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Obesity is one of the major health burdens of the 21st century as it contributes to
the growing prevalence of its related comorbidities, including insulin resistance and
type 2 diabetes. Growing evidence suggests a critical role for overnutrition in the
development of low-grade inflammation. Specifically, chronic inflammation in adipose
tissue is considered a crucial risk factor for the development of insulin resistance and
type 2 diabetes in obese individuals. The triggers for adipose tissue inflammation are
still poorly defined. However, obesity-induced adipose tissue expansion provides a
plethora of intrinsic signals (e.g., adipocyte death, hypoxia, and mechanical stress)
capable of initiating the inflammatory response. Immune dysregulation in adipose
tissue of obese subjects results in a chronic low-grade inflammation characterized by
increased infiltration and activation of innate and adaptive immune cells. Macrophages
are the most abundant innate immune cells infiltrating and accumulating into adipose
tissue of obese individuals; they constitute up to 40% of all adipose tissue cells in
obesity. In obesity, adipose tissue macrophages are polarized into pro-inflammatory
M1 macrophages and secrete many pro-inflammatory cytokines capable of impairing
insulin signaling, therefore promoting the progression of insulin resistance. Besides
macrophages, many other immune cells (e.g., dendritic cells, mast cells, neutrophils,
B cells, and T cells) reside in adipose tissue during obesity, playing a key role
in the development of adipose tissue inflammation and insulin resistance. The
association of obesity, adipose tissue inflammation, and metabolic diseases makes
inflammatory pathways an appealing target for the treatment of obesity-related
metabolic complications. In this review, we summarize the molecular mechanisms
responsible for the obesity-induced adipose tissue inflammation and progression toward
obesity-associated comorbidities and highlight the current therapeutic strategies.

Keywords: obesity, insulin resistance, diabetes, low-grade inflammation, adipose tissue inflammation, innate
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INTRODUCTION

Overweight and obesity are the consequence of a chronic
imbalance between energy intake and energy expenditure,
culminating in the excess of fat accumulation in AT. Since
1980, the global incidence of overweight and obesity has
risen to the extent that almost one-third of the world
population is now considered being overweight or obese
(Chooi et al., 2019).

Obesity is a heterogeneous condition deriving from genetic
and lifestyle interactions (Albuquerque et al., 2015; Hopkins
and Blundell, 2016; MacLean et al., 2017; Schwartz et al., 2017)
and is correlated with several pathological dysfunctions with
important repercussions for individual and community health
(Kyrou et al., 2018). Lifestyle and behavioral interventions
(e.g., increased physical activity and decreased caloric intake)
are fundamental parts for weight control (Butryn et al., 2011;
Greenway, 2015). A gradual weight loss up to 16% of the
original body weight is sufficient to improve β-cell function
and insulin sensitivity in AT, liver, and skeletal muscle (Magkos
et al., 2016). The improved glycemic control after weight
loss is due, in part, to the dysregulated expression of genes
involved in cholesterol flux, lipid synthesis, ECM remodeling,
and oxidative stress (Magkos et al., 2016). In the light of the
foregoing, obesity is the most frequent metabolic disorder in the
world and the primary risk factor for IR and diabetes mellitus
(Boles et al., 2017).

Diabetes mellitus refers to a group of conditions in which the
body cannot use and store glucose correctly (American Diabetes
Association, 2018). The proportion of individuals affected by
diabetes mellitus has risen dramatically over the previous three
decades, making it one of the major causes of death in the world.
More than 300 million people are expected to develop T2D as a
complication of obesity by 2025 (Ncd Risk Factor Collaboration
[Ncd-RisC], 2016).

T2D is the most prevalent form of diabetes mellitus
(American Diabetes Association, 2018), a chronic disease
characterized by increased plasma glucose levels due to insulin
secretion deficiencies (i.e., β-cell dysfunction) and IR (i.e.,

Abbreviations: AMPK, AMP-activated kinase; AT, adipose tissue; ATMs,
adipose tissue macrophages; CRP, C-reactive protein; DAMPs, danger-associated
molecular patterns; DCs, dendritic cells; ECM, extracellular matrix; ER,
endoplasmic reticulum; Flt3L, Fms-like tyrosine kinase 3 ligand; HbA1c,
hemoglobin A1c; HFD, high-fat diet; HIF-1, Hypoxia-inducible factor-1; HREs,
hypoxia-response elements; IFN-γ, Interferon-γ; IKKβ, IκB kinase β; IL-18,
Interleukin-18; IL-1R, IL-1 receptor; IL-1β, Interleukin-1β; IL-6, Interleukin-6;
ILC2s, innate lymphoid cells; iNKTs, Invariant natural killer T cells; IR, insulin
resistance; IRS-1, insulin receptor substrate-1; IRSs, insulin receptor substrates;
IκBs, inhibitors of κB; JNK, C-Jun N-terminal kinase; MAPK, mitogen-activated
protein kinase; MCP-1, Monocyte chemotactic protein-1; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; NKs, natural killer cells; NKTs,
Natural killer T cells; NLRs, nod-like receptors; PAMPs, pathogen-associated
molecular patterns; PI3K, phosphatidylinositol 3-kinase; PKB, protein kinase B;
PPARγ, Peroxisome proliferator-activated receptor γ; RA, Rheumatoid arthritis;
RhoA, Ras homolog gene family, member A; T2D, Type 2 diabetes; TGF-β,
Transforming growth factor-β; Th1, T helper 1 cells; TLRs, Toll-like receptors;
TNF-α, Tumor necrosis factor-α; TNFi, Tumor necrosis factor inhibitors; Tregs T,
regulatory cells; TZDs, Thiazolidinediones; UPR, unfolded protein response; WAT,
white adipose tissue.

decreased target tissue capacity to react regularly to insulin)
(American Diabetes Association, 2018).

Obesity is a risk factor for IR and a complete understanding
of the mechanisms linking obesity to IR will enhance
our knowledge of T2D pathogenesis and the capacity to
manage obesity-related disorders (Choi and Cohen, 2017;
Maksymets et al., 2018). For this purpose, several studies
have been conducted on human and transgenic animal
models demonstrating a correlative and causative association
between dietary excess and activation of the innate and
adaptive immune system in organs that control systemic energy
homeostasis (Lumeng et al., 2007b; Lumeng and Saltiel, 2011;
Lackey and Olefsky, 2016).

The initial mechanistic evidence supporting the inflammatory
origin of obesity and diabetes comes from human and animal
studies carried out in the early 1990s. In these studies,
AT from obese rodents and humans show inflammatory
modifications and enhanced secretion of pro-inflammatory
cytokine TNF-α able to induce IR by inactivating the IRS-
1 (Hotamisligil et al., 1993, 1995; Uysal et al., 1998).
The pivotal role of TNF-α is significantly supported by
evidence establishing that TNF-α neutralization in obese
mice improves insulin sensitivity and glucose metabolism
(Hotamisligil et al., 1993).

Low-grade chronic AT inflammation (also noted as meta-
inflammation) is strongly and consistently associated with
excess body fat mass and is characterized by infiltration
and activation of pro-inflammatory macrophages and
other immune cells that produce and secrete pro-
inflammatory cytokines and chemokines (Chawla et al.,
2011; Burhans et al., 2018).

Macrophages change not only their number during obesity
(i.e., up to 40% of all AT cells in this context) but also their
location and inflammatory phenotype (Weisberg et al., 2003).
While in normal weight subjects the macrophages show anti-
inflammatory properties, the polarization of AT macrophages
(ATMs) in obese AT shifts to a pro-inflammatory phenotype
(Lumeng et al., 2007a; Castoldi et al., 2016; Boulenouar et al.,
2017). In obesity, macrophages surround dead adipocytes
(i.e., forming crown-like structures) and secrete an array of
pro-inflammatory cytokines that lead to local and systemic
inflammation and IR (Lumeng et al., 2007a; Haase et al., 2014).

The inflammatory triggers are still almost unknown;
however, obesity-induced AT remodeling provides a plethora
of intrinsic signals (e.g., adipocyte death, hypoxia, and
mechanical stress) capable of initiating an inflammatory
response (Reilly and Saltiel, 2017). The role of inflammation in
T2D pathogenesis and associated metabolic complications has
led to a growing interest in targeting inflammatory mediators
or pathways to prevent and treat T2D (Shoelson et al., 2006;
McLaughlin et al., 2016).

In this review, we address the primary role played by the loss of
immune regulation in the AT inflammation and the development
of obesity-associated disorders, providing details on molecular
aspects. We highlight the cellular and molecular triggers for
obesity-induced inflammation and finally give some insights into
the new anti-inflammatory therapeutic strategies.
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MOLECULAR PATHWAYS LINKING
OBESITY-INDUCED INFLAMMATION
AND IR

Insulin is an anabolic hormone secreted by β-cells that plays
a crucial role not only in carbohydrate metabolism but also
in protein and lipid anabolic regulation, cell growth, and
proliferation (Fu et al., 2013). Blood glucose concentrations
stimulate insulin synthesis and release; its effects on whole-body
metabolism result from its binding to the cell membrane receptor,
which is activated by autophosphorylation of specific tyrosine
residues. The activated insulin receptor phosphorylates and
recruits intracellular proteins, also known as IRSs. Downstream
of IRS proteins, PI3K mediates insulin functions mainly by
activating PKB and protein kinase C cascades (i.e., stimulating
glucose uptake, glycogen synthesis and inhibiting hepatic
gluconeogenesis). Insulin signaling also exerts mitogenic
effects, most of which are mediated by PKB cascade and
Ras/mitogen activated protein kinase (MAPK) pathway
activation (Ramalingam et al., 2013).

Obesity association with T2D has long been recognized, and
the primary reason is the ability of obesity to promote IR, the
main pathophysiological aspect of T2D (Kahn and Flier, 2000).

IR is a metabolic complication in which the three major
insulin-sensitive tissues (skeletal muscle, liver, and AT) become
less responsive to insulin action. IR is characterized by serious
failures in glucose uptake, glycogen synthesis, and, to a lesser
extent, glucose oxidation (Ormazabal et al., 2018). In this
scenario, the β-cells compensate for IR by increasing insulin
secretion and restoring blood glucose concentration within the
normal range. A further decline in insulin sensitivity makes the
β-cells exhausted, and this results in persistent hyperglycemia and
T2D (Shulman, 2000).

A number of studies have been performed to identify the
causal factors responsible for obesity-induced IR. One of the
most accepted theories considers chronic systemic inflammation
induced by obesity as a preponderant mechanism (Weisberg
et al., 2003; Xu et al., 2003; Luft et al., 2013). This theory
is strongly supported by many findings and clinical evidence;
for instance, inflammatory markers such as CRP, TNF-α, and
interleukin 6 (IL-6) are elevated in obese and insulin-resistant
subjects (Dandona et al., 1998; Kern et al., 2001; Vozarova
et al., 2001; Phosat et al., 2017; Uemura et al., 2017). The first
evidence of an association between IR and inflammation has
been hypothesized when, following the administration of anti-
inflammatory agents, an improvement in glucose homeostasis
has been observed in T2D patients (Williamson, 1901; Reid et al.,
1957; Yuan et al., 2001; Hundal et al., 2002). Further studies in
the mid-1990s have shown that the white AT (WAT) of obese
rodents and humans exhibited changes in the levels of pro-
inflammatory molecules (e.g., TNF-α) (Hotamisligil et al., 1993,
1995; Uysal et al., 1998). Such inflammatory mediators modulate
IR either directly by affecting insulin signaling or indirectly
by stimulating inflammatory pathways (Tilg and Moschen,
2008). Other studies have shown that hypoxia, which occurs
in AT during obesity, is directly responsible for IR induction

in both human and murine models (Regazzetti et al., 2009;
Yin et al., 2009).

Animal and human studies have identified WAT as the
primary site where obesity-related chronic inflammation is
initiated and exacerbated (Weisberg et al., 2003; Xu et al., 2003).
AT remodeling during obesity provides a plethora of intrinsic
and extrinsic signals capable of triggering an inflammatory
response (Chawla et al., 2011; Huh et al., 2014; Reilly and
Saltiel, 2017). These triggers, discussed later in the review,
converge on the activation of the JNK and NF-κB signaling
pathways (Nakatani et al., 2004; Shoelson et al., 2006; Bluher
et al., 2009; Lee and Lee, 2014). The activation of these
signaling pathways increases the production of pro-inflammatory
cytokines, endothelial adhesion molecules, and chemotactic
mediators that promote the infiltration of monocytes in AT
and the differentiation into pro-inflammatory M1 macrophages
(Shoelson et al., 2006). Infiltrating macrophages produce and
secrete many inflammatory mediators that promote local and
systemic pro-inflammatory status and impair insulin signaling
(Haase et al., 2014).

The effects of these cytokines are mediated by stimulation of
IκB kinase β (IKKβ) and JNK1, expressed in myeloid and insulin-
targeted cells (McLaughlin et al., 2016).

JNK is one of the most investigated signal transducers in
obesity models of IR. It is activated after exposure to many
inflammatory stimuli including cytokines, free fatty acids, and
activation of cellular pathways, such as UPR (Aguirre et al.,
2000; Ozcan et al., 2004). Once activated, JNK starts a pro-
inflammatory gene transcription and inhibits insulin signaling
pathway through inhibitory serine–threonine phosphorylation of
IRS-1, thereby decreasing PI3K/PKB signaling (Tanti et al., 1994;
Gual et al., 2005). In obese mice (ob/ob and diet-induced obesity),
JNK activity is increased in AT compared to control mice. The
role of Jnk1 in adipocytes has been investigated using tissue-
specific Jnk1-deficient mice. These mice are protected against the
development of IR when fed a HFD. This effect is tissue specific
because Jnk1 deficiency in adipocytes does not affect muscle
insulin sensitivity (Hirosumi et al., 2002; Sabio et al., 2008).

Obesity is also associated with the activation of NF-κB
inflammatory pathway. In physiological conditions, NF-κB
proteins are retained in the cytoplasm of myeloid and insulin-
targeted cells by a family of inhibitors called inhibitors of
κB (IκBs) (McLaughlin et al., 2017). Activation of IKK kinase
complex (that contains IKKα and IKKβ subunits) induces
proteasomal degradation of IκBα, leading to NF-κB nuclear
translocation. This culminates in the increased expression of
several NF-κB target genes [e.g., IL-6, TNFα, interferon-γ (IFN-
γ), transforming growth factor-β (TGF-β), monocyte chemotactic
protein-1 (MCP-1), and interleukin-1β (IL-1β)], which further
exacerbate IR progression (Shoelson et al., 2006; Panahi et al.,
2018). IKKβ deficiency in adipocytes totally prevents the
expression of IL-6 and TNF-α induced by free fatty acid, while its
activation inhibits the expression of anti-inflammatory cytokines
such as adiponectin and leptin (Jiao et al., 2011). Therapeutic
approaches capable of targeting these pathways and improving
insulin sensitivity in obese subjects will be further discussed
below in this review.
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Macrophages represent another important cell type in
mediating the obesity-induced inflammation in the AT. During
obesity, macrophages infiltrate the AT and secrete many pro-
inflammatory cytokines (Weisberg et al., 2003). These mediators
have local effects on adipocytes and resident immune cells (e.g.,
neutrophils, B cells, and T cells) and circulate in the periphery,
where they affect the liver and skeletal muscle insulin sensitivity
(Weisberg et al., 2003; Xu et al., 2003; Haase et al., 2014;
McLaughlin et al., 2017).

Myeloid cells activate another molecular pathway, called
inflammasome, in obesity (Lee and Lee, 2014). Macrophages
and other innate immune cells may trigger inflammatory
responses by detecting pathogen- or danger-associated molecular
patterns (PAMPs or DAMPs) using a broad variety of pattern-
recognition receptors such as TLRs and NLRs (Pedra et al., 2009;
Vandanmagsar et al., 2011). Compelling evidence shows that
NLRP3 (the most studied member of the NLR family) activation
by DAMPs (generated by nutrient excess in obesity) plays a key
role behind the chronic inflammation characteristic of obesity
and IR (Stienstra et al., 2010, 2011, 2012; Zhou et al., 2010;
Koenen et al., 2011; Vandanmagsar et al., 2011; Lee et al., 2013).

NLRP3 is present in several tissues and cell types
(Vandanmagsar et al., 2011). It is unclear which cell
compartments in AT express the inflammasome components;
however, immunostaining of AT sections of obese mice
confirmed a strong co-localization of NLRP3 with macrophage
marker F4/80 in crown-like structures (Vandanmagsar et al.,
2011). Once activated, NLRP3 interacts with procaspase-1
through an adaptive protein forming the NLRP3 inflammasome
(Schroder et al., 2010; Davis et al., 2011; Shao et al., 2015).
This results in the processing and activation of caspase-1,
which mediates the maturation and secretion of IL-1β and
IL-18 by macrophages (Shoelson et al., 2003; Schroder et al.,
2010; Davis et al., 2011; Shao et al., 2015). The primary
role played by NLRP3 inflammasome is also supported by
evidence that genetic ablation of NLRP3−/− prevents the
obesity-induced inflammasome activation in AT and protects
against HFD-induced IR (Vandanmagsar et al., 2011). Caloric
and exercise-mediated weight loss in obese people with T2D
reduces NLPR3 and IL-1β gene expression in abdominal
subcutaneous AT and improves systemic insulin sensitivity
(Vandanmagsar et al., 2011).

Inflammasome-activated IL-1β is a major cytokine produced
by macrophages (Sims and Smith, 2010). Its enhanced production
in pancreatic islets and insulin-sensitive tissues is associated to
T2D (Hotamisligil et al., 1993; Donath and Shoelson, 2011). In
obesity, chronic rise in circulating nutrients such as glucose and
free fatty acids (FFAs) resulted in over-expression of IL-1β in
pancreatic β-cells (Maedler et al., 2002; Böni-Schnetzler et al.,
2008; Fei et al., 2008; Böni-Schnetzler et al., 2009). It is now clear
that IL-1β is a key cytokine in the etiology of T2D since it has
been implicated in IR, β-cell dysfunction, and death (Eizirik and
Mandrup-Poulsen, 2001; Donath et al., 2008, 2019). IL-1β alters
the insulin sensitivity of AT by suppressing insulin signaling;
exposure to IL-1β of murine and human adipocytes decreases
insulin-stimulated glucose uptake and lipogenesis (Lagathu et al.,
2006; Jager et al., 2007; Fève and Bastard, 2009), reduces

glucose transporter type 4 (GLUT4) expression, and inhibits
GLUT4 translocation to the plasma membrane (Jager et al., 2007;
Ballak et al., 2015).

The pro-apoptotic effects of IL-1β on β-cells derive from
a complex network of signaling events triggered by IL-1β

binding to its cognate receptor, whose expression is higher
in β-cells than in other tissues (Böni-Schnetzler et al., 2009).
Once cytokine binds its receptor, the co-receptor is recruited,
and this results in the formation of the heterodimer receptor
transmembrane complex. Both receptors and co-receptors share
a cytoplasmic motif, the Toll/IL-1 receptor (IL-1R) domain,
which is required to initiate intracellular signaling by recruitment
of different adaptor proteins and kinases, including the myeloid
primary response differentiation-88 protein and the interleukin-
1-associated kinase receptor. This leads to activation of MAPK
and NF-κB signaling pathways. The activation of these two
signaling pathways causes variations in gene expression, therefore
triggering the apoptotic cell death program in β-cells (Donath
et al., 2008, 2019). The pro-apoptotic effects mediated by NF-kB
depend on the cell type, nature, and duration of the stimulus.
Indeed, NF-kB activation in β-cells is more marked, rapid,
and sustained than in other cell types (Ortis et al., 2006).
MAPKs also take part in β-cell apoptosis through transcription-
independent mechanisms, such as regulating B-cell lymphoma
2 protein activity (Donath et al., 2008, 2019). The combined
use of IFN-γ and IL-1β induces the activation of an additional
mechanism, the so-called non-canonical NF-kB pathway, also
implicated in the pro-apoptotic effects of IL-1β on β-cells
(Meyerovich et al., 2016).

IL-1β is also implicated in cardiovascular and microvascular
long-term complications (nephropathy, retinopathy, and
polyneuropathy) of diabetes (Herder et al., 2013, 2015; Agrawal
and Kant, 2014; Stahel et al., 2016; Donath et al., 2019).
Endothelial cell damage is a crucial and an early manifestation
of diabetic-associated vascular complications (van den Oever
et al., 2010; Gilbert, 2013; Liu et al., 2014). Among the multiple
and potential mechanisms that contribute to this phenomenon, a
crucial role is played by chronic low-grade inflammation. IL-1β

has been reported to cause endothelial cell damage in isolated
mesenteric rat micro-vessels (Vila and Salaices, 2005; Shashkin
et al., 2006). Vallejo et al. (2014) have shown that the deleterious
effects of IL-1β on endothelial cells are due to the IL-1R-mediated
activation of NADPH oxidase, which stimulates the production
of superoxide anion (Vallejo et al., 2014). Over-activation of
NADPH oxidase has also been associated with excess ROS
production and the development of atherosclerosis in diabetic
vasculopathy (Olukman et al., 2010; Gray et al., 2013).

IL-18 is another pro-inflammatory mediator activated by
inflammasome and produced and released by human AT (Wood
et al., 2005). IL-18 plasma levels are increased in obese people
and in individuals with T2D (Moriwaki et al., 2003; Evans
et al., 2007) while being restored in subjects who have lost
weight following bariatric surgery (Schernthaner et al., 2006).
It is a powerful pro-inflammatory cytokine that increases the
maturation of T and NKs, as well as the production of other
pro-inflammatory cytokines, exacerbating the obesity-induced
systemic inflammation (Weisberg et al., 2003).
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Likewise, IL-6 has been suggested to be involved in the
development of obesity-related and T2D-related IR (Fève and
Bastard, 2009). IL-6 leads to impaired insulin signaling, and
this occurs primarily by inhibition of insulin-stimulated tyrosine
phosphorylation of IRSs both in the liver and in AT (Senn
et al., 2002; Klover et al., 2003; Lagathu et al., 2003; Rotter-
Sopasakis et al., 2004; Fève and Bastard, 2009). Nonetheless,
conflicting results have been reported for IL-6 action on skeletal
muscle (Fève and Bastard, 2009). Carey et al. (2006) have shown
that IL-6 increases GLUT4 translocation on plasma membrane
and promotes insulin-stimulated glucose uptake in myotubes
(Carey et al., 2006). Nevertheless, it has also been shown that in
murine skeletal muscle cells, IL-6 is capable of reducing insulin-
stimulated glucose uptake through JNK activation (Nieto-
Vazquez et al., 2008). In pancreas, IL-6 impairs insulin secretion
and has pro-apoptotic effects on β-cells (Ellingsgaard et al.,
2008). An opposite effect is carried out on α-cells; IL-6 prevents
α-cells apoptosis and induces the secretion of glucagon-like
peptide-1. This could be considered an adaptive mechanism to
compensate for β-cell failure (Ellingsgaard et al., 2008, 2011;
Akbari and Hassan-Zadeh, 2018). Such findings support the
tissue-specific effect of IL-6 on glucose homeostasis, which
depends on several factors, such as concentrations, targets, and
signaling pathways activated.

The IL-6 signaling cascade involves activation of the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) pathway (Fève and Bastard, 2009; Dodington et al., 2018).
It serves as a crucial downstream mediator for a variety of
hormones, cytokines (Gadina et al., 2018), and growth factors,
including growth hormone, leptin, IL-6, and IFN-γ (Dodington
et al., 2018). There are four identified members in the JAK kinase
family (JAKs 1-3 and Tyk2), which associate with cytokine and
growth factor receptors. JAK-mediated signaling leads to the
activation of seven STAT family members (STATs 1-4, 5A, 5B, and
6). STAT proteins have cell- and tissue-specific distribution that
influences their specificity and function (Schindler and Darnell,
1995; Richard and Stephens, 2011, 2014). The regulation of
tissue-specific genes and the ability to have cell-specific tasks
appear to be important physiological roles of the JAK/STAT
pathway (Richard and Stephens, 2011). JAK/STAT signaling
in the peripheral metabolic organs modulates a multitude of
metabolic processes, including adiposity, energy expenditure,
glucose tolerance, and insulin sensitivity (Dodington et al.,
2018). This signaling pathway mediates the action of several
hormones that have profound effects on adipocyte development
and function. Adipocytes also produce hormones that utilize
this pathway (Richard and Stephens, 2011). The expression of
several STATs is modulated during adipogenesis (Richard and
Stephens, 2011). Additional functions of JAK/STAT signaling
in adipocytes include the transcriptional regulation of genes
involved in insulin action and lipid and glucose metabolism
(Richard and Stephens, 2011). JAK2, STAT3, and STAT5 are
essential for signaling through both the growth hormone and
leptin receptors and have been characterized in WAT (Dodington
et al., 2018). As the major upstream kinases required for STAT
activity, it is not surprising that JAK proteins also play important
roles in the control of AT function (Gurzov et al., 2016).

Adipose-specific Jak2 KO mice have demonstrated defective
lipolysis, increased body weight and adiposity compared to
controls, leading to IR (Nordstrom et al., 2013; Shi et al.,
2014; Corbit et al., 2017). Similarly, loss of either Stat3 or
Stat5 in AT contributes to increased weight gain, adiposity,
and impaired lipolysis (Dodington et al., 2018). There is
a controversy over the effects of adipocyte JAK2/STAT5 on
insulin sensitivity. Some studies have shown IR (Shi et al.,
2014) while others have demonstrated enhanced whole-body
insulin sensitivity in the absence of JAK2 or STAT5 (Nordstrom
et al., 2013; Corbit et al., 2017). This inconsistency might
be due to a variety of factors including tissue specificity and
cell stage-dependent expression of the cre transgene, mouse
genetic background, physiologic status, and other environmental
factors in which the experiments were performed (Dodington
et al., 2018). Although the direct role of STAT1 in the anti-
adipogenic action of IFN-γ was not investigated, experiments
using pharmacological inhibitors show that the JAK-STAT1
pathway plays a key role in the ability of IFN-γ to induce
IR, decline triglyceride stores, and down-regulate expression
of lipogenic genes in mature human adipocytes (Richard and
Stephens, 2014). The increased IFN-γ levels and JAK-STAT1
signaling in obesity contribute to AT dysfunction and IR
(Gurzov et al., 2016).

Emerging evidence demonstrates that the highly conserved
and potent JAK/STAT signaling pathway is dysregulated in
metabolic diseases, including obesity and T2D (Gurzov et al.,
2016; Dodington et al., 2018). Studies show that many STAT
activators play an important role in the regulation of adipocyte
gene expression and exhibit differential expression in the
condition of obesity and/or IR (Richard and Stephens, 2014).
Obesity increases levels of IL-6 in WAT that, in turn, chronically
activate intracellular JAK-STAT3 signaling. Chronic JAK-STAT3
signaling induced by IL-6 leads to the increased expression
of suppressor of cytokine signaling-3 that not only negatively
regulates IL-6 signaling but also hinders insulin action, eventually
resulting in obesity and IR (Wunderlich et al., 2013). JAK/STAT
signaling can have both physiological and pathological roles
depending on the context. It is difficult to speculate how
JAK/STAT inhibition will affect individuals with obesity and
diabetes (Dodington et al., 2018). This complexity highlights
the need for validation of the relative contribution of STAT
proteins in human samples. Further studies will also be required
to reveal the complex roles of the JAK-STAT pathway in
adipocytes, obesity, and IR. Manipulation of this pathway
within AT is a novel therapeutic approach for the treatment of
obesity and diabetes.

Systemic inflammation is characterized by high circulating
levels of inflammatory mediators and immune cells that infiltrate
insulin-dependent tissues (Weisberg et al., 2003). As has already
been discussed in the review, WAT is the main site where low-
grade systemic inflammation begins (Weisberg et al., 2003; Xu
et al., 2003). Accumulation of lipids that occurs in AT during
obesity triggers an inflammatory response that results in an
increased secretion of several inflammatory cytokines (Haase
et al., 2014; Raciti et al., 2017). Such molecules can also activate
JNK and NF-κB signaling pathways in the liver and skeletal
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muscle, thus inhibiting systemic insulin signaling (Hotamisligil
et al., 1993; Ciccarelli et al., 2016).

Obesity-induced inflammation initiates in WAT and then
spreads to other tissues, resulting in low-grade systemic
inflammation. In obesity, both liver and skeletal muscle exhibit
signs of local inflammation (Figure 1).

Skeletal muscle is the principal organ for insulin-stimulated
glucose uptake (i.e., capable for 80% of glucose disposal in
human), and muscle IR plays a key part in T2D etiology
(DeFronzo and Tripathy, 2009; Honka et al., 2018). Obesity
contributes to the development of chronic muscle inflammation,
characterized by increased pro-inflammatory M1 macrophage
infiltration (Fink et al., 2013, 2014). These macrophages
secrete many cytokines, which have been shown to trigger
inflammatory pathways within myocyte, culminating in
decreased insulin signaling (Varma et al., 2009; Pillon et al., 2012;
Patsouris et al., 2014).

In the liver, obesity leads to increased infiltration and pro-
inflammatory activation of two major macrophage groups:
Kupffer cells (i.e., resident specialized hepatic macrophages) and
monocyte-derived recruited hepatic macrophages (Tencerova
et al., 2015). Further work indicates that, during obesity,
the number of Kupffer cells remains unaffected, whereas

the accumulation of monocyte-derived recruited macrophages
increases several times (Morinaga et al., 2015). It has been
demonstrated that ATM-released inflammatory mediators lead to
hepatic IR by reducing insulin signaling (Morinaga et al., 2015).
These inflammatory mediators also contribute to liver steatosis by
promoting lipogenesis and toxic ceramide biosynthesis (Schubert
et al., 2000; Obstfeld et al., 2010).

ROLE OF INNATE AND ADAPTIVE
IMMUNITY IN OBESITY

Recently, as specified above, particular attention has been
paid to the role played by macrophages in AT inflammation.
Nevertheless, many other immune cells (both innate and adaptive
immune systems) are involved in the development of local and
systemic inflammation and IR.

Macrophages
During obesity, different types of both innate and adaptive
immune cells accumulate in AT (Lackey and Olefsky, 2016).
Macrophages are the most abundant and constitute up to 40%
of all AT cells in obesity (Lumeng et al., 2007a; Lee et al., 2018).

FIGURE 1 | Pathways linking local obesity-induced inflammation to systemic insulin resistance. Obesity results in the activation of the inflammatory signaling
pathways mediated by JNK and nuclear factor-kappa B (NF-κB). Once activated, these pathways induce the production of several pro-inflammatory cytokines in
adipocytes, which contribute to insulin resistance and pro-inflammatory macrophages infiltration. Activation of the JNK signaling pathway starts the transcription of
pro-inflammatory genes and inhibits the insulin signaling pathway through the insulin receptor substrate-1 (IRS-1) inhibitory serine phosphorylation, which reduces
the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling pathway. Instead, NF-κB signaling pathway activation culminates in the increased
expression of several NF-κB target genes such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1), which leads to
serine phosphorylation of IRS-1, therefore preventing insulin signaling. The inflammatory mediators including free fatty acids (FFA), IL-6, TNF-α, and MCP-1 also
spread through systemic circulation and activate JNK and NF-κB signaling pathways in the liver and skeletal muscle, inhibiting systemic insulin signaling. GLUT4,
glucose transporter type 4.
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They are suggested to be the major source of pro-inflammatory
cytokines (Samuel and Shulman, 2012), which can cause IR
(Xu et al., 2003).

Obesity is associated with the recruitment of M1-polarized
macrophages, which secrete pro-inflammatory cytokines such
as TNF-α and IL-1β (Han and Levings, 2013). Inflamed AT
is characterized by the combination of an increase in total
macrophages and an increased ratio of M1 to M2 (anti-
inflammatory) macrophages, which comes along obesity and
is linked with the development of IR (Lumeng et al., 2007a;
Reilly and Saltiel, 2017). However, we should consider that
macrophage inflammation in response to obesity is not identical
to the classic M1 activation state observed in inflammation
associated with acute infection. As ATMs express a different set
of surface markers, the pro-inflammatory activation in the setting
of obesity has been referred to as metabolic activation, or Me,
rather than M1 (Reilly and Saltiel, 2017). The pro-inflammatory
macrophages in obese AT also upregulate the expression of genes
that encode proteins involved in lipid metabolism. Hence, they
can be also distinguished from classically activated macrophages
(Xu et al., 2013; Henao-Mejia et al., 2014; Reilly and Saltiel, 2017).

Neutrophils
While ATMs are the pivotal effector innate immune cells causing
IR, alterations in several other innate immune cell types in
obese AT contribute to the initiation and/or progression of AT
inflammation (Lee et al., 2018).

Neutrophils are the leukocyte subpopulation (Chmelar et al.,
2013) and granulocytes involved in innate immunity (Asghar and
Sheikh, 2017; Kane and Lynch, 2019). They comprise up to 90%
of all granulocytes in the blood but are relatively rare in AT of
lean mice (Talukdar et al., 2012; Kane and Lynch, 2019). However,
neutrophils are among the first responders recruited to AT in
mice as early as 3 days after the initiation of HFD. Talukdar et al.
(2012) reported that the early recruitment of neutrophils was
prolonged over 90 days on HFD (Talukdar et al., 2012; Chmelar
et al., 2013). We should take into account that another study
already showed that this migration is transient (Elgazar-Carmon
et al., 2008).

Neutrophils stimulate AT inflammation by producing TNF-
α and MCP-1 (Dam et al., 2016; Trim et al., 2018). Neutrophils
also produce elastase, which impairs glucose uptake in AT (Wang
et al., 2009) and promotes IR by degrading IRS-1 (Talukdar
et al., 2012; McLaughlin et al., 2017; Lee et al., 2018). The
activity of elastase is also increased in the AT of HFD mice,
corresponding to the number of infiltrated neutrophils (Talukdar
et al., 2012; Chmelar et al., 2013). Genetic deletion of elastase
attenuates macrophage influx into the AT of obese mice and
results in improved insulin sensitivity (Talukdar et al., 2012;
Hotamisligil, 2017).

Dendritic Cells
Dendritic cells are specialized antigen-presenting cells that
link the innate and adaptive immunity (Bertola et al., 2012;
McLaughlin et al., 2017; Chung et al., 2018) by presenting
antigens to T cell receptors (Steinman, 2008).

Dendritic cells accumulate in AT of mice fed an HFD and in
the subcutaneous AT of obese humans (Cho et al., 2016). They
likely induce the pro-inflammatory microenvironment through
macrophage recruitment and IL-6 production (Stefanovic-Racic
et al., 2012). Blocking their accumulation improves insulin
sensitivity in obese mice (Cho et al., 2016).

DCs inhibit healthy expansion of AT, and depletion of these
cells improves glucose homeostasis in mice (Hotamisligil, 2017).
Adipose-recruited DCs have been shown to be associated with the
deregulation of chemerin, a particular adipokine (Ghosh et al.,
2016; Lu et al., 2019).

Altogether, these studies suggest a pathogenic role for DCs
in the development of obesity in mice and humans. Mice with
deletion of Fms-like tyrosine kinase 3 ligand (Flt3L), that lack
DCs, revealed reduced macrophage number in the AT and liver
as well as improved insulin sensitivity in diet-induced obesity.
Administration of recombinant Flt3L to these mice reversed this
phenotype (Chung et al., 2018).

Mast Cells
Mast cells are innate immune cells (Liu et al., 2009) that originate
from CD34+, CD13+, and CD17+ multipotent hematopoietic
stem cells (Zelechowska et al., 2018). AT is a reservoir of mast
cells (Zelechowska et al., 2018). There is a significant increase in
the number of mast cells in the WAT of mice and humans with
obesity (Liu et al., 2009) and/or T2D (Lackey and Olefsky, 2016).

Mast cells promote AT low-grade inflammation in obesity
(Liu et al., 2009). They mediate the macrophage infiltration (Liu
et al., 2009). Interestingly, mast cells are regulated by IL-6 and
IFN-γ but not via TNF-α (Liu et al., 2009; Sun et al., 2012). IL-
6 and IFN-γ play a crucial role in the ability of mast cells to
regulate metabolism, and they may mediate diet-induced obesity
and diabetes (Zelechowska et al., 2018). Immature mast cells that
infiltrate into AT the non-obese stage progressively mature and
promote obesity and diabetes progression (Hirai et al., 2014).

Mast cells tend to degranulate (Zelechowska et al., 2018),
resulting in the secretion of a large amount of pro-inflammatory
and immunomodulatory mediators, such as histamine, cytokines,
and chemokines (Sun et al., 2012; Zelechowska et al., 2018).
Hence, they have a key role in allergic responses and AT
homeostasis (Sun et al., 2012). Mast cell deficiency is associated
with improved insulin sensitivity (McLaughlin et al., 2017).

B Cells
Lymphocytes account for up to 10% of non-adipocytes cells in
human AT and include T cells, B cells, NKs, NKTs, and ILC2s
(McLaughlin et al., 2017).

B cells are an important component of the adaptive immunity
that release immunoglobulins or antibodies to recognize the
cognate antigen. This feature differs from the cell-mediated
immunity where T cells recognize processed antigenic peptides
presented by antigen-presenting cells (Sun et al., 2012). B cells
in AT are phenotypically different from B cells found in other
tissues, as B cells in AT have unique genetic markers (Dam et al.,
2016). They are present across all known AT depots but are less
well characterized than T cells (Kane and Lynch, 2019).
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B cells have also been shown to be pathogenic in obesity (Kane
and Lynch, 2019). B cells accumulate in the AT of obese mice
relative to lean mice and become more inflammatory, producing
chemokines that promote the recruitment of neutrophils, T cells,
and monocytes (Kane and Lynch, 2019). B cells promote pro-
inflammatory activation of ATMs and T cells (Winer et al., 2011;
Lee et al., 2018).

B cells modulate IR by accumulating in the AT of obese mice
(Winer et al., 2009). It has been reported that B cell accumulation
precedes T cell accumulation during the development of
obesity (Lau et al., 2012). B cells might contribute to AT
inflammation by producing immunoglobulin G antibodies or
pro-inflammatory cytokines. The B cells from obese mice release
a more inflammatory repertoire of cytokines (Michelsen et al.,
2004; Winer et al., 2011; Ding et al., 2012).

Obese mice with B cell deficiency reduce IR (DeFuria et al.,
2013; Hotamisligil, 2017). Transfer of B cells from obese donor
mice causes impaired insulin sensitivity and glucose homeostasis
in the recipients (Winer et al., 2011; Hotamisligil, 2017). By
contrast, there are also tolerance-promoting B regulatory cells
in AT, and their number is decreased in models of obesity
(Nishimura et al., 2013; Hotamisligil, 2017).

T Cells
CD3+ T cells constitute the largest AT immune-cell population
next to macrophages, and their abundance is increased in HFD
obese mice (Lee et al., 2018). T cells can be divided into two
subtypes depending on the markers on their surface, CD4 and
CD8 T cells (Pennock et al., 2013).

Obesity is associated with an increase in the number
of CD8+ T cells in AT (Henao-Mejia et al., 2014), and
these cells promote macrophage differentiation and chemotaxis
(Nishimura et al., 2009).

CD4+ T cells identify major histocompatibility complex class
II, presented on the surface of antigen-presenting cells like DCs,
macrophages, and B cells (Dam et al., 2016; Trim et al., 2018).
CD4+ T cells are subclassified into pro-inflammatory T helper
1 (Th1) and Th17 cells, anti-inflammatory Th2 cells, and T
regulatory cells (Tregs). The number of CD3+CD4+ Th1 cells
is increased in obesity, and they stimulate AT inflammation by
secreting IFN-γ. In contrast, the number of CD3+CD4+ Th2 cells
is declined in obese AT (Winer et al., 2009; Lee et al., 2018).

Treg cells (CD3+CD4+FOXP3+) are a small subset of CD4+
T lymphocytes that inhibit inappropriate inflammation. Treg
population in lean AT is characterized by high peroxisome
proliferator-activated receptor γ (PPARγ) expression. These
Tregs play a critical role in maintaining AT inflammatory tone
and insulin sensitivity (Lee et al., 2018). The decline in the
numbers of AT Treg cells during obesity contributes to increased
AT inflammation (Zhou et al., 2010; Henao-Mejia et al., 2014)
and IR (Feuerer et al., 2009; Lee et al., 2018).

Invariant natural killer T cells (iNKTs) are lipid-antigen-
reactive T cells restricted by the major histocompatibility
complex-like molecule CD1d (Lee et al., 2018). iNKT cells form
a subset of lymphocytes in normal AT. The number of iNKTs
is reduced in obesity (Lee et al., 2018). Furthermore, mice
lacking iNKTs shows increased weight gain, larger adipocytes,

and IR on HFD. This is associated with increased infiltration of
macrophages into AT (Lynch et al., 2012).

Collectively, the network of T and B cells has crucial effects
to influence macrophage infiltration. Thus, pro-inflammatory
macrophages are the final effector cells that induce IR
(Lee et al., 2018).

OBESITY-INDUCED AT INFLAMMATION
TRIGGERS

There is a limited understanding of how obesity-induced
inflammation in AT is triggered. However, potential
mechanisms identified include dysregulation of fatty acids
homeostasis, increased adipose cell size and death, local
hypoxia, mitochondrial dysfunction, ER stress, and mechanical
stress (Figure 2) (Heilbronn and Liu, 2014; Reilly and Saltiel,
2017). These mechanisms are recognized as the link between
chronic caloric excess and AT inflammation or as factors that
may perpetuate chronic tissue inflammation (Burhans et al.,
2018). The list of potential mechanical links mentioned here
is not complete, and it is likely that the triggers leading to AT
inflammation have not yet been identified.

Dysregulated Fatty Acids Homeostasis
Saturated fatty acids promote inflammatory activation of
macrophages, partially mediated by indirect binding to TLR4 and
TLR2 (Konner and Bruning, 2011), resulting in the activation of
NF-κB and JNK pathways (Shi et al., 2006; Milanski et al., 2009).

Once these pathways have been stimulated, many chemokines
(e.g., MCP-1 and TNF-α) are produced and released from
adipocytes, resulting in inflammatory macrophage infiltration
(Reilly and Saltiel, 2017). In obesity, in addition to an increased
intake of saturated fatty acids, TLR4 and TLR2 expression are
increased in the AT, further supporting the role of these receptors
in obesity-associated inflammatory signaling (Husam et al., 2008;
Vitseva et al., 2008). In regard to this, acute lipid infusion is
enough to stimulate AT inflammation and systemic IR in wild-
type mice, and these effects are prevented in TLR4-deficient mice
(Shi et al., 2006). Based on these findings, TLR4 appears to be
an interesting candidate for linking dietary fatty acids with AT
inflammation and IR (Poggi et al., 2007). Despite saturated fatty
acids, unsaturated omega-3 and -9 fatty acids have beneficial
effects and alleviate AT inflammation (Oliveira et al., 2015).

Adipocyte Hypertrophy, Hypoxia, and
Death
WAT plays a major role in regulating systemic energy
homeostasis, which acts as a safe reservoir for fat storage.
In response to changes in nutritional status, AT expands by
increasing the number (hyperplasia) and size of the adipocytes
(hypertrophy) (Sun et al., 2011; Longo et al., 2018; Hammarstedt
et al., 2018). Cross-sectional studies have demonstrated that the
size of visceral adipocytes is negatively correlated with insulin
sensitivity (O’Connell et al., 2010; Hardy et al., 2011), and these
findings allow proposing adipocyte size as an IR determinant
(O’Connell et al., 2010).
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FIGURE 2 | Obesity triggers inflammation. Obesity provides a plethora of intrinsic and extrinsic signals capable of triggering an inflammatory response in AT. These
mechanisms are commonly considered the link between chronic caloric excess and adipose tissue inflammation. Some of these mechanisms include dysregulation
of fatty acid homeostasis, increased adipose cell size and death, local hypoxia, mitochondrial dysfunction, endoplasmic reticulum (ER), and mechanical stress. These
triggers converge on the activation of the c-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) pathways, commonly considered signaling hubs. The
activation of these pathways increases the production of pro-inflammatory cytokines and promotes the infiltration of pro-inflammatory M1 macrophages. TLR2, Toll
like receptor 2; TLR4, Toll like receptor 4; FFA, free fatty acids; UPR, unfolded protein response; HIF-1α, hypoxia-inducible factor-1α; RhoA, ras homolog gene family,
member A; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; MCP-1, monocyte chemotactic protein-1; ECM, extracellular matrix.

Thus, the evidence indicating that adipocyte hypertrophy
certainly contributes to AT inflammation is quite convincing at
the present. Increased adipocyte size is characterized by a higher
rate of adipocyte death and macrophage recruitment. Larger
adipocytes exhibit an altered chemoattractant and immune-
related proteins secretion that may promote pro-inflammatory
macrophage infiltration (Jernas et al., 2006; Heilbronn and
Liu, 2014). Most of these infiltrated macrophages surround
necrotic adipocytes and form crown-like structures. In obese
rodents as well as humans, necrosis-related factors further attract
monocytes in AT where they uptake the lipids released by
dead adipocytes (Cinti et al., 2005; Murano et al., 2008; Choe
et al., 2016). As described above, the recruited monocytes have a
pro-inflammatory phenotype and secrete cytokines and reactive
oxygen species in neighboring adipocytes that interfere with
insulin signaling (Shapiro et al., 2011). An increase in the number
of dead adipocytes has been recognized to prevent normal AT
functions and cause inflammation (Choe et al., 2016).

During adipocyte hypertrophy, angiogenesis is initiated to
supply oxygen to the expanding tissue. If the AT expansion is
very rapid, the vasculature cannot fulfill the oxygen requirement
and hypoxia occurs (Gealekman et al., 2011; Sun et al., 2011;
Trayhurn, 2013).

Hypoxia is a strong metabolic stressor. Current evidence
reveals that hypoxia develops as AT expands because of a

relative under perfusion of the enlarged AT or increased oxygen
utilization (Gealekman et al., 2011; Sun et al., 2011; Trayhurn,
2013; Lee et al., 2014).

Cellular hypoxia can initiate inflammation by activating
hypoxia-inducible factor-1 (HIF-1) gene program. Activated
HIF-1α translocates to the nucleus where it recognizes and binds
the HREs on DNA. The binding to HREs promotes not only the
expression of many genes involved in the angiogenesis but also
inflammation (Trayhurn, 2013; Fiory et al., 2019). These include
vascular endothelial growth factor, insulin-like growth factor 2,
transforming growth factor α, as well as nuclear factor of kappa
light polypeptide gene enhancer in B-cells 1 and inflammatory
cytokines such as interleukin-33 and 18 (Shi and Fang, 2004). It
has been shown that adipocyte-specific HIF-1α deletion prevents
obesity-induced inflammation and IR (Lee et al., 2014).

Mitochondrial Dysfunction
Mitochondria are present in almost all eukaryotic cells and are
responsible for cellular energy production, calcium signaling, and
apoptosis (Osellame et al., 2012). Alterations in mitochondrial
functions are capable of causing inflammation, oxidative stress,
cell death, and metabolic dysfunction (Hock and Kralli, 2009;
Kim et al., 2016). A number of studies in obese mice and human
subjects have shown that mitochondrial dysfunction is strongly
associated with pathological conditions such as inflammation, IR,

Frontiers in Physiology | www.frontiersin.org 9 January 2020 | Volume 10 | Article 1607

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01607 January 27, 2020 Time: 16:6 # 10

Zatterale et al. Obesity-Induced Inflammation and Diabetes

and T2D (Silva et al., 2000; Petersen et al., 2003, 2004; Morino
et al., 2005; Woo et al., 2019). Alterations in mitochondrial
functions and reductions in mitochondrial DNA content have
been reported in obese (ob/ob) and diabetic (db/db) mice
(Choo et al., 2006; Koh et al., 2007). A comparable decrease in
mitochondrial activity has also been observed in human AT from
obese individuals (Yin et al., 2014).

The mitochondrial dysfunction leads to inflammation through
modulating redox-sensitive inflammatory mechanisms such as
NF-κB or direct inflammasome activation (Vaamonde-García
et al., 2012; López-Armada et al., 2013). The activation of both
pathways induces an upregulation of inflammatory cytokines
and adhesion molecules secretion, resulting in a substantial
amplification of the inflammatory response (Escames et al., 2011;
López-Armada et al., 2013).

Petersen et al. (2003, 2004) reported that the mitochondrial
dysfunction also contributes to ectopic fat accumulation (i.e.,
accumulation of intracellular fatty acid metabolites such as fatty
acyl-CoA and diacylglycerols), which blocks insulin signaling.

Woo et al. (2019) suggest a new hypothesis that adipocyte
mitochondrial dysfunction causes AT inflammation and systemic
IR by inducing fatty acids accumulation in adipocytes, and
resulting in adipocyte hypertrophy and hypoxia.

ER Stress
ER is a cellular organelle that exhibits high sensitivity to cellular
nutrients and energy status (Hummasti and Hotamisligil, 2010).
Many genetic and environmental hits can alter the functions
of ER and therefore contribute to ER stress (Hummasti and
Hotamisligil, 2010). Several studies have shown that the incorrect
functioning of the UPR (i.e., ER-stress mitigation system
in eukaryotes) is associated with chronic metabolic diseases
including obesity, IR, and T2D (Ozcan et al., 2006; Boden et al.,
2008; Sharma et al., 2008; Gregor et al., 2009). It has been shown
in mice that obesity results in increased ER stress, particularly in
the liver and AT. Indeed, the expression of most ER stress markers
and chaperones is strongly BMI-related and associated with AT
insulin sensitivity (Sharma et al., 2008). Additionally, a weight-
loss gastric bypass surgery has been shown to enhance insulin
sensitivity and decrease ER stress in obese (Gregor et al., 2009).

Inflammation is the predominant mechanism by which ER
stress negatively affects metabolic homeostasis. The primary
mechanisms by which ER stress establishes inflammatory
mechanisms in AT involve the activation of NF-κB, JNK, and
apoptosis signaling pathways.

In response to ER stress, the three UPR branches are activated.
The activation of two branches is mediated by protein kinase
RNA (PKR)-like ER kinase (PERK) and activating transcription
factor 6 (ATF6). This activation stimulates NF-κB signaling
pathway, resulting in the subsequent inhibition of insulin action
via IRS-1 phosphorylation. In addition, the branch mediated
by inositol-requiring enzyme 1 results in the activation of
the JNK signaling pathway (Hotamisligil, 2010; Hummasti and
Hotamisligil, 2010). There is also crosstalk between the three
branches. For example, spliced X-box binding protein 1, as well
as activating transcription factor 4, induces the production of

the inflammatory cytokines IL-6, interleukin-8, and MCP-1 by
human endothelial cells (Hotamisligil, 2010).

A further important function of UPR is to activate pro-
apoptotic signaling pathways in order to prevent the release and
accumulation of misfolded proteins, which may have adverse
effects on cellular functions (Hotamisligil, 2010). However,
ER stress-induced apoptosis may also contribute to increased
inflammatory signaling and other aspects of metabolic diseases.
For instance, adipocyte death in obesity has been suggested
as a potential trigger for the recruitment of macrophages and
other inflammatory cells (Cinti et al., 2005), as described in the
review. Evidence also indicates that ER stress is essential for β-cell
development and survival (Harding et al., 2001; Scheuner et al.,
2001; Zhang et al., 2002).

In 2016, we have reported that UPR hyper-activation
by glucose insult leads to a pro-inflammatory phenotype
in preadipocytes. Cells exposed to hyperglycemia release an
increased amount of pro-inflammatory cytokines, chemokines
and IL-12 lymphokine, which can trigger inflammation by
affecting inflammatory cells. However, such effects are prevented
by a chemical chaperone such as 4-phenyl butyric acid (Longo
et al., 2016). ER stress pharmacological inhibition can reverse
metabolic dysfunction also in other tissues, including liver and
brain (Ozcan et al., 2006; Longo et al., 2016).

Meta-inflammation and ER dysfunction are emerging
as critical mechanisms. If these mechanisms are targeted
therapeutically, they can enhance multiple metabolic parameters,
as shown in preclinical and clinical studies (Hummasti and
Hotamisligil, 2010).

Dynamics of the ECM and Mechanical
Stress
The protein composition and dynamics of the ECM are crucial
for the adipocyte function. ECM remodeling is essential for
the expansion and contraction of adipocytes to accommodate
changes in energy stores (Rutkowski et al., 2015). During a
positive energy balance, ECM accumulation occurs in AT, which
contributes to fibrosis and impairs its role as a nutrient storage
organ (Lee et al., 2014).

Abnormal accumulation of ECM components in AT has been
shown to cause obesity-associated IR (Lin et al., 2016). Excessive
ECM deposition in AT is suggested for triggering adipocyte
necrosis, which attracts pro-inflammatory macrophages and
causes AT inflammation and metabolic dysfunction. In addition,
excess ECM deposition causes adipocyte death and AT
inflammation by activation of integrins and CD44 signaling
pathways (Lin et al., 2016).

Lipid accumulation occurring in obesity may also cause
ECM instability and induce various mechanical stresses on these
cells. The mechanisms governed by these mechanical stresses
in adipocytes have not yet been fully explained, but certain
pathways such as RhoA, and NF-κB have been evaluated. RhoA
signaling, for instance, inhibits adipogenesis through PPARγ

suppression and stimulates the secretion of pro-inflammatory
cytokines (McBeath et al., 2004; Li et al., 2010). Meanwhile,
Li et al. (2010) have shown that the elevated density of ECM
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proteins reduces insulin signaling and increases MCP-1 secretion
by activating the NF-κB signaling pathway (Li et al., 2010).

As mentioned above, some of the potential mechanisms
involved in AT inflammation have been identified; however, it
is likely that there are still unknown triggers. The temporal
sequence of events leading to AT inflammation, as well as the
contribution of each mechanism described above, has not yet
been fully established. In our opinion, adipocyte hypertrophy
may be the primary and initial event causing AT inflammation.
In obesity, adipocytes respond to excess energy by storing lipids
inside and undergoing dramatic changes in size (hypertrophy).
Hypertrophy is associated with hypoxia, cellular and tissue
stress, and cell death due to the activation of both necrotic
and apoptotic mechanisms. Hypertrophic adipocytes are also
characterized by excessive lipolysis, resulting in increased release
of FFAs acting on TLR4, as previously indicated. All the above
mechanisms promote adipocyte dysfunction, characterized by
an altered cytokine secretion pattern. These mechanisms play a
dual role; they are able both to trigger individually inflammatory
responses and to induce downstream processes, amplifying and
eliciting chronic systemic inflammation and thus promoting
systemic IR. The temporal sequence of events suggested here and
the relevance that we attribute to adipocyte hypertrophy in the
initiation of AT inflammation needs to be further verified.

INFLAMMATION AS A THERAPEUTIC
TARGET FOR METABOLIC DISEASES

The role of chronic inflammation, particularly in the AT,
in the pathogenesis of T2D and associated complications,
is now well established. The association between obesity,
AT inflammation, and metabolic disease makes inflammatory
pathways an appealing target to treat metabolic disorders.
Inflammation is recognized as the pathologic mediator of these
frequently common comorbidities. Several anti-inflammatory
approaches have been tested in clinical studies of obese
individuals with IR, but clinical trials to confirm the therapeutic
potential are still ongoing (Goldfine and Shoelson, 2017). The
number of available drugs that can target different components
of the immune system and improve different metabolic aspects is
increasing rapidly (Donath, 2014).

Based on the mechanism of action, therapeutic approaches
to target inflammation in IR and T2D can be divided into (i)
pharmacologic approaches that directly target inflammation and
(ii) diabetes drugs with anti-inflammatory properties.

Pharmacologic Approaches That Directly
Target Inflammation: Salsalate
Salsalate is an analog of salicylate that belongs to the non-
steroidal anti-inflammatory drug classes. Independent studies
have shown that salsalate can improve glycemic control in
T2D patients. The mechanism of action of salsalate in reverse
hyperglycemia in obese mice is through the inhibition of NF-
κB pathway and has been identified in 2001 by Shoelson
(Yuan et al., 2001).

Goldfine then translated this initial finding to the clinical
study and showed that salsalate decreases fasting glucose and
triglyceride levels, increases adiponectin levels and glucose
utilization in diabetic patients during hyperinsulinemic–
euglycemic clamp, and improves insulin clearance (Goldfine
et al., 2008). These observations have been confirmed in two
multicenter, randomized, placebo-controlled trials in subjects
with T2D (Goldfine et al., 2010, 2013). In the first study,
treatment with this drug improves insulin sensitivity and
decreases HbA1c levels by 0.5% relative to placebo over 14 weeks
in a group of patients with T2D (Goldfine et al., 2010). In
the second study, 48 weeks of salsalate administration in a
larger patient population (283 participants; placebo, n = 137;
salsalate, n = 146) leads to a smaller decrease in the levels of
HbA1c (–0.33%) and serum triglycerides (Goldfine et al., 2013).
This treatment also decreases levels of glycation end products
(Barzilay et al., 2014).

Other studies also suggest that metabolic improvement,
induced by salsalate treatment, is mediated through AMPK
activation (Hawley et al., 2012). Although the effects on glycemic
control are modest, the salsalate is not expensive and has a
very safety profile.

Pharmacologic Approaches That Directly
Target Inflammation: TNF-α Inhibitors
In 1993, a preclinical study clearly showed the role of TNF-
α in the pathophysiology of IR in the AT (Hotamisligil et al.,
1993), and this finding has raised the hypothesis that TNF-α
blockade has potential therapeutic benefits. However, the results
of clinical studies have so far been disappointing. For instance,
TNF-α neutralizing antibodies have been shown to be effective
for the treatment of many other inflammatory diseases, and some
patients have shown slight improvements in glycemic control
(Ofei et al., 1996; Feldmann, 2002; Reilly et al., 2013). However,
prospective studies in T2D patients have been confusing. In spite
of valuable effects in mice, a human clinical trial showed that anti-
TNF-α therapy leads to no improvements in insulin sensitivity
in patients with T2D (Ofei et al., 1996; Moller, 2000; Paquot
et al., 2000). In contrast, a study performed in obese subjects
without T2D showed that an inhibition of TNF-α for 6 months
is able to reduce fasting glucose and increase adiponectin levels
(Stanley et al., 2011).

Pharmacologic Approaches That Directly
Target Inflammation: IL-1β Antagonists
IL-1β is a strong mediator of the obesity-induced inflammation
and participates in the pathogenesis of T2D, mediating the
adverse consequences of hyperglycemia on pancreatic β-cells
(Maedler et al., 2002). Antagonism of IL-1R for 13 weeks, in a
proof-of-concept study of patients with T2D, shows an improved
glycemic control and secretory function of the pancreatic β-cells
and the reduced markers of systemic inflammation (Larsen et al.,
2007). The follow-up study on the same population proves that
39 weeks after the last IL-1R antagonist administration, β-cell
insulin secretion is still increased and CRP decreased (Larsen
et al., 2009). The long-term effects are probably due to the block
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of IL-1β auto induction mechanism (Böni-Schnetzler et al., 2008).
Further studies have also noted that the use of antibodies directed
against IL-1β has potential benefits in the treatment of T2D, as
it significantly reduces HbA1c levels (Cavelti-Weder et al., 2012;
Sloan-Lancaster et al., 2013).

Pathological activation of IL-1β also contributes to the
development of other T2D-associated diseases, such as Crohn’s
disease, gout, and RA (Donath et al., 2019). Recently, a
multicenter randomized controlled trial, specifically designed to
evaluate the glycemic outcome, enrolled participants, with RA
and T2D (followed up for 6 months). Thirty-nine participants
were randomized to IL-1R antagonist (anakinra) or TNF
inhibitors (TNFi) to assess the efficacy of these drugs in
controlling glucose alterations of T2D (Ruscitti et al., 2019). After
3 and 6 months of treatment, anakinra showed a significant
improvement in metabolic alteration (reduction of HbA1c
by more than 1%), whereas TNFi showed no enhancement.
Regarding RA, there has been a gradual reduction in disease
activity in both groups. In conclusion, results of this research
indicate a specific effect of IL-1 inhibition in subjects with RA
and T2D, reaching the therapeutic targets of both disorders
and improving the main outcome of enrolled participants.
A clearer reduction of HbA1c, comparing this to the previous
study on T2D (Larsen et al., 2007), can be explained based
on the theory that pathogenic mechanisms of T2D could be
exaggerated in the context of RA. On this basis, IL-1 pathway
can be considered a shared pathogenic mechanism, and a
single treatment that manages both diseases appears to be a
promising option for improving the care of RA and T2D patients
(Giacomelli et al., 2016).

Diabetes Drugs With Anti-inflammatory
Properties: Thiazolidinediones
Thiazolidinediones (TZDs) are antidiabetic drugs that improve
insulin sensitivity and glycemia, as they function as agonists for
PPARγ nuclear receptor (Yki-Järvinen, 2004). TZDs have also
anti-inflammatory effects; they repress NF-κB action and reduce
the expression of its target genes (Pascual et al., 2005).

The inhibition of NF-κB pathway reduces ATM content
(Esterson et al., 2013; Koppaka et al., 2013), restores the M2
macrophages phenotype (Chawla, 2010), and stimulates the
recruitment of the anti-inflammatory regulatory T cells in the AT
(Cipolletta et al., 2012).

Furthermore, the ability of TZDs to reduce circulating
inflammatory mediators (such as CRP and MCP-1) seems
to be independent of glycemic control (Pfützner et al.,
2005). Therefore, TZDs act through different mechanisms
and the anti-inflammatory properties of these drugs are not
definitely established.

Diabetes Drugs With Anti-inflammatory
Properties: Metformin
The mechanism of metformin action is not completely
explained, but it decreases glycemia by reducing hepatic
glucose production and raising glucose uptake in peripheral
tissues (Inzucchi et al., 1998). In addition to its clear metabolic

effects, metformin has also anti-inflammatory properties; for
instance, it directly inhibits the production of reactive oxygen
species in the mitochondria and can reduce the production
of many cytokines (Wheaton et al., 2014). Emerging evidence
supports the novel hypothesis that metformin can exhibit
immune-modulatory features. The effects of metformin on
immune cells (T cells, B cells, monocytes/macrophages,
neutrophils) involved in the pathogenesis of autoimmune
and inflammatory diseases have been extensively reviewed
by Ursini et al. (2018). Inside the immune cells, metformin
temporarily inhibits the complex I of the mitochondrial electron
transport chain, contributing to an increased AMP/ATP ratio
(Rena et al., 2017). Decreased ATP concentration causes
AMPK activation, and among several targets, AMPK inhibits
the mammalian target of rapamycin (mTOR) (Zhou et al.,
2001). mTOR is crucial for cellular metabolism, cytokine
responses, antigen presentation, macrophage polarization,
and cell migration (Weichhart et al., 2015) through its
interaction with the STAT3 pathway (Saleiro and Platanias,
2015). Metformin can also regulate other pathways relevant
to immune cells, including NF-kB (Hattori et al., 2006;
Chaudhary et al., 2012) and JNK (Wu et al., 2011). Indeed,
other studies have proved that metformin is able to inhibit
TNF-α-induced activation of the NF-κB axis and IL-6
production (Huang et al., 2009) through PI3K-dependent
AMPK phosphorylation. Metformin, in a dose-dependent
manner, reduces IL-1β production in lipopolysaccharide-
activated macrophages, and the effect is independent of AMPK
activation (Kelly et al., 2015). Moreover, metformin concurrently
decreases circulating inflammatory proteins, including CRP,
in impaired glucose tolerance and T2D patients (De Jager
et al., 2005; Haffner et al., 2005). The anti-inflammatory
effects of metformin, like TZDs, appear to be independent of
glycemic control (Caballero et al., 2004). In murine models,
the attenuation of the inflammatory state has been shown to
be effective in improving the obesity-induced IR; however,
there are ongoing clinical trials in humans to confirm the
therapeutic potential of metformin. This issue represents
an essential step in proving the translational relevance of
these observations.

T2D is a heterogeneous disorder, and the absence of
clinical biomarkers, showing whether the treatments have anti-
inflammatory effects in the AT, is a potential issue complicating
the analysis (Donath, 2016). The identification and profiling of
these biomarkers in T2D patients would allow us to predict those
that should respond to an anti-inflammatory therapy.

CONCLUSION

The global obesity epidemic results in a higher incidence of
metabolic disorders. The mechanisms underlying the association
between obesity and IR have not yet been fully explained.
Therefore, further well-designed clinical and basic research
studies are needed to establish this relationship. From our point
of view, inflammation occurring in the AT during obesity is
the primary mechanism for developing local and systemic IR.
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AT is the primary whole-body regulator of lipid and glucose
homeostasis and is no longer considered merely a storage tissue.

Obesity leads to severe adipocyte disorders by altering the
amount and activity of almost all resident immune cells.
The imbalance of immunological phenotypes is correlated
with the development of persistent local inflammation during
which several biologically active molecules are released. These
molecules affect distal tissues and organs, such as skeletal
muscle and liver.

The inflammatory nature of obesity opens new prospects in
the development of therapeutic strategies for the treatment of its
related metabolic complications. However, there are still a lot of
issues that need to be addressed.

Anti-inflammatory strategies have proven to be effective in
improving obesity-induced IR in murine models. However,
clinical studies are still ongoing to confirm the therapeutic
potential in obese and insulin-resistant individuals. Another
issue is the modest effects of anti-inflammatory therapies
observed in these studies. Targeting only one inflammatory
molecule may not be sufficient to have a beneficial effect;
therefore, we could hypothesize the combined use of more
anti-inflammatory therapies. In addition, a recent study
showed that acute and transient inflammation is essential for
healthy AT expansion and remodeling in obesity (Asterholm
et al., 2014). This finding raises further questions on the
effectiveness of anti-inflammatory therapies in the treatment
of obesity-induced metabolic disorders. Inflammation is a
finely regulated mechanism, and all defects in its balance can
cause AT dysfunction.

In the era of personalized and precision medicine, increasing
our knowledge of the obesity-induced inflammation mechanisms

might enable us to overcome the limitations of the traditional
anthropometric indices of obesity. These anthropometric indices
are not correlated with obesity-induced metabolic complications
and additional clinical parameters need to be identified for
risk assessment (Longo et al., 2019). From our point of view,
given the strong association between inflammation and obesity
complications, circulating inflammatory biomarkers may be
used for the risk assessment of these diseases in the future.
The identification and evaluation of these biomarkers in obese
patients will allow the prediction of those who will develop
obesity-associated metabolic complications.
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