concurrent 30%
reduction in CO (Figure 3A) was due to the decrease in SV
only. During compression, following the abrupt increase in MAP
and TPR, LV end-systolic volume increased to levels reaching
significance at 5 (+13%) and 35 (+10%) -min bottom time,
but remained unaltered during decompression (Figure 3E).
A simultaneous elevation of LV end-systolic pressure (+29%)
was measured during the bottom phase (Figure 2C). It remained
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FIGURE 3 | Cardiac output and its determinants. (A) Cardiac output (CO), (B) stroke volume (SV), (C) heart rate (HR), (D) maximal slope of left ventricular systolic
pressure increment (LV dP/dtmax), (E) left ventricular (LV) end-systolic volume and (F) left ventricular (LV) end-diastolic volume in rats exposed to simulated diving
(n = 9). Data were assessed using one-way repeated measures ANOVA for normal distributed variables and Friedman repeated measures ANOVA on ranks for
non-normal distributed variables. Values are mean ± SEM. #p < 0.05 compared to intragroup baseline.

elevated during decompression, before returning to normal at
the surface. LV end-diastolic volume was unchanged throughout
the simulated dive (Figure 3F). Stroke work (mmHg.µL), LV
dP/dtmin (mmHg/s) and LV end-diastolic pressure (mmHg)

were unchanged (data not shown). No change in cardiac
contractility was detected when determined by calculating PRSW
before compression (76.2 ± 5.9) and after decompression
(68.5 ± 9.7) (data not shown). Another determinant of cardiac
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contractility, dP/dtmax, was continuously measured but showed
no change (Figure 3D).

DISCUSSION

The present experiment demonstrated an abrupt increase in LV
cardiac afterload occuring already in the first 5 min of a 600-kPa
simulated air dive, to an extent which reduced both SV and CO
by∼30%. The increase in afterload was substantiated as increases
in MAP and TPR which caused a physiologic increase in LV
end-systolic pressure and volume and a subsequent reduction in
SV. The LV volume output remained reduced during the bottom
phase but was reversed within 60 min post-dive. To the best of
our knowledge, this is the first report of real-time hemodynamic
monitoring in response to changes in ambient pressure.

Most studies of dive-induced cardiovascular changes have
recorded hemodynamic variables at baseline and after the dive
only. Some have reported cardiovascular responses to increased
ambient pressures at discreet time points during the bottom
phase, but not measured LV function continuously (Stuhr et al.,
1989; Risberg et al., 1995; Molenat et al., 2004; Boussuges et al.,
2007). In man, hyperbaric hyperoxic exposure up to 300 kPa
air pressure produced no change in CO after 15 min, but a
decrease was seen after 5 h (Molenat et al., 2004; Boussuges
et al., 2007). In the present study, we observed a rapid and
significant decrease in CO after 2.5 min at 600 kPa. Since
heart rate remained unchanged, the reduction of CO in our
study was explained by a decrease in SV, in accordance with
the earlier findings (Molenat et al., 2004). Our observations
are supported by Stuhr et al. (1989) who observed pronounced
changes in cardiac function at an ambient pressure of 500 kPa.
The reduced SV took place in parallel with the increase in LV
end-systolic volume, whereas LV end-diastolic volume remained
unchanged. This in support of our interpretation that the reduced
SV was a consequence of the abrupt increase in afterload.
Further, the unchanged LV end-diastolic volume indicated that
pulmonary artery pressure did not increase (Valic et al., 2005)
to a level which compromised LV filling. This may imply that
right ventricular function and LV preload remained unaltered at
pressure in our experiment.

Due to a 70% increase in vascular resistance during the bottom
phase, MAP, and thus cardiac afterload, increased significantly.
The product of HR and MAP, also termed the double product,
is often used to determine stress put on the cardiac muscle
during exercise as it correlates with changes in myocardial oxygen
consumption (MVO2) (Amsterdam and Mason, 1977). Due to
physiologic baroreflex stabilization during exercise; if afterload
is increased abruptly, HR will fall, and vice versa (van Vliet
and Montani, 1999). In general, the double product remains
relatively unchanged during exercise, interpreted as a way to
save MVO2 during cardiac stress. In the present experiment,
however, the 30% increase in MAP is not compensated by a
fall in HR. This may represent an abrupt increase in MVO2,
which is well tolerated by the healthy heart, but could be a risk
factor in the presence of coronary artery disease or myocardial
failure. The partial pressure of oxygen at the bottom phase in
our study was 120 kPa, and the increased MAP could be caused

by hyperoxia-induced vasoconstriction (Mak et al., 2001; Waring
et al., 2003) leading to an increased in vascular resistance (Milone
et al., 1999; Waring et al., 2003). This is in line with increased
MAP accompanied with increased TPR and LV end systolic
pressure in the present study, indicating increased LV afterload.

By monitoring LV dP/dtmax, some have reported increased
myocardial contractility with increase in ambient pressure (Stuhr
et al., 1989; Risberg et al., 1995). However, LV dP/dtmax
is sensitive to changes in pre- and after-load, which can
vary considerably during compression/decompression. This was
observed in response to diving in our experiment, making this
variable a less reliable index of LV contractility under the present
circumstances. But, based on continuous measurements of LV
dP/dtmax and on PRSW calculated before and after the simulated
diving exposure, we are able to conclude that in our experiment
all changes in LV function were reversible by decompression.

The protocol for the current study required the animals to
be anesthetized, and anesthesia affects vascular tone (Matsukawa
et al., 1995). In pilot studies at our laboratory, anesthetized rats
did not survive decompression from our usual air dive protocol
to 700 kPa. Thus, since we wanted to observe the rats for 60 min
after decompression, bottom pressure was reduced to 600 kPa.
Future studies are needed to determine why anesthetized rats are
more vulnerable to decompression stress.

Our diving rats experienced a drop in respiratory rate during
the bottom phase. At high ambient pressure, respiratory function
is affected by increased resistive and elastic load, and increased
partial pressures of inert gas and oxygen (Moon et al., 2009).
As we did not perform respiratory functional measurements
we have no additional data to explain the observed decrease
in respiratory rate, but other studies have reported decreased
alveolar-arterial partial pressure of oxygen difference at high gas
densities (Christopherson and Hlastala, 1982; Moon et al., 2009),
possibly caused by altered blood flow distribution resulting in a
more efficient ventilation perfusion ratio.

Our experiments were performed in a dry pressure chamber,
which limits the general interpretation of the result. Dry dives
are not directly comparable to SCUBA diving where water
immersion induces prolonged cardiovascular changes (Marabotti
et al., 1999, 2013; Boussuges et al., 2009), and influences bubble
production and DCS risk (Obad et al., 2007; Gaustad et al., 2010).
To improve the understanding of cardiovascular responses to
wet diving, future studies should include LV pressure–volume
recording in immersed animals. It should also be noted that
only female rats were included our study. While cardiovascular
anatomy is similar for females and males, there are sex differences
in cardiovascular function (Huxley, 2007), and we cannot
speculate whether the responses would be identical in males.

CONCLUSION

In conclusions, our simulated dive experiment to 600 kPa
increased MAP and TRP to levels which caused a substantial
reduction in SV and LV volume output. The elevated cardiac
stress which takes place during a dive, here demonstrated by the
increase in afterload, is well tolerated by the healthy heart but may
lead to acute cardiac decompensation in a failing heart.
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