
fphys-10-01609 January 9, 2020 Time: 18:20 # 1

REVIEW
published: 21 January 2020

doi: 10.3389/fphys.2019.01609

Edited by:
Krystyna Pierzchala-Koziec,

University of Agriculture in Krakow,
Poland

Reviewed by:
Zhe-Sheng Chen,

St. John’s University, United States
John Foley,

Indiana University Bloomington,
United States

Randall Widelitz,
Keck School of Medicine, University
of Southern California, United States

*Correspondence:
Chun-qi Gao

cqgao@scau.edu.cn

Specialty section:
This article was submitted to

Avian Physiology,
a section of the journal
Frontiers in Physiology

Received: 30 March 2019
Accepted: 23 December 2019

Published: 21 January 2020

Citation:
Chen MJ, Xie WY, Jiang SG,

Wang XQ, Yan HC and Gao CQ
(2020) Molecular Signaling
and Nutritional Regulation

in the Context of Poultry Feather
Growth and Regeneration.

Front. Physiol. 10:1609.
doi: 10.3389/fphys.2019.01609

Molecular Signaling and Nutritional
Regulation in the Context of Poultry
Feather Growth and Regeneration
Meng-jie Chen, Wen-yan Xie, Shi-guang Jiang, Xiu-qi Wang, Hui-chao Yan and
Chun-qi Gao*

College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition
Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China

The normal growth and regeneration of feathers is important for improving the welfare
and economic value of poultry. Feather follicle stem cells are the basis for driving feather
development and are regulated by various molecular signaling pathways in the feather
follicle microenvironment. To date, the roles of the Wnt, Bone Morphogenetic Protein
(BMP), Notch, and Sonic Hedgehog (SHH) signaling pathways in the regulation of
feather growth and regeneration are among the best understood. While these pathways
regulate feather morphogenesis in different stages, their dysregulation results in a low
feather growth rate, poor quality of plumage, and depilation. Additionally, exogenous
nutrient intervention can affect the feather follicle cycle, promote the formation of the
feather shaft and feather branches, preventing plumage abnormalities. This review
focuses on our understanding of the signaling pathways involved in the transcriptional
control of feather morphogenesis and explores the impact of nutritional factors on
feather growth and regeneration in poultry. This work may help to develop novel
mechanisms by which follicle stem cells can be manipulated to produce superior
plumage that enhances poultry carcass quality.

Keywords: feather, feather follicle, stem cells, nutritional intervention, signaling regulation

INTRODUCTION

In modern commercial poultry production, the quantity and quality of feathering in both broilers
and layers are gaining increased attention. The feather growth rate, quality and patterns of molting
are important to the production of a high value poultry carcass (Guo, 2011). Poor feather growth
not only affects the appearance of the organism but also decreases the uniformity of the carcass
and feed efficiency. Thus, bad feather growth reduces the net profitability of poultry production
(Lopez-Coello, 2003; Zeng et al., 2015). However, in the commercial production of poultry,
plumage defects often occur, such as feather pecking, molting, and inadequate body coverage
(Bajpai et al., 2016; Coton et al., 2019). Therefore, investigating the feather morphogenesis and
development, signal transduction pathways, and effective nutrient interventions of poultry is of
great economic significance.
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THE GROWTH AND DEVELOPMENT OF
POULTRY FEATHERS

Feather Structure
Feathers, which are unique epidermal structures originating
from epidermal cells of the ectoderm, have a complex and fine
structure. Feathers are not simply a flying tool, but also function
as inulation, as well as aid in protection, swimming, temperature
regulation, and a mode of communication (Clark et al., 2011;
Prado et al., 2016). Poultry feathers have an extensive branching
structure, and the development of feathers is the result of the
proliferation and differentiation of feather follicle stem cells (Yue
et al., 2005). Feather branching begins in the early stage of
feather growth and consists of three levels: from rachis to barbs,
from barbs to barbules, and from barbules to cilia or hooklets.
These three levels of morphogenesis are combined to yield
different types of feathers (Figure 1), which can be divided into
symmetric down feathers, bilaterally symmetric contour feathers,
and bilaterally asymmetric flight feathers (Chen et al., 2015).
In addition, feather branching is strictly controlled by time and
space. However, the molecular signal or cell fate determination
mechanism involved in initiating feather branching remains an
area to be further investigated.

Feather Follicle Development
Feather follicles are formed by the interaction of dermal cells and
epithelial cells, which is the basis for the growth and development
of poultry feathers (Figure 2A). The dermis begins to form
within in the developing plumage bearing skin due to rapidly
proliferating mesenchymal cells on the 10th day of goose embryo
development, and the process is completed by the 11th or 12th
day. Then, dermal papillae are formed by the accumulation of
columnar cells on the surface of the dermis, thus providing
nutrients for feather growth (Wu et al., 2008). On the 13th
or 14th days of goose embryo development, the dermal papilla
grows thicker and forms a feather primordium together with
the epithelial compartment. Then, the epidermis continues to
bulge to form a feather bud (Jiang and Chuong, 1992), which
further invaginates to form a primary feather follicle; secondary
feather follicles are formed on the 18th day in the goose embryo
(Wu et al., 2008).

For the chicken, feather buds are visible from the 5th to
the 8th days of the embryonic stage, and feather buds began
to gradually differentiate on the 9th day. Complete follicles
and feathers are formed on the 17th day of hatching (Lucas
and Stettenheim, 1972). In ducks, cell proliferation has been
demonstrated to form feather buds at the epithelium on the 11th
day of the embryonic stage. On the 15th day, the primary follicle
forms, and the feather sheath fills in newly formed follicles. On
the 20th day, the follicle and feather sheath are closely linked
together to form a single layer, and feathers completely cover
the body (Chen et al., 2012, 2017). Therefore, different types of
poultry have different feather development patterns.

The growth of feathers is accompanied by the development
of feather follicles. The dermal papilla grows upward to form
a feather pulp, and endothelial cells invade and form capillary

vessels, which transport nutrients within the dermal papilla to
various parts of the feather (Alibardi, 2009). A proliferative zone
exists at the bottom of the feather follicle, and a ramogenic zone
lies above this area. In this zone, the rachidial and barb ridges
are formed through epithelial-mesenchymal interactions. In a
more distal position along the follicle, the barb ridge actively
proliferates and differentiates to form the marginal plates, barbule
plates and axial plates (Figure 2B). The marginal and axial plate
cells later die, yielding the intervening space. Individual barbule
plate cells undergo further cell shape changes to form cilia and
hooklets. The barb ridges fuse proximally to form the rachidial
ridge, which eventually becomes the rachis (Xu et al., 2007).

Feathers repetitively molt and regrow throughout the life of
birds. Feathers can be regenerated naturally through molting
or artificially by plucking. Chickens undergo more than 3–4
successions of feather growth and replacement to form adult
plumage. The first feathers formed at the end of the embryonic
stage are called downy feathers, the second generation is called
juvenal feathers, the third is called youth feathers, and the fourth
is the adult plumage. From this point, the feathers usually molt at
regular intervals (Yu et al., 2004).

Feather Follicle Regeneration
Because the feather follicle is a regenerating tissue, feathers
can be produced cyclically throughout a bird’s life. Under
normal circumstances, feather follicles can complete their own
development through molecular signal transduction controlling
cell proliferation and programmed cell death ensuring plumage
coverage throughout life of the bird (Lin et al., 2013; Li et al.,
2017). However, injury can also induce the feather follicle cycle
to cover wounded skin regions.

Although the growth cycle of feather follicles differs among
poultry species (Yue et al., 2005; Lin et al., 2013; Chen et al., 2017),
it can be roughly divided into the following three stages: growth,
resting and initiation (Lin et al., 2013). During the initiation
phase, the feather primordium forms and then differentiates into
a feather follicle under signal stimulation, and the feather begins
to lengthen in the growth phase. During the resting phase, feather
primordium differentiation is terminated through programmed
cell death, halting feather growth and readying the structure to
enter the next growth phase (Yu et al., 2004; Yue et al., 2005).

The presence of feather follicle bulge stem cells, confers the
regenerate cycles of feather growth (Yue et al., 2005). The stem
cells have strong proliferation, division and multidirectional
differentiation potential, and can sense of changes in the follicle
growth phase signals. These signals change from a resting
state to an activated state or are activated in response to
wounding, thereby the follicle bulge to participates in the
repair of the damaged skin and promotes follicle morphogenesis
or reconstruction (Yue et al., 2005). The periodic activation
or resting state of feather follicle stem cells is the basic
cause of the growth and degeneration of feather follicles.
Therefore, increasing the activity and maintaining the normal
state of feather follicle stem cells can restore feather loss.
However, feather follicle stem cell activation and differentiation is
controlled by the niche/microenvironment and the identification
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FIGURE 1 | Feather branching morphogenesis. (A) Different types of chicken feathers (Lucas and Stettenheim, 1972). (B) Feather branching structure.

of mechanisms that can override that level of control will require
further research.

MOLECULAR SIGNALING IN
APPENDAGE/FEATHER
MORPHOGENESIS

The mammalian hair follicle and avian feather follicle are similar
morphological structures and share many aspects of growth
cycles, although they appear to have evolved independently. Due
to dermal-epidermal cell interactions, feather follicles develop
in the embryonic stage and undergo different cycles, including
growth, resting and initiation phases. Mammalian hair follicles
undergo four phases: anagen, catagen, telogen and exogen.
Moreover, mature follicles also have a similar stem cell niche,

inner root sheath (IRS), outer root sheath (ORS) and dermal
papilla structures, but feather follicles have dermal pulp, while
hairs do not (Chuong et al., 2000; Schlake, 2007; Alibardi, 2009).
The feather follicle is ellipsoidal, while hair follicles are slender.
The most important difference is that avian follicles produced
branched to form different types of feathers. Mammalian hair
development has been extensively studied in transgenic and
knock-out mice and therefore the understanding of molecular
signaling that controls the process is in some case more mature
than that for avian feather development. Thus, in reviewing
signaling pathways below, we will describe the conclusions for
the hair follicle when work for the feather is incomplete.

Feather development regulation starts from the changes in
the adjacent microenvironment sensed by the basal filamentous
pseudopods, which dynamically regulate the proliferation and
differentiation of feather follicle stem cells, thereby affecting
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FIGURE 2 | Poultry feather growth and development. (A) Diagram of the feather follicle structure. (B) Diagram of the feather barb ridge.

the formation of feather follicles and the process of feather
bifurcation. Previous studies have found that signaling pathways
such as Wnt, SHH, Notch and BMP, including their ligands,
receptors and signaling molecules, regulate the development and
cycle of feather follicles (Figures 3, 4A).

Wnt Signaling
Wnt signaling regulates feather follicle morphogenesis and
feather growth by regulating the development of the dermis,
feather bundles and feather buds (Lin et al., 2006). Wnts
trigger three downstream signaling pathways: the classical
Wnt/β-catenin signaling pathway and non-canonical signaling
pathways (Wnt/Ca2+ pathway and planar cell polarity (PCP)
pathway). The Wnt/β-catenin signaling pathway plays a key
role in the regulation of feather follicle morphogenesis and
skin remodeling.

Wnt/β-Catenin Signaling Pathway
TH3he classical Wnt pathway mainly includes the Wnt signaling
protein, the membrane receptor FZD family, cytosolic β-catenin
and the nuclear LEF/TCF transcription factor family. Wnt
ligands bind to the Frizzled receptor via the low-density
lipoprotein receptor LRP5/6 and transmit signals to Dsh.
Activated Dsh reduces the activity of degradation complexes
composed of APC, Axin, GSK-3β and PP2A; inhibits the
degradation of β-catenin (Giles et al., 2003; Saito-Diaz et al.,
2013); and promotes its accumulation in the cytoplasm, as well
as transfer to the nucleus. Finally, β-catenin binds to TCF/LEF1
to replace the transcriptional suppressor Groucho in the target
gene promoter, thereby regulating the expression of downstream
target genes (c-Myc, Cyclin D1, etc.). This pathway activates both
the proliferation and differentiation of feather follicle stem cells
(Lin et al., 2006).

Wnt ligands are necessary for feather follicle morphogenesis
and feather growth. Wnt7a and Wnt11 are related to feather

follicle initiation, in which Wnt7a is involved in the location
of feather buds (Widelitz et al., 1999), and Wnt11 helps to
determine the boundary of feather buds (Chang et al., 2004) by
regulating the interbud domain. Moreover, Wnt7a can elongate
feather buds to promote the development of feather follicles
(Widelitz et al., 1999). Chang et al. (2004) reported that Wnt1
and Wnt3a activated the classical Wnt signaling pathway and
positively affected the formation of feathers. When the positive
regulator is dominant, the bud is unusually thick. Similarly, the
activation of c-Myc, a protein downstream of Wnt, also resulted
in increased feather buds (Chiu, 2008). This result suggests
that Wnt plays a positive role in the development of feather
follicles, possibly by regulating the expression of downstream
c-Myc. Studies on chicken feathers have found that inhibition
of Wnt3a transforms bilaterally symmetric feathers (contour
feathers) into radially symmetric feathers (downy feathers).
Wnt3a may also play an important role in feather branching
(Yue et al., 2006).

Wnt ligands can regulate the activity of β-catenin, which
is the central link of the Wnt/β-catenin signaling pathway.
In the early stage, β-catenin is involved in the formation
of the track. Subsequently, β-catenin and Wnts together
regulate the entire feather follicle structure and the interbud
domain (Noramly et al., 1999; Widelitz et al., 2000), and
increased β-catenin activity promotes better feather follicle
growth (Widelitz et al., 2000). Furthermore, the absence of
β-catenin in hair leads to hair follicle development stagnation
and a decrease in the number of hair follicles (Lin et al.,
2006), but this phenomenon needs to be further verified in
feather follicles.

Cyclin D1 is a downstream target gene of β-catenin that
can regulate the proliferation and differentiation of hair follicle
stem cells. Therefore, as shown in Figure 4B, Cyclin D1
controls hair follicle development by regulating the proliferative
activity of hair follicle stem cells and transiently amplifying cells
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FIGURE 3 | Molecular signaling in poultry feather follicle and feather development. Canonical Wnt/β-catenin, SHH, and Notch positively regulate feather follicle
development, while BMP and the non-canonical Wnt signaling pathway negatively regulate feather follicle development. (A) Canonical Wnt/β-catenin signaling
pathway. (B) Non-canonical Wnt signaling pathway. (C) SHH signaling pathway. (D) Notch signaling pathway. (E) BMP signaling pathway.

(Mill et al., 2003). However, this phenomenon need to be further
verified in feather follicles.

Non-canonical Signaling Pathway
Similar to the canonical Wnt signaling pathway, non-canonical
Wnt signaling pathways, including the Wnt/Ca2+ and PCP
signaling pathways, require Wnt proteins to bind to a
cysteine-rich domain at the amino terminus of the Frizzled

receptor on the cell membrane but will not cause β-catenin
accumulation. The Wnt/Ca2+ pathway is mainly activated
by Wnt5, which promotes the production of calcium ions
by phospholipase C (PLC) and further acts on protein
kinase C (PKC) and calmodulin-dependent protein kinase II
(CAMKII). PKC and CAMKII affect gene transcription by
dephosphorylation of the nuclear factor of activated T cells
(NF-AT) (Kühl et al., 2000).
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FIGURE 4 | Comparison of different signaling molecules involved in the
regulation of feather follicle and hair follicle development. (A) The molecular
signaling that involved in poultry feather follicle development (E8 = day 8 of
incubation, E17 = day 17 of incubation, and DOH = day of hatching. (B) Extra
signaling molecules involved in hair development.

PCP genes have been identified Drosophila as being important
for establishing polarity in various processes, including feather
follicle orientation. During the formation of chicken embryonic
feather buds, PCP genes are potentially involved in polarity
(Chiu, 2008; Lin and Yue, 2018). To date, few studies have
focused on exploring the mechanism by which the non-classical
PCP pathway regulates follicle morphogenesis. In general, in
PCP pathways, Wnt11 activates disheveled associated activator
of morphogenesis-1 (DAAM1) and protein kinase B (PKB)
through Dvl in the cytoplasm, while DAAM1 positively regulates
Rho-associated protein kinase 2 (ROCK2) to affect cytoskeleton
formation, and PKB activates c-Jun N-terminal kinase (JNK).
These regulatory proteins affect the transcription of multiple
genes. A previous study also found that Wnt11 can increase
the interbud domain (Chang et al., 2004), but whether it
works through only the PCP pathway needs to be clarified.
Similarly, Wnt5 and Wnt11 negatively affect the development
of poultry feather follicles through non-canonical Wnt signaling
pathways (Chang et al., 2004). When the negative regulatory
wnts dominates, the feather buds lengthen more rapidly, and the
diameter of the feather was reduced (Chang et al., 2004).

The ligands of the Wnt signaling pathway and their key
proteins play a positive or negative regulatory role in the
development of feather follicles and feather growth in poultry.
However, the specific mechanism of the Wnt signaling pathway
needs to be further studied, and research on mammalian hair may
provide a good reference for future work.

SHH Signaling Pathway
Sonic Hedgehog (SHH), a member of the Hedgehog (Hh) signal
protein family, is a necessary signal transduction pathway for

feather follicle development. It mainly participates in mitosis and
morphogenesis during dermal papilla maturation and feather
bud development (McKinnell et al., 2004). SHH is an important
factor for controlling the transition from the telogen to the
growth stage of feather follicles.

The SHH signaling pathway is highly conserved in evolution,
and its components include ligands [patched (ptc) and smo],
Gli family members and downstream targets. Mechanically,
the SHH precursor is activated by acyltransferase and then
binds to the receptor Ptc on the cell membrane, dissociates
the Ptc-Smo complex and releases Smo, thereby disrupting the
inhibitory effect of Ptc on Smo activity. When free Smo enters
the cytoplasm, it activates downstream Gli family zinc finger
transcription factor to complex with protein kinase A (PKA),
which moves into the nucleus and activates the transcription of
downstream target genes (Cohen, 2003).

SHH is mainly expressed in the epidermis of feather follicles
during feather development and mediates the key interaction
between epithelial and mesenchymal cells (Nohno et al., 1995;
Ting-Berreth and Chuong, 1996). When SHH was inhibited,
feather buds became irregular and fused (El-Magd et al., 2014).
Overexpression of exogenous SHH during feather development
expanded feather bud formation (Ting-Berreth and Chuong,
1996). Li et al. (2018) found that in the normal process of
chicken feather elongation, SHH-responsive mesenchymal cells
displayed synchronized Ca2+ oscillations, and inhibition of the
SHH signal changed the mesenchymal Ca2+ distribution and
feather elongation. SHH and Wnt/β-catenin were shown to
coactivate the expression of Connexin-43, establish a gap junction
network, synchronize the distribution of Ca2+ among cells and
coordinate the cell movement mode (Li et al., 2018).

Studies have shown that the downregulation of SHH
expression inhibits dermal papilla cell condensation and
maturation, resulting in inhibition of hair follicle formation, as
shown in Figure 4B (Chiang et al., 1999). Knocking out the
transcription factor SOX9 gene downstream of the SHH signaling
pathway will reduce epidermal regeneration (Nowak et al., 2008).
However, exogenous SHH can increase the expression of Gli,
activate dermal papilla cells and improve the ability of hair
follicle formation (Lee and Tumbar, 2012). Whether SHH can
activate the growth of feather follicle dermal papilla cells needs
further verification.

Notch Signaling Pathway
Notch signaling can promote or inhibit cell proliferation,
cell death, the acquisition of specific cell fates, and the
activation of differentiation processes. These processes occur in
cells throughout the entire process of organism development
and in adult tissues that maintain self-renewal. The release
of intracellular notch fragments depends on the proteolytic
cleaveage of receptor proteins after ligand binding. After its
release by proteolysis from a membrane tether, the Notch
intracellular domain (NICD) translocates to the nucleus. There,
the NICD associates with a DNA binding protein to assemble
a transcription complex that activates downstream target genes
(Kopan and Ilagan, 2009). Importantly, Notch/Delta signaling
plays a role in early feather pattern formation and feather growth.
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A previous study reported that Notch 1 and Notch 2 mRNAs
are expressed in the skin before the initiation of feather buds in a
localized pattern. In the early stages of feather bud development,
the ligand Delta 1 and Notch 1 are localized to the forming
buds, while the expression of Notch 2 is excluded from the bud.
Delta1 is expressed in the dermis, whereas Notch 1 expression is
restricted in the epithelial placode. Therefore, the complementary
expression of Delta in the dermis with Notch 1 in the epidermis
suggests that this signaling promotes feather growth. In contrast,
Notch 2 transcripts have been observed in the dermis adjacent
to each shoot, indicating that Notch 2 activity inhibits feather
growth (Crowe et al., 1998). During the branching of the feather,
Notch 1 is enriched in the prefeathered epithelium and is
expressed in basal keratinocytes at low levels. After branching,
Notch 1 is enriched in the barb plate (Cheng et al., 2018). Thus,
Notch and Delta 1 are expressed at the correct time and place to
participate in the formation of the feather pattern. Once the initial
buds form, the expression of Notch and its ligands is observed
within each bud, whereas Delta 1 transcripts are downregulated.
These results indicate that Notch and Delta are involved in the
formation of the feather array, and Delta 1 exerts the following
two effects in the early stage of feather formation: promoting
feather growth by activating Notch 1 and inhibiting feather
growth by activating Notch 2 (Crowe et al., 1998).

Previous studies have shown that Notch and Wnt signaling
pathways interact to regulate hair follicle growth. Notch1 can
activate Wnt5a expression (Hayward et al., 2005; Proweller
et al., 2006). As shown in Figure 4B, Wnt5a regulates hair
follicle differentiation by promoting Foxn1 gene expression
(Mecklenburg et al., 2001), but its role in feather follicle
development remains uncertain.

BMP Signaling Pathway
Bone morphogenetic proteins (BMPs) belong to the TGFβ

superfamily of ligands and play an important role in the
development of feather follicles and feathers. BMP-induced signal
transduction by the extracellular BMP ligand involves binding
to the BMP receptor complex on the cell membrane, which
allows the type II receptor to activate the type I receptor by
phosphorylation. The activated type I receptor phosphorylates
the serine residue at the R-Smad end of the regulatory receptor
and binds to a Co-Smad to enter the nucleus and regulate the
transcription of the target gene under the action of different DNA
binding proteins.

In the process of feather follicle development, BMP mainly
plays an inhibitory role (Jung et al., 1998). Drm/Gremlin inhibits
BMP and limits the inhibitory effect of BMPs, allowing the
adjacent row of feathers to form (Bardot et al., 2004). However,
the combination of BMP with other factors can relieve this
inhibition to balance these proteins and thus regulate the
growth of feather follicles and feathers. The derived SHH-
BMP2 signaling pattern is related to the development of feather
structure. The longitudinal SHH-BMP2 expression domain in
the marginal plate epithelium between the barb ridges provides
the anterior form of barbs and rachis. Therefore, SHH-BMP2
may be involved in the feather branching morphology (Harris
et al., 2002). It was also confirmed that antagonizing BMP4 with

Noggin (a BMP signal antagonist) controls feather branching
(Yu et al., 2002). BMP4 promotes the formation of the rachise,
while Noggin promotes the formation of barb ridges. In addition,
the combination of Noggin and sonic hedgehog (SHH) has been
shown to induce feathered skin (Fliniaux et al., 2004).

Kobielak et al. (2007) found that BMP was stably expressed in
the microenvironment of hair follicle stem cells, and knockout
of the BMP receptor could lead to overactivation of hair follicle
stem cells. BMP6 can inhibit the proliferation of hair follicle cells
and the growth of hair follicles by maintaining the resting state
of stem cells (Clavel et al., 2012). However, this process requires
further verification in feather follicles.

Other Signaling Pathways
Many members of the FGF family are involved in the regulation
of feather follicle development. For example, FGF2 can induce
the formation of dense dermal tissue in wild-type chickens,
regulating the normal growth of feathers. The FGF2 can induce
the formation of numerous feather buds (Song et al., 2004).
Studies have shown that cDermo-1 leads to the formation of
dense dermal tissue because of its overexpression and induces
continued feather growth. In contrast, EGFR inhibitors shorten
the distance between buds and increase the number of feather
buds. The EGF signal acts directly on the epidermis and functions
independently of BMP signaling (Atit et al., 2003).

NUTRITION AND FEATHER GROWTH

Feather follicles drive structural renewal through feather follicle
stem cell proliferation and differentiation (Yue et al., 2005).
Importantly, feather follicle tissue is highly malleable, and
dietary deficiencies can contribute to the obvious atrophy of
the feather follicle, malformed feathers, fragile feathers, and
feather loss. Dietary nutrition, especially crude proteins, amino
acids, minerals, and vitamins, plays a key role in regulating
the development of feather follicles and the growth of feathers
(Supplee, 1966; Taylor, 1967; Urdaneta-Rincon and Leeson, 2004;
Zeng et al., 2015). Therefore, it is important to dissect the
effects of dietary nutrients on feather morphogenesis and the
molecular mechanisms of feather follicle homeostasis. However,
the effects of these nutrients on signal transduction in feather
follicle cells are extremely complex. In the past decade, much
has been learned about potential nutritional influences on feather
growth and molting, yet little is known about how nutrients affect
the signaling that regulates feather growth. The effects of related
nutrients on feather growth are summarized in Table 1.

Protein
The protein content of poultry feathers is as high as 89–97%.
Therefore, the dietary crude protein level is considered the main
nutrient factor affecting feather growth and development (Fisher
et al., 1981). Urdaneta-Rincon and Leeson (2004) found that the
feather weight increased with dietary crude protein levels when
the dietary crude protein content was between 17 and 25% in
Rose broilers. Similarly, a low dietary crude protein feeding (12–
13% vs. 14–16%) during rearing and the first lay phase can lead to
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TABLE 1 | Effect of dietary supplementation of various nutrients on poultry feathers.

Animal Time Nutrient Dose in the diet Influences References

Male Ross broiler chicken 0–3 weeks of age Crude protein (CP) 17, 21, 25, 29% Feather is the heaviest with a diet containing 25% CP Urdaneta-Rincon and Leeson, 2004

Ross 308 broiler chicken 2–22 weeks of age CP 12–13%, 14–16% High-protein diet group has higher feather coverage Van Emous et al., 2015

Ross 308 broiler chicken Methionine Injected into the yolk:
20, 30, 40, 50 mg

Density and diameter of feather follicles are increased
significantly in the presence of 50 mg of methionine

Nazem et al., 2015

Peking ducklings 15–35 days of age Methionine 0.3, 0.39, 0.45,
0.56, 0.68%

Compared with that in the 0.45 and 0.56% methionine
supplementation groups, feather coverage is increased
significantly

Zeng et al., 2015

Male broiler chicken 0–3 weeks of age Valine 0.63, 0.83% When valine is supplemented (0.83%), feather
abnormalities are repaired

Farran and Thomas, 1992

Cornish-crossbreed chicken 8–17 days of age Valine 0.60, 0.68, 0.76,
0.82%

The rough and curved appearances of the feathers
gradually increase as the proline level in the diet
decreases

Robel, 1977

Cornish-crossbreed chicken 8–17 days of age Leucine 0.60, 0.68, 0.76,
0.82%

The rough and curved appearances of the feathers
gradually increase as the level of leucine in the diet
decreases

Robel, 1977

Cornish-crossbreed chicken 8–17 days of age Isoleucine 0.32, 0.38, 0.44,
0.50%

The rough and curved appearances of the feathers
gradually increase as the level of isoleucine in the diet
decreases

Robel, 1977

Female ring-neck pheasant
chicken

0–3 weeks of age Zn Basal diet + 60 mg/kg,
basal diet + 120 mg/kg

Adding 60 and 120 mg/kg to the basal diet can
effectively reduce feather fraying

Cook et al., 1984

Leghorn female chicken 0–3 or 4 weeks of age Zn 52, 78, 156, 208 mg/kg When diets containing 78, 156, and 208 mg/kg zinc are
fed for 1 week or 156 mg/kg zinc are fed for three
weeks, feather fraying is almost zero

Sunde, 1972

Male broiler chicken 0–6 weeks of age Zn 4.4, 8.4, 10.4% Under high-temperature conditions (30, 28, and 26◦C),
broilers fed a 4.4% Zn ration had significantly higher
feather phosphorus levels than those fed other rations

Lai et al., 2010

Ring-necked pheasant chicken Not given Zn 42, 47, 52, 62 mg/kg Adding 62 mg/kg zinc produces satisfactory feathering Scott et al., 1959

Female crossbred chicken
(New Hampshire male ×
Columbian female)

0–27 days of age Sn, V, Cr, Ni 2, 1, 3, 3 mg/kg No influence Baker and Molitoris, 1975

Broiler chicken 0–42 days of age Organic selenium yeast 0.1, 0.3 mg/kg Organic Se improves the feathering rate Edens et al., 2001

Ring-necked pheasant Not given Niacin 22, 33, 44, 55, 66,
77 mg/kg

Adding 55 mg/kg niacin or more produces satisfactory
feathering

Scott et al., 1959

Chicken 3–6 weeks of age B group vitamins Deficient Abnormal flight feathers Taylor, 1967

Turkey 0–26 days of age Vitamin E and selenium Deficient Abnormal flight feathers Supplee, 1966
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poor feather cover in broiler breeder females (Van Emous et al.,
2015). The feathers are mainly composed of corneous materials
made of α-keratins and β-keratins. In addition, α-keratin and
β-keratin networks are interdependent, and mutations of either
type of keratin will inhibit the formation of appropriate barbs
(Wu et al., 2015). A previous study found that the expression
of a mutant α-keratin gene KRT75 leads to frizzled feathers in
domestic chickens (Ng et al., 2012).

Amino Acids
Approximately 88–90% of feathers are composed of the protein
keratin, which requires a high level of sulfur-containing amino
acids cystine and methionine for its production (Wheeler and
Latshaw, 1981). While some of these amino acids are produced
by various tissues in the body, others must be supplemented
by diet. Cystine is the main component of keratin, while
methionine is converted into cystine by transsulfuration in
the feather follicle and liver (Xu et al., 2010). A previous
study has shown that in ovo injection of methionine can
contribute to feather follicle development and feather growth,
which is characterized by primary and secondary feather
follicles (Nazem et al., 2015). Within a certain range, the
quality of feathers is directly proportional to the level of
methionine. Zeng et al. (2015) found that compared with that
in the 0.45 and 0.56% methionine supplementation groups, the
feather coverage of 35 days old ducks in the 0.30 and 0.39%
methionine supplementation groups was significantly decreased,
and the most suitable dietary methionine supplemental level
was 0.484%. These results illustrated that sulfur-containing
amino acids, which have been considered the first-limiting
amino acids in most practical diets for poultry, play an
important role in feather follicle development and feather
growth. However, current research on the promotion of
feather follicles by methionine is limited to descriptions of its
impact of growth and the role in feather follicle stem cells
has yet to be reported. Studies have found that methionine
deficiency inhibits the proliferation of intestinal stem cells
(Saito et al., 2017). After methionine supplementation, the
ability of intestinal stem cells to divide is enhanced via
the primary metabolite S-adenosylmethionine (SAM), which
promotes protein synthesis in stem cells (Obata et al., 2018).
Lauren et al. (2019) showed that the lack of methionine inhibited
the Wnt/β-catenin signaling pathway and that Wnt/β-catenin
was reactivated after the addition of SAM. The precise regulation
of protein synthesis is equally important for the proliferation
and maintenance of hair follicle stem cells (Blanco et al.,
2016). However, the metabolism of methionine in feather
follicle stem cells and how the Wnt signaling pathway mediates
this metabolic process and then regulates the mechanism
of feather growth remain unclear. In addition, SAM, an
important methyl donor, is involved in regulating the distribution
and translocation of various proteins. However, whether it
relies on methylation to control the translation process and
thus regulate feather follicle stem cell activity needs to be
further verified.

Apart from studies with sulfur-containing amino acids, the
metabolism of branched-chain amino acids has an important

influence on the development of feather growth. Branched-
chain amino acids (valine, isoleucine, and leucine) are relatively
abundant in feather proteins. Reduced valine in the diet
(0.63%) decreased the protein content in the broiler feathers
and caused abnormal feathers. When valine was supplemented
(0.83%), the protein content in the feathers increased, and
feather abnormalities were not observed (Farran and Thomas,
1992). Feather abnormalities were observed in chicks lacking
valine, leucine and isoleucine. As the levels of valine, isoleucine
and leucine in the diet decrease, the rough and curved
appearance of the feathers gradually increases, and diets
containing 0.70% valine result in optimum feather growth
(Robel, 1977).

Minerals
Lack of mineral elements in the diet can also affect feather
growth, and zinc levels have been the most extensively studied.
Cook et al. (1984) have shown that adding 60 or 120 mg/kg
zinc to a commercial mixed diet can effectively reduce the
fraying of chicken feathers. In another study, the addition of
zinc was effective at reducing the incidence of chicken feather
abnormalities. When the total zinc level in the diet was dropped
to 52 mg/kg, fraying occurred. However, when the total Zn level
in the diet was increased to 78 mg/kg or higher, feather fraying
was effectively reduced after only the first week of feeding.
Feeding high levels of zinc for only the first week of life provided
excellent protection from feather fraying (Sunde, 1972). Lai et al.
(2010) found that at high temperatures, the feather defects of
broiler chicks with Zn contents of 84 and 104 mg/kg were
lower than the dietary Zn content of 44 mg/kg. However, at
lower ambient temperatures, there was no significant difference
in the feather coverage between the high- and low-Zn groups.
Meaningfully, this finding shows that Zn can alleviate feather
growth defects under high-temperature conditions. Notably,
downregulation of the Wnt/β-catenin signaling pathway is
related to the proliferation deficit induced by zinc deficiency
in neural stem cells, and application of lithium chloride (LiCl,
GSK-3β inhibitor) was shown to reverse the impairment of
cell proliferation via upregulating β-catenin (Zhao et al., 2015).
However, it is not clear whether zinc promotes the development
of feather follicles and feathers by regulating Wnt/β-catenin
signal activity.

Additionally, Supplee (1966) found that a lack of selenium
in the diet affects the normal growth and development of
feathers. Supplementation with organic selenium can effectively
improve the feathers of broiler chickens (Edens et al., 2001).
Other studies found that the addition of 2 mg/kg tin, 1 mg/kg
vanadium, 3 mg/kg chromium and 3 mg/kg nickel did not
influence feather growth over a 27 days assay period (Baker and
Molitoris, 1975). In summary, although mineral contents may be
low, they play an important role in the growth and development
of feathers in poultry.

Vitamins
Vitamins, as coenzymes are required for normal feather
development and growth in poultry. In a 10 years study, Taylor
observed that the lack of B vitamins (pantothenic acid, folic
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acid, biotin, and niacin) in the diet caused abnormalities in the
feathers of chickens from 3 to 6 weeks of age (Taylor, 1967).
Moreover, Scott et al. (1959) found a dietary niacin content
of 55 mg/kg produced satisfactory feathers. Another study
observed unusual feather development when chicks received
diets deficient in vitamin E (Supplee, 1966). Therefore, the
appropriate vitamin level is essential for the growth and
morphological maintenance of feathers.

Among the vitamins the role of vitamin D3 is most well
established for its influence on hair follicle development and the
hair cycle. Vitamin D is involved in regulating cell proliferation,
differentiation and apoptosis as well as in promoting hair follicle
regeneration (Vijaya et al., 2002). The vitamin D derivative
calcipotriol increases the proportion of cells in the hair follicle
growth phase/rest phase (Amor et al., 2010), while vitamin D
receptor knockout leads to hair loss and increased cell numbers
at the end of the growth phase and the degenerative phase,
decreased keratinocyte proliferation activity, and hair follicle
growth blockage. This result suggests that vitamin D initiates
the hair follicle growth cycle (Luderer and Demay, 2010).
Additionally, the loss of vitamin D receptors leads to a decrease
in Lef1 at the end of the degenerative phase, leading to its
inability to bind to β-catenin and resulting in atrophy of
hair follicle development (Bikle, 2010). During this process,
SHH, Gli1, and Gli2 expression levels are decreased, and the
hair follicle growth cycle is disordered. Therefore, vitamin D
may initiate the hair follicle cycle through the vitamin D
receptor, thereby regulating the growth and development of
hair follicles. Vitamin D is a crucial supplement in poultry
feed necessary for healthy bone development and further
investigations of its role of in plumage quality may add to
further understanding of this vitamin/hormone signaling system
in appendage growth.

As mentioned above, various nutrients were previously
studied separately to assess their effects on feather growth.
However, it is worth noting that cooperative effects may exist
between several nutrients, and the overall mechanism underlying
how nutrients regulate feather growth remains unknown. Thus,
exploring the molecular mechanism underlying the interaction
between nutrients and feathers will be meaningful for promoting
the growth and development of poultry feathers.

CONCLUSION

Feather follicle stem cell-driven development and regeneration
are dependent on the regulation of different signals (e.g., Wnt,
SHH, Notch, and BMP). These signals integrate to form a fine and
dense gene network system, regulate the fate of stem cells in an
orderly fashion, and interact in dermal and epidermal cells. The
feather follicles are formed underneath and eventually bifurcate
to form a complete feather structure. Nutrients are not only the
material basis for feather follicle and feather development but
also serve as mediators triggering signal transduction networks in
the feather follicle stem cell microenvironment. Their deficiencies
generally lead to severe feather loss or structural abnormalities
that reduce the profits of rearing poultry. However, the intricate
linkages among nutrient-mediated feather follicle development,
regeneration processes and signaling pathways through various
signaling molecules are unclear. Therefore, it is necessary to
further understand the mechanism of action of nutrients upon
the feather follicle stem cell microenvironment, to provide
a theoretical basis for novel interventions that can enhance
plumage coverage, during critical periods of the commercial
poultry lifespan.
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