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Overnutrition and sedentary activity reinforce the growing trend of worldwide obesity,
insulin resistance, and type 2 diabetes. However, we have limited insight into how
food intake generates sophisticated metabolic perturbations associated with obesity.
Accumulation of mitochondrial oxidative stress contributes to the metabolic changes in
obesity, but the mechanisms and significance are unclear. In white adipose tissue (WAT),
mitochondrial oxidative stress, and the generation of reactive oxygen species (ROS)
impact the endocrine and metabolic function of fat cells. The central role of mitochondria
in nutrient handling suggests pharmacological targeting of pathological oxidative stress
likely improves the metabolic profile of obesity. This review will summarize the critical
pathogenic mechanisms of obesity-driven oxidative stress in WAT.
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White adipose tissue (WAT) is an endocrine organ that stores energy in the form of lipids
and secretes hormones essential for insulin sensitivity and energy homeostasis. The fat cell
interprets nutritional, hormonal, and sympathetic tone in the tissue microenvironment to store
and liberate fuels until whole-body energy demands necessitate fatty acid liberation. Like other
cells, mitochondria in adipocytes assimilate signals that reflect the energy status of the cell and
produce the majority of ATP from macronutrients through cellular respiration and oxidative
phosphorylation (OXPHOS).

Obesity engenders nutrient stress that stifles mitochondrial capacity to sustain ATP levels
in response to energy demands (Bournat and Brown, 2010; Liesa and Shirihai, 2013). Elevated
mitochondrial substrate load consequently increases electron transport chain (ETC) activity and
reactive oxygen species (ROS) production. Obese individuals exhibit higher levels of oxidative stress
in WAT, including elevated ROS levels and decreased antioxidant activity coupled with alterations
in adipokines required for insulin sensitivity (Furukawa et al., 2004). Moreover, oxidative stress
associates with intra-abdominal obesity and insulin resistance (Furukawa et al., 2004; Frohnert
et al., 2011). These results indicate the oxidizing environment in WAT of obese individuals likely
impacts fat cell function and energy balance. Numerous questions remain, including how gradients
of ROS inside the cell impact signaling cascades and gene regulation.

NUTRIENT IMBALANCE PROVOKES MITOCHONDRIAL ROS

Oxidative stress represents a disturbance in the equilibrium of ROS production and antioxidant
defenses (Figure 1). At the molecular level, ROS mainly emerge from the mitochondrial ETC
(Starkov, 2008; Murphy, 2009). Electron transfer through the ETC generates superoxide anions as
byproducts, with complex I and III representing primary sources of ROS. Under certain conditions,
complex II and other cellular ROS sources can contribute to the overall pool. Superoxide is the
primary ROS species that reacts with Fe-containing proteins to generate H2O2. H2O2 accumulation
in the cell contributes directly to the metabolic imbalance linking excessive nutrient stress and
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FIGURE 1 | The balance of antioxidants and ROS determine oxidative stress.
For most cells, optimal redox conditions are achieved when higher levels of
antioxidants are present to quench reactive oxygen species (ROS),
maintaining ROS at low levels. Obesity and comorbidities increase ROS and
decrease antioxidants in adipose, leading to oxidative stress and further
complications of obesity, including insulin resistance and diabetes.

insulin resistance (Anderson et al., 2009; Akl et al., 2017;
Fazakerley et al., 2018). However, ROS also encompass a diverse
range of chemical entities, including nitric oxide, peroxynitrite,
hypochlorous acid, singlet oxygen, and the hydroxyl radical.
Consequently, the broad biological impacts of ROS derive
from multiple cell and tissue microenvironments that divide
physiological and pathological effects.

The conditions that favor mitochondrial superoxide
production include reduction of electron carrier pools associated
with the mitochondrial respiratory chain (NADH, flavins,
ubiquinone), a high proton motive force, and elevated oxygen
consumption within the mitochondria (Murphy, 2009).
Overnutrition supplies excess electrons to the respiratory
chain, while lack of physical activity and low ATP demand
favors a high proton motive force with a low respiration rate,
leading to mitochondrial superoxide formation and oxidative
stress. By contrast, in mitochondria actively making ATP,
superoxide production is low because the electron carriers are
relatively oxidized, the proton motive force is small, and the
respiration rate is high.

Prolonged oxidative stress directly impacts metabolism,
including the activity of enzymes involved in the TCA cycle
and the ETC (Quijano et al., 2016). The TCA cycle enzyme
aconitase catalyzes the interconversion of citrate and isocitrate
to regulate the availability of intermediates for lipid synthesis
and ATP production. Citrate is the last common metabolite
on the pathways for oxidation of acetyl-CoA and its export
for fatty acid synthesis in the cytoplasm. Superoxide inhibits
aconitase (Hausladen and Fridovich, 1994; Gardner et al., 1995),
leading to diversion of acetyl-CoA away from OXPHOS and
toward fat storage (Armstrong et al., 2004; Lushchak et al.,
2014). This feedback loop may be part of an antioxidant defense
mechanism that adapts prolonged mitochondrial superoxide
production (Scandroglio et al., 2014). Acetyl-CoA diversion
may slow delivery of electron carriers such as NADH to
the respiratory chain, thereby decreasing ROS production
(Armstrong et al., 2004).

Oxidative stress also impacts pyruvate dehydrogenase kinase
2 (PDK2) inhibition of the pyruvate dehydrogenase complex
(PDC) (Hurd et al., 2012) and fat metabolism. ROS oxidize
critical cysteine residues, disabling PDK2, and supporting

acetyl-CoA synthesis from glucose-derived pyruvate. Therefore,
elevated mitochondrial superoxide and H2O2 couples PDC
activity with aconitase interruption to divert citrate from the
TCA cycle to the cytoplasm as triglycerides during overnutrition.
These studies suggest persistent nutrient stress impairs the
physiological behavior of crucial metabolic enzymes needed for
balanced ATP generation and consumption.

ANTIOXIDANT RESPONSE TO
MITOCHONDRIAL ROS REGULATES
ADIPOSE TISSUE FUNCTION

A variety of peroxidases, including catalase, glutathione
peroxidases, and peroxiredoxins (Prdxs) that control the levels
of H2O2 in the cell and protect against ROS-induced damage by
catalyzing the reduction of H2O2 into water. Along these lines,
overexpression of catalase (Anderson et al., 2009; Barbosa et al.,
2013; Lee et al., 2017; Paglialunga et al., 2017) or other methods
that block H2O2 generation (Anderson et al., 2009; Boden et al.,
2012) preserve insulin sensitivity in cell models and rodents
fed high-fat diet.

The mitochondrial antioxidant peroxiredoxin 3 (Prdx3)
responds to oxidative stress and scavenges H2O2. Levels of Prdx3
are decreased in obese humans and mice, potentially contributing
to oxidative stress intolerance (Huh et al., 2012). Whole-body
deletion of Prdx3 in mice causes obesity and increased expression
of lipogenic genes in adipocytes, while decreasing expression of
lipolytic genes. As a result, hypertrophic adipocytes exclusively
accumulate excess lipids and cannot enable appropriate energy
balance control. In addition to altering the balance of lipogenesis
and lipolysis, Prdx3-deficient adipocytes exhibited increased
superoxide production, decreased mitochondrial potential, and
altered adipokine expression, including decreased adiponectin.

Okuno et al. (2018) created “Fat ROS-augmented” (AKO) and
“Fat ROS-eliminated” (aP2-dTg) mice to address the question of
how ROS affect WAT function. AKO mice leverage adipocyte-
specific ablation of glutamate-cysteine ligase (Gclc) to disable
the rate-limiting step in glutathione synthesis and increase ROS
generation. AKO mice fed high fat/high sucrose (HF/HS) diet
for 6 weeks had smaller adipocytes and decreased expression of
lipogenic genes, including Acly, Scd1, Fasn, Acaca, and Srebf1.
Insulin sensitivity was also reduced. Conversely, mice expressing
rat catalase and human SOD1 under the aP2 promoter had
the opposite phenotype. These mice (aP2-dTg) showed reduced
H2O2 in subcutaneous and gonadal WAT. Feeding a HF/HS
diet yielded beneficial subcutaneous and gonadal WAT expansion
mirrored by increased expression of lipogenic genes (Acly, Scd1,
Fasn, and Acaca) and insulin sensitivity.

While these data argue that increasing mitochondrial
antioxidants protects against oxidative stress in WAT, genetic
alteration of other mitochondrial antioxidants reveal different
phenotypes. Manganese superoxide dismutase (MnSOD) is an
important mitochondrial antioxidant that detoxifies superoxides
(Holley et al., 2011). Adipocyte-specific knockout of MnSOD
protected against diet-induced WAT expansion and weight
gain (Han et al., 2016). Mechanistically, MnSOD knockout in
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adipocytes triggered an adaptive stress response that activated
mitochondrial biogenesis and enhanced mitochondrial fatty acid
oxidation, thereby preventing diet-induced obesity and insulin
resistance. Increased ROS levels correlated with Uncoupling
Protein 1 (UCP1) activation in subcutaneous WAT and higher
energy expenditure (Han et al., 2016). These disparate features
of mice that lack the Prdx3 and MnSOD genes coupled with
therapeutic shortcomings of antioxidant therapies in human
clinical trials (Fusco et al., 2007; Bjelakovic et al., 2013,
2014) suggest a more complex interaction of metabolism and
redox balance in WAT.

MITOCHONDRIAL REDOX REACTIONS
GENERATE DIVERGENT INPUTS FOR
CELLULAR SIGNALING

The homeostatic systems that regulate oxidative stress in the lean
state are largely repressed in obesity due to the accumulation of
oxidized biomolecules within WAT. Excessive ROS irreversibly
damages DNA, lipids, and proteins with adverse effects on
cellular functions. Increased oxidative stress can alter proteins
and lipids through direct and indirect pathways that culminate in
oxidation of side chains and lipid-protein adduction (Grimsrud
et al., 2008; Davies, 2016).

Reactive oxygen species oxidation of lipids ultimately
generates lipid aldehydes that modify DNA, proteins, RNA,
and other lipid species (Esterbauer et al., 1991; Uchida, 2003).
Increased markers of lipid peroxidation, including thiobarbituric
acid reactive substances (TBARS) and 8-epi-prostaglandin-F2α

(8-epi-PGF2α) are observed in individuals with higher BMI and
waist circumference (Furukawa et al., 2004). Oxidized lipids and
proteins preferentially accumulate in visceral depots compared
to subcutaneous depots of obese mice (Long et al., 2013; Hauck
et al., 2018, 2019) and humans (Frohnert et al., 2011), suggesting
ROS modifications correlate with conditions associated with type
2 diabetes, including central fat accrual.

Highly reactive hydroxyl radicals (·OH) can be generated
when excess H2O2 reacts with ferrous iron. Unlike H2O2, ·OH
cannot undergo detoxification. Instead, ·OH removes electrons
from neighboring lipids, proteins, and nucleic acids. Lipid
aldehydes are highly electrophilic and prone to irreversible
nucleophilic attack by the side chains of lysine (Lys), histidine
(His), and cysteine (Cys) residues of proteins, resulting in
a covalent lipid-protein adduct termed protein carbonylation
(Schaur, 2003; Curtis et al., 2012). Furthermore, Lys, His,
and Cys residues often cluster within active sites of enzymes
or critical structural motifs, so their stable modification by
lipids generally leads to inhibition or deactivation of protein
function. However, recent work challenges the notion that ROS-
driven modifications broadly degrade fat cell function. Brown
adipose tissue (BAT) contains elevated levels of mitochondrial
superoxide, mitochondrial H2O2, and oxidized lipids that
correlate with acute activation of thermogenesis (Chouchani
et al., 2016a,b). Mitochondrial ROS in BAT can converge on
UCP1 C253 inducing cysteine sulfenylation (-SOH) (Chouchani
et al., 2016a). Interestingly, UCP1 C253A does not disable

thermogenic responses in brown adipocytes but desensitizes
the protein to adrenergic activation of uncoupled respiration.
Further exploration of physiological ROS signaling outputs
and modifications may show how redox status in adipocytes
contributes to energy balance.

Polyunsaturated fatty acids (PUFAs) are abundant in WAT
and particularly sensitive to lipid peroxidation. One major
consequence of lipid peroxidation is mitochondrial membrane
damage (Kowaltowski and Vercesi, 1999). Also, peroxidation
of PUFAs results in the release of diffusible reactive lipid
aldehydes. Among the wide variety of reactive lipids formed
through this mechanism, 4-hydroxy-non-enal (4-HNE) derived
from oxidation of n6 fatty acids and 4-hydroxy-hexenal (4-HHE)
from n3 fatty acid oxidation are the most widely studied in the
context of adipose biology. The WAT of obese mice showed
decreased metabolism of 4-HNE, while stress response proteins,
including glutathione-S-transferase M1, glutathione peroxidase
1, and Prdx (Grimsrud et al., 2007) were carbonylated. Lipid
peroxidation end products can also inhibit insulin signaling as
4-HNE de-stabilizes IRS adapter proteins and insulin receptor β

(Demozay et al., 2008; Frohnert and Bernlohr, 2013).
Lipid peroxidation products also damage the function of

transcription factors that contain zinc-finger motifs, histones,
and other nuclear proteins of visceral fat cells isolated from
obese mice (Hauck et al., 2018). The lipid peroxidation
of transcriptional regulatory proteins presents a consolidated
mechanism for retrograde ROS signaling from mitochondria to
the nucleus. Although mitochondria are the most significant
source of ROS, the discovery of lipid-protein adducts in the
nucleus of adipocytes suggests either a different pool of ROS
contributes to lipid peroxidation or a mechanism exists to
sequester and shuttle reactive aldehydes to specific subcellular
localizations (Hauck et al., 2018). As with ROS, the timing
of protein carbonylation may be important for beneficial
or pathologic effects. Acute carbonylation of substrates after
exercise are potentially beneficial, while chronic accumulation
of carbonylated proteins in the muscle and WAT of obese and
sedentary individuals may be pathological and contribute to
comorbidities of obesity (Frohnert and Bernlohr, 2013).

Additionally, ROS seem to be important in the cellular
aspects of adipocyte differentiation. Numerous studies
demonstrate that mitochondrial biogenesis increases during
adipocyte differentiation (Wilson-Fritch et al., 2003; Lu
et al., 2010; Zhang et al., 2013). Dramatic expansion of
mitochondrial content enables higher metabolic rates to
overcome the energetic demands of differentiation. Induction
of differentiation correlates with superoxide generation from
complex III, conversion of superoxide to H2O2, and activation of
transcriptional machinery necessary for adipogenesis (Tormos
et al., 2011). Mechanistically, ROS production in differentiating
cells coincides with increased C/EBPβ binding to DNA and
accelerated mitotic clonal expansion (Kim J.W. et al., 2007; Lee
et al., 2009). However, obesity-mediated ROS induction also
restricts mitochondrial biogenesis and adipocyte differentiation.
Higher accumulation of 4-HNE adducts occurs in cultured
differentiating preadipocytes from insulin-resistant compared
to insulin-sensitive individuals. In this manner, treatment of
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primary subcutaneous preadipocytes from obese individuals
with pathological levels of 4-HNE decreased markers associated
with insulin sensitivity and mature fat cells (Dasuri et al., 2013;
Elrayess et al., 2017). Other studies demonstrate that treatment
with antioxidants decreases differentiation (Tormos et al., 2011)
and disrupts UCP1-dependent thermogenic responses (Ro et al.,
2014; Chouchani et al., 2016a). Divergent in vitro and in vivo
findings illustrate existing challenges in defining the specifics of
ROS signaling and its connectivity to metabolic diseases.

OXIDATIVE STRESS CONTRIBUTES TO
THE COMORBIDITIES OF METABOLIC
DISEASES

Nutrient overload has been linked to the development of insulin
resistance. In a pioneering study, healthy men fed ∼6000 kcal/day
for 1 week exhibited WAT insulin resistance and oxidative stress
in addition to protein oxidation and carbonylation (Boden et al.,
2015). One carbonylated protein of importance was GLUT4,
whose carbonylation likely impairs insulin-stimulated glucose
uptake. Of note, systemic oxidative stress and insulin resistance
did not coincide with inflammatory cytokines in plasma nor ER
stress in WAT. These findings provide a causal link between
oxidative stress and insulin resistance in humans.

Mitochondrial metabolism is often altered in inherited
diseases, such as inborn errors of metabolism (IEMs) that
impinge upon ROS generation. Inhibition of OXPHOS increases
ROS generation due to a backlog of electrons in the various
complexes, resulting in electron leak, ROS generation, and
production of H2O2. In IEMs affecting the ETC or other
pathways of ATP generation, increased oxidative stress is
often observed, while the exact mechanisms for increased ROS
production are unknown. It is hypothesized that mutations
affecting the formation of the protein complexes in the ETC or
mutations that modify their assembly increase ROS generation
by facilitating electron leak (Olsen et al., 2015). Additionally,
accumulation of toxic intermediates, often observed in IEMs,
can increase the ROS generation by further decreasing OXPHOS
activity, as in the case of medium-chain acyl-CoA dehydrogenase
(MCAD) deficiency. MCAD deficiency reflects the accumulation
of medium-chain fatty acid derivatives, including cis-4-decenoic
acid, octanoate, and decanoate, with these metabolites altering
levels of antioxidants and increasing markers of oxidative
stress (Schuck et al., 2007, 2009). Intriguingly, IEMs display
metabolic reprograming with a switch to glycolysis for both
ATP production and muted ROS generation (Olsen et al.,
2015). Specifically, in myoclonic epilepsy with ragged red fibers
(MERRF), increased intracellular H2O2 levels correspond with
increased AMPK phosphorylation and expression of GLUT1,
hexokinase II, and lactate dehydrogenase. These results, as well as
increased lactic acid production, all point to increased glycolysis
(De la Mata et al., 2012; Wu and Wei, 2012). In multiple acyl-
CoA dehydrogenase deficiency (MADD), mutations in ETFa,
ETFb, or ETFDH, lead to decreased ATP production with
an accumulation of organic acids, including glutaric acid as
well as acyl-carnitines. A subset of these patients is riboflavin

responsive (RR-MADD) with high dose riboflavin alleviating
some symptoms. Similar to MERRF, many RR-MADD patients
exhibit increased oxidative stress (Cornelius et al., 2013, 2014).
This defect may be due to defective electron transfer and
increased electron leak from the misfolded ETFDH protein and
decreased binding of CoQ10 (Cornelius et al., 2013). Treatment
with CoQ10, but not riboflavin, decreased ROS levels (Cornelius
et al., 2013). Analysis of mitochondrial function from RR-MADD
fibroblasts showed increased mitochondrial fragmentation and
reduced β-oxidation, while supplementation with the antioxidant
CoQ10 decreased fragmentation and mitophagy (Cornelius et al.,
2014). While obesity and IEMs are distinct disorders, both
conditions impinge on energy balance in WAT. Even though
these disorders have very different manifestations, oxidative
stress plays an important role in both and may be a therapeutic
target. For example, CoQ10 is often given as a broad-spectrum
treatment to individuals with IEMs, and while its effectiveness
is debated, the anti-inflammatory effects may be beneficial in
reducing oxidative stress and the pathogenesis of the disease
(Cornelius et al., 2013; Acosta et al., 2016; Zhai et al., 2017).

LEVERAGING REDOX BALANCE TO
IMPROVE INSULIN SENSITIVITY

Mitochondria represent control centers of many metabolic
pathways. Interventions that enhance adipocyte mitochondrial
function may also improve whole-body insulin sensitivity.
Mitigation of mitochondrial ROS production and oxidative
stress may be a possible therapeutic target in type 2 diabetes
and IEMs because some mitochondrial-targeted antioxidants
and other small molecule drugs improve metabolic profiles
in mouse models (Feillet-Coudray et al., 2014; Fouret et al.,
2015; Rivera-Barahona et al., 2017) and human studies
(Escribano-Lopez et al., 2018).

Thiazolidinediones (TZDs) are PPARγ agonists used for
treating type 2 diabetes (Kelly et al., 1999; King, 2000; Khan
et al., 2002; Goldberg et al., 2005; Deeg et al., 2007). TZDs,
such as rosiglitazone and pioglitazone, enhance insulin sensitivity
by improving adipokine profiles (Maeda et al., 2001, 2002)
and reducing fasting blood glucose levels (Boyle et al., 2002;
Chappuis et al., 2007). TZDs also promote insulin sensitivity by
directing fatty acids to subcutaneous fat, rather than visceral fat.
Subcutaneous fat expandability, even in the context of obesity and
type 2 diabetes, correlates with insulin sensitivity in rodents and
humans (Ross et al., 1996; Miyazaki et al., 2002; Kim J.Y. et al.,
2007; Tran et al., 2008; Porter et al., 2009). Numerous in vitro
and in vivo studies demonstrate TZDs enhance mitochondrial
biogenesis, content, function, and morphology. Rosiglitazone
also induces cellular antioxidant enzymes responsible for the
removal of ROS generated by increased mitochondrial activity in
adipose tissue of diabetic rodents (Rong et al., 2007) and humans
(Bogacka et al., 2005; Rong et al., 2007; Ahmed et al., 2010). It
is now well established that anti-diabetic PPARγ agonists also
activate a BAT gene program in white adipocytes, converting
them to “beige” cells that express UCP1 (Tiraby et al., 2003;
Wilson-Fritch et al., 2003; Bogacka et al., 2005; Ohno et al.,
2005; Petrovic et al., 2010). Taken together, TZDs impact WAT
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FIGURE 2 | Impact of oxidative stress on adipocyte function. Increased plasma glucose and free fatty acids contribute to increased oxidative stress by increasing
the production of reactive oxygen species (ROS) and decreasing antioxidant concentrations. Increased oxidative stress occurs via enzymes in the cytoplasm, such
as NADPH oxidase, and the mitochondria. The oxidative environment increases lipid storage resulting in hypertrophic adipocytes. Additionally, increased
mitochondrial ROS (mtROS) alters the activity state of metabolic enzymes either directly or by changing the oxidative state of protein side-chains or by other
post-translational modifications, including lipid peroxidation and protein carbonylation. Cumulatively, increased adipocyte oxidative stress decreases adipogenesis
and secretion of adipokines, leading to unbalanced energy homeostasis, insulin resistance, and type 2 diabetes.

mitochondrial function in multiple ways that ultimately improve
systemic fat metabolism and insulin sensitivity. Other therapeutic
strategies include mitochondria-targeted scavengers (Smith et al.,
2012) and chemical uncouplers that dissipate energy as heat
(Perry et al., 2013; Goldgof et al., 2014). However, these methods
to enhance mitochondrial function display a narrow therapeutic
range that limits safe use for obesity.

Although the development of insulin resistance does not
require impaired mitochondrial function (Hancock et al.,
2008; Holloszy, 2013), pathways promoting insulin resistance
may impair mitochondrial function and further increase ROS
production, resulting in a detrimental feedback loop. Aerobic
exercise and caloric restriction disrupt this vicious loop,
potentially by preventing accumulation of injured mitochondrial
proteins with substantial improvement of insulin sensitivity.
In insulin-resistant people, aerobic exercise stimulates both
mitochondrial biogenesis and efficiency concurrent with an
enhancement of insulin action (Mul et al., 2015). Ultimately,
exercise engages pathways that reduce ROS coupled with insulin
sensitivity and improved mitochondrial function in WAT.

CONCLUSION

Obesity is the result of excessive expansion of WAT depots
due to a chronic imbalance between energy intake and
expenditure. Many studies demonstrate that oxidative stress
in fat cells links obesity and its comorbidities. The fact that
WAT remains the sole organ for storing surfeit lipid renders
the macromolecules in adipocytes particularly vulnerable to
carbonylation and other modifications driven by oxidative stress.
Prolonged oxidative stress negatively influences endocrine and

homeostatic performance of WAT, including disruption of
hormone secretion, elevation of serum lipids, inadequate cellular
antioxidant defenses, and impaired mitochondrial function
(Figure 2). Metabolic challenges, such as persistent nutrient
intake and sedentary behaviors that promote impaired glucose
and lipid handling, also elevate mitochondrial ROS production
to cause adipocyte dysfunction. Consequently, adipocytes cannot
engage appropriate transcriptional and energetic responses to
enable insulin sensitivity.

The increasing prevalence of obesity suggests lifestyle
intervention as the principal method to treat obesity is unlikely
to succeed. Currently, all available anti-obesity medications act by
limiting energy intake through appetite suppression or inhibition
of intestinal lipid absorption. However, these medications are
largely ineffective and often have adverse side effects. The
central role of mitochondria in nutrient handling provides
a logical entry point for improving metabolism in obesity.
While approaches to understanding and intervening in oxidative
damage evolve, exploration of mitochondria redox balance may
enable development of dietary and small molecule therapies for
obesity and its comorbidities.
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