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The interest in pancreatic stellate cells (PSCs) has been steadily growing over the past
two decades due mainly to the central role these cells have in the desmoplastic reaction
associated with diseases of the pancreas, such as pancreatitis or pancreatic cancer. In
recent years, the scientific community has devoted substantial efforts to understanding
the signaling pathways that govern PSC activation and interactions with neoplastic cells.
This mini review aims to summarize some very recent findings on signaling in PSCs and
highlight their impact to the field.
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INTRODUCTION

Since their discovery, pancreatic stellate cells (PSCs) have often been overlooked in favor of other
cellular components of the pancreas – pancreatic acinar cells (PACs), ductal cells, and pancreatic
islets – that all are present in evident abundance in the tissue architecture and perform obvious
exocrine or endocrine functions. Only relatively recently have PSCs gained substantial attention
from the scientific community, and this was once it became clear that these cells play important
roles in pancreatic pathophysiology. PSCs occupy periacinar space and form a dynamic network
in between pancreatic acini. In health, PSCs predominantly occur in a quiescent phenotype and
are a minority among cellular components of the pancreas, comprising merely 4–7% of all cells
in the organ (Apte et al., 1998). One characteristic propensity of quiescent PSCs is the presence
of retinoid droplets in the cytosol (Apte et al., 1998). Upon activation triggered by tissue injury,
PSCs undergo a series of morphological alterations, which include the loss of retinoid droplets,
increased prominence of the ER network, and elongation of the cellular processes; they also start
expressing alpha smooth muscle actin (α-SMA) as well as collagen types I and III, laminin, and
fibronectin (Apte et al., 1998; Bachem et al., 1998). As a result, activated PSCs increase in numbers,
and their products – extracellular matrix (ECM) components – may become a significant part of
the organ. If unbalanced, this mechanism underlies the development of pancreatic fibrosis. This
mini review aims to summarize the most recent studies on signaling in PSCs relevant in physiology
and pathophysiology of the pancreas.

SIGNALING AND PSC ACTIVATION

Physiologically, the transition of quiescent PSCs into a proliferative, fibrogenic phenotype is
an autonomous repair reaction to tissue injury. Since the damage to enzyme-storing PACs is
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particularly threatening to the integrity of the tissue, there
is an obvious need for an efficient and well-balanced system
orchestrating regeneration and containment of the injury with
PSC activation at its center. This mechanism is expected
to have cross-talks between numerous signaling pathways
(Figure 1), given that PSC activation may be triggered by
various stimuli, such as inflammatory mediators (Mews et al.,
2002), alcohol metabolites (Apte et al., 2000), and growth
factors, including transforming growth factors TGF-α and TGF-
β, platelet-derived growth factor (PDGF) (Apte et al., 1999),
or connective tissue growth factor (CTGF) (Gao and Brigstock,
2005). These activating factors are secreted not only by infiltrating
immune cells but might also be coming from other sources
e.g., acinar cells (PACs) (Masamune and Shimosegawa, 2009).
Other pathophysiologically relevant factors associated with PSC
activation include hyperglycemia (Nomiyama et al., 2007),
hypoxia (Masamune et al., 2008), and oxidative stress (Casini
et al., 2000). It is widely accepted that signaling pathways, such
as the MAPK/ERK (Jaster et al., 2002; Yoshida et al., 2004), PI3K
(McCarroll et al., 2004), Smad (Ohnishi et al., 2004), Jak/STAT
(Komar et al., 2017), PKC (Nomiyama et al., 2007), and Hedgehog
(Li et al., 2014), play a crucial role in PSC physiology and have
been subjects of previous reviews (Masamune and Shimosegawa,
2009). However, recent evidence has indicated that the Hippo
and Wnt pathways as well as authophagy and calcium signaling
might be equally important players in PSCs. These new findings
are briefly described below.

Hippo Signaling Pathway
The Hippo signaling pathway is one of the main restrictors of cell
proliferation that tend to promote apoptosis; it can be triggered
by numerous microenvironmental cues, such as cell–cell contact,

mechanotransduction, and cellular stress (Meng et al., 2016).
During tissue repair, which normally requires cell proliferation,
the Hippo pathway is often downregulated by phosphorylation
of its main effectors: yes-associated protein 1 (YAP1) and
transcriptional co-activator with PDZ-binding motif (TAZ)
(Furth et al., 2018). This results in the switched off expression of
YAP1/TAZ target genes, particularly CTGF, responsible for PSC
activation. Liu J. et al. (2019) have recently demonstrated that
acinar-specific deletion of central kinases in Hippo signaling –
large tumor suppressor 1 and 2 (LATS1/2) – contributed to
inflammation and severe fibrosis in vivo, even without the
initiation of acinar cell rupture; whereas removal of CTGF with a
neutralizing antibody attenuated this effect. The authors have also
shown that in the mouse model of caerulein-induced pancreatitis
there was an upregulation of secreted phosphoprotein 1 (SPP1)
(Liu J. et al., 2019), a previously reported target of YAP1/TAZ
involved in fibroinflammatory responses in other organs (Pardo
et al., 2005). Interestingly, YAP1 and TAZ activity can be
further modulated by the Wnt/β-catenin pathway. For instance,
Wnt signaling can activate YAP1/TAZ by preventing their
degradation by the β-catenin destruction complex (Hansen
et al., 2015). Since the Wnt/β-catenin pathway plays a role
in embryonic development as well as in homeostasis of the
developed tissues, Wnt signaling becomes particularly important
in the pathogenesis of proliferative diseases, including cancer.

Wnt Signaling Pathway
The main factors associated with the Wnt signaling pathway
were found both in the endocrine and exocrine pancreas; this
includes β-catenin, Wnt2, Wnt5a, and Wnt inhibitors e.g., the
secreted frizzled-related protein (SFRP) family (Heller et al.,
2003). The distribution of these factors is dependent on the

FIGURE 1 | Schematic illustration shows that PSC activation is controlled by different signaling pathways.
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condition of the tissue – that is it changes upon tissue damage
and in fibrosis. An analysis of human samples revealed that in
the non-fibrotic pancreatic tissue, β-catenin is mainly located
at the cell membrane of PACs, inhibitory SFRP4 is present
in these cells, and Wnt2 is expressed at a low level (Blauer
et al., 2019). In moderate fibrosis, the expression of Wnt2 in
PACs increases, and β-catenin can now be found in the acinar
nuclei indicating transcriptional activation; whereas in advanced
fibrosis, β-catenin mostly localizes to PSCs (Blauer et al.,
2019). Interestingly, this distribution pattern can be modeled
in vitro. PSCs express β-catenin in monocultures, but when co-
cultured with PACs, the levels of SFRP4 increase compared to
monoculture, and thus PSCs do not exhibit nuclear distribution
of β-catenin (Blauer et al., 2019). The above indicates that, in
terms of Wnt signaling, a monoculture of PSCs reflects advanced
stages of fibrosis, whereas a co-culture of PACs-PSCs has the
expression pattern seen in moderate fibrosis. In another study,
reversion of activated PSCs to quiescence was associated with
upregulation of retinoic acid receptor β (RARβ), an increase in
SFRP4 expression, and a reduction in nuclear β-catenin content
in these cells (Carapuca et al., 2016). However, other reports
suggest that both Wnt2 and SFRP4 might be elevated upon PSC
activation (Hu et al., 2014). It is likely that PSCs could utilize
multiple mechanisms regulating SFRP4, and thus its role in the
interplay between PSCs and PACs, as well as in the process of
PSC phenotype transition, is yet to be fully elucidated.

Autophagy
Autophagy is traditionally viewed either as a means for nutrient
seeking under stress or as a physiological process for a cell
quality check and removal of dysfunctional cellular components
(Glick et al., 2010; Bootman et al., 2018). While it is normally
pro-survival, disruption of autophagy has been associated with
non-apoptotic cell death via the interaction of its main effector
Beclin-1 with anti-apoptotic Bcl-2 protein (Pattingre et al.,
2005). Just like other autophagy-related proteins (Atg), including
Atg1 or Atg5, Beclin-1 acts as an initiator of autophagosome
formation (Shibutani et al., 2015). The relationship between
PSC activation, pancreatic fibrosis, and autophagy has recently
been well documented in the literature; autophagy has been
suggested to be a source of energy and molecular material for
PSC phenotype transition and ECM deposition (Endo et al.,
2017). In highly fibrotic pancreatic solid tumors, cancer cells
can stimulate autophagy of PSCs. This leads to the release of
non-essential amino acids (NEAA), mainly alanine, from PSCs;
NEAA are then used by cancer cells as an alternative (to glucose)
energy source (Sousa et al., 2016). However, mouse models
revealed that deregulation of Atg5 in the pancreas results in a
similar phenotype to that seen in human chronic pancreatitis,
indicating that the development of this disease appears to involve
defects in autophagy (Diakopoulos et al., 2015). Mammalian
target of rapamycin (mTOR) is a very well-known suppressor
of autophagy that inhibits this process by regulating the activity
of the initiator complex Atg1/ULK1 (Mizushima, 2010). In turn,
mTOR can be upregulated by sphingosine-1-phosphate (S1P) or
its analog, the immunomodulator fingolimod (FTY720), both of
which inhibit autophagy (Thangada et al., 2014). FTY720 has

been shown to suppress PSC activation and autophagy via the
mTOR pathway; it can also increase the Bax/Bcl-2 ratio with a
simultaneous decrease in the mitochondrial membrane potential
(Cui et al., 2019). The mTOR pathway also links autophagy with
intracellular calcium signals (Bootman et al., 2018).

Calcium Signaling
Calcium signaling is one of the most universal pathways,
regulating virtually every cellular process from excitability and
motility to apoptosis (Clapham, 2007). Sophisticated machinery
consisting of pumps, ion channels, and active transporters
controls Ca2+ homeostasis; while spatiotemporal changes in
Ca2+ concentration encode signals that exert cell responses. In
the pancreas, Ca2+ signals play a particularly important role
in regulating secretion of digestive enzymes by PACs, which
has been a relatively frequent subject of research in the past
decades (Petersen and Tepikin, 2008). In contrast, Ca2+ signaling
in PSCs has so far been investigated only by a handful of
studies. Nevertheless, recent reports indicate that Ca2+ signals
are also important in the regulation of PSC physiology, showing
a clear cross-talk with other pathways, such as NO signaling
(Jakubowska et al., 2016). We already know that PSCs express
bradykinin receptor type 2 (BDKRB2) (Ferdek et al., 2016), and
pharmacological studies revealed that these cells produce Ca2+

responses even to very low doses of bradykinin (Won et al.,
2011; Gryshchenko et al., 2016a). Since bradykinin is a well-
known pro-inflammatory mediator, BDKRB2 signaling may well
play a role in activation of PSCs in diseases of the pancreas
(Gryshchenko et al., 2016b). PSCs also express a number of Ca2+

channels, particularly those from the family of transient receptor
potential (TRP). For example, TRPC6 has been associated
with autocrine stimulation of PSCs in hypoxic conditions
(Nielsen et al., 2017); whereas another TRP member, TRPC1,
was proposed to contribute to pressure-induced activation of
these cells (Fels et al., 2016). Deregulated Ca2+ signals directly
underlie the pathophysiology of acute pancreatitis, and thus it is
somewhat surprising that so little is known about the effects that
common inducers of pancreatic pathology, such as bile acids and
ethanol metabolites, have on Ca2+ signaling in PSCs. Given that
ethanol induces the expression of TRPV4 in these cells (Zhang
et al., 2013), whereas sodium cholate and taurocholate generate
noxious and sustained Ca2+ signals (Ferdek et al., 2016), the
contribution of PSCs in the development of acute pancreatitis
might still be underrated by the current dogma.

PSCs IN DISEASES OF THE PANCREAS

Despite being a minority in the normal pancreas, the role
of activated PSCs becomes apparent in pathophysiological
conditions. It is well established that persistent activation of
PSCs is the main contributor to fibrosis in pancreatic diseases,
with pancreatic cancer and pancreatitis being the most prevalent.
In health, PSCs regulate ECM turnover not only by producing
its components but also by secreting key enzymes engaged in
EMC remodeling – matrix metalloproteinases (MMP) as well as
their inhibitors – tissue inhibitors of metalloproteinases (TIMPs)
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(Phillips et al., 2003). PSCs have been shown to activate in
response to cytokines upregulated in acute pancreatitis (Mews
et al., 2002). Upon activation, the fate of PSCs largely depends
on the external stimuli and can follow different scenarios. If the
injury is transient, activated PSCs revert to quiescence or become
senescent (McCarroll et al., 2003). However, a subpopulation of
PSCs may expand excessively when activating factors accumulate
or occur in a persistent manner e.g., in chronic pancreatitis
(Haber et al., 1999; Masamune et al., 2009). Activated PSCs
secrete increased amounts of MMP-2 (Phillips et al., 2003),
and this enzyme breaks down normal basement membrane,
which then may hasten its replacement by fibril-forming collagen
(Friedman, 2000).

Pancreatic cancer – mainly pancreatic ductal adenocarcinoma
(PDAC) – remains one of the most serious problems of our
modern society. According to the Global Cancer Statistics 2018
(GLOBOCAN 2018), PDAC has been ranked the 11th most
frequent cancer worldwide and the 7th most deadly cancer,
accounting for 4.5% of all cancer-related deaths (Bray et al., 2018).
The hallmark of pancreatic tumorigenesis is a desmoplastic
reaction that leads to the formation of fibrotic stroma. The
stroma not only provides a hypoxic microenvironment for the
neoplastic cells, but it also constitutes a physical barrier that limits
the efficacy of drug delivery to the tumor. Despite significant
advances in the treatment regimens and surgical procedures, the
collagen-rich fibrotic microenvironment of pancreatic cancer is
the main reason why chemotherapeutics are largely ineffective
and the clinical outcome remains very poor (Dangi-Garimella
et al., 2011; Shields et al., 2012). It is becoming increasingly clear
that a successful therapy should not only be focused on cancer
cells but also target the tumor-associated fibrotic stroma.

Pancreatic stellate cells are the main cellular contributors to
the desmoplastic reaction in PDAC. They become progressively
activated in the process of tumorigenesis and deposit collagen
fibers that embed and protect cancer cells. This collagen-rich
microenvironment becomes an integral part of the developing
tumor, and the interactions between the stroma and cancer cells
are essential practically at every stage of tumorigenesis from its
initiation, through progression, and to metastasis. As an example,
PSCs have been shown to increase the viability and proliferative
capacity of cancer cells as well as reduce gemcitabine-induced
apoptosis of these cells. This was attenuated by pharmacological
blockade of TGF-β receptor I (TGF-βRI, ALK5) (Liu S.L.
et al., 2019). The inhibition of stroma-cancer cell interactions is
currently attracting a lot of interest as a promising strategy that
may sensitize PDAC to therapy and increase the 5-year survival
rate of patients suffering from this disease (Cannon et al., 2018).

SIGNALING IN PSC-CANCER CELL
INTERACTIONS

In light of the above, a number of recent studies have been
devoted to investigating signaling pathways in tumor–stroma
interactions. Yet again, the Hippo pathway stands out as an
important player in pancreatic tumorigenesis. YAP1 is expressed
by cancer cells as well as is present in the nuclei of PDAC-derived

PSCs, correlating with their activated phenotype. Xiao et al.
(2019) have recently demonstrated in vitro that depletion of YAP1
in PSCs (via silencing its expression) results in a shift of PSC
phenotype toward quiescence, evidenced by a downregulation of
markers such as α-SMA and collagen I as well as a decrease in PSC
contractility and proliferation. While secreted protein acidic and
cysteine rich (SPARC) has previously been associated with the
poor outcomes of pancreatic cancer patients (Erkan et al., 2008;
Whatcott et al., 2015), very recently SPARC has been identified
as a downstream target of YAP1 that mediates its effects on
cancer cell proliferation via paracrine signaling (Xiao et al., 2019).
Since YAP1 expression shows a strong correlation with the degree
of tissue fibrosis in patient samples, YAP1 was suggested as a
feasible target in PDAC therapy that, in principle, could inactivate
PSCs and limit the development of the tumor-associated stroma
(Xiao et al., 2019).

Another recently revealed paracrine factor involved in
stroma–cancer cell interactions is leukemia inhibitory factor
(LIF) (Ohlund et al., 2017; Bressy et al., 2018; Shi et al., 2019). This
cytokine is secreted by activated PSCs in PDAC lesions and acts
on the neighboring cancer cells via its receptor LIFR, activating
the STAT3 pathway, driving tumor progression and increasing
chemoresistance (Shi et al., 2019). Since its circulating and tissue
levels increase in PDAC patients, LIF was postulated to be both a
novel biomarker and a feasible therapeutic target.

Stroma–cellular interaction may also occur via cell surface
receptors such as integrins (Schnittert et al., 2018). Integrin α-
11 (ITGA11), a collagen type I–binding receptor, is an interesting
example: essentially absent in the healthy pancreas, it becomes
expressed within the stromal fraction of PDAC tissues. It has been
found that approximately 80% of α-SMA-positive cells are also
ITGA11-positive, and knockdown of ITGA11 in PSCs results in
attenuation of differentiation, migration, and secretion of ECM
components by these cells (Schnittert et al., 2019). Another cell
surface protein, integrin α-5 (ITGA5), was also shown to be
present in as many as 72% of α-SMA-positive cells in human
PDAC tissues, and its high expression was associated with poor
prognosis (Kuninty et al., 2019). ITGA5 was demonstrated to
play a role in TGF-β–mediated activation of PSCs via Smad2 and
FAK pathways; and its knockdown inhibited both PSC-induced
cancer cell proliferation in vitro and tumor growth in vivo
(Kuninty et al., 2019). The authors went even one step further and
developed a novel ITGA5-antagonizing peptidomimetic (AV3)
that could inhibit PSC activation and enhance the cytotoxic
effects of gemcitabine in spheroid co-cultures of cancer cell lines
with PSCs (Kuninty et al., 2019).

Bcl2-associated athanogene 3 (BAG3) is expressed by multiple
cancer types, including PDAC, and correlates with poor
prognosis. Recent studies show that this marker is also present
in activated PSCs and may promote, via IL−6, TGF−β2, and
insulin-like growth factor-binding protein 2 (IGFBP2) signaling,
autocrine-driven maintenance of the activated phenotype in these
cells (Yuan et al., 2019). Vice versa, BAG3−positive PSCs also
increase migration and invasion capacity of nearby cancer cells
via soluble factors such as IL−8, monocyte chemoattractant
protein-1 (MCP-1), TGF−β2, and IGFBP2 (Yuan et al., 2019).
A recent report shows that plasminogen activator inhibitor-1

Frontiers in Physiology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 78

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00078 February 13, 2020 Time: 12:43 # 5

Kusiak et al. Signaling in Pancreatic Stellate Cells

(PAI-1), a common regulator of blood coagulation, cell apoptosis,
and migration, is secreted by pancreatic cancer cells and
activates PSCs LRP-1/ERK/c-JUN signaling (Wang et al., 2019).
Interestingly, knockdown of PAI-1 in cancer cells abolished
activation in co-cultured PSCs, indicating that PAI-1 might
be one of the key players in PSC – cancer cell interaction
(Fang et al., 2012).

While cancer-associated PSCs secrete hepatocyte growth
factor (HGF), its receptor c-MET is present on pancreatic cancer
cells. Simultaneous inhibition of HGF and c-MET combined with
gemcitabine is more effective in reduction of tumor volume in
an orthotopic model of pancreatic cancer than chemotherapy
alone, indicating a critical role of the HGF/c-MET pathway in
PSC–cancer cell interactions (Pothula et al., 2017). What is more,
inhibition of HGF, c-MET, and urokinase-type plasminogen
activator (uPA) has been shown to decrease the angiogenic
properties of endothelial cells, suggesting the role of PSCs and
the HGF/c-MET pathway in neoangionesis (Patel et al., 2014).
The authors envision that a novel antiangiogenic approach that
targets the HGF/c-MET and uPA pathways could be used against
pancreatic cancer (Patel et al., 2014).

MECHANOSENSING AND ECM
STIFFNESS

The human pancreas is an organ that weights only approximately
100 g (Innes and Carey, 1994), but it produces daily as much as
1 L (or 1 kg) of pancreatic juice, comprising water, bicarbonate,
and a variety of digestive enzymes (Pallagi et al., 2015). This
substantial difference between the juice mass and the mass of
the tissue is associated with mechanical stress in the organ
exerted by the fluid pressure on pancreatic duct walls and
pancreatic acini. PSCs have recently been attributed to sensing
the mechanical properties of pancreatic microenvironment
(Cortes et al., 2019b). PSCs control mechanostasis (mechanical
homeostasis of the organ in response to various types of forces)
not only in the normal tissue but also under pathophysiological
conditions like that present in the development of fibrosis
(Ferdek and Jakubowska, 2017). Deposition of collagen fibers
by activated PSCs, as well as the presence of cross-linking in
these fibers, affects the mechanical properties of the pancreatic
microenvironment, making it dense and rigid (Cortes et al.,
2019a,b). In light of the recent findings, activated PSCs might be
able to sense fiber topology, adhesiveness of their surroundings,
and viscoelasticity of the stroma (Papalazarou et al., 2018).
Stress, strain, and forces that stretch the fibrillary proteins are
also mechanosensed by myofibroblast-like cells (Chen et al.,
2017). Importantly, the increased matrix stiffness may further
promote activation of PSCs, supporting a positive feedback
loop that perpetuates formation of the dense fibrotic tumor
stroma (Bachem et al., 2005). Therefore, modulation of the
mechanical properties of the desmoplastic pancreatic tissue,
in order to decrease its density and overcome problems with
drug delivery, may become one of key strategies in successful
therapy of pancreatic cancer (Papalazarou et al., 2018). Only
very recently has tamoxifen, a drug used successfully against

breast cancer cells, been demonstrated to inhibit differentiation
of quiescent PSCs into myofibroblasts via the G protein-
coupled estrogen receptor (GPER)- and hypoxia-inducible
factor-1 alpha (HIF-1α)-mediated mechanism and suppress
matrix remodeling (Cortes et al., 2019a,b). Another plausible
anti-fibrotic and mechanomodulatory strategy against pancreatic
diseases could be targeting YAP and TAZ signal transduction
of the Hippo pathway: YAP/TAZ, via their interaction with the
cell cytoskeleton, promote cell “stemness,” tissue regeneration,
and remodeling of the stroma; whereas YAP can modulate
fibroinflammatory responses (Martinez et al., 2019).

What is more, activated PSCs express hyaluronan synthase
2 (HAS2) as well as hyaluronidase 1 (HYAL1) and have been
identified as an important source of stromal hyaluronic acid
(HA) (Junliang et al., 2019). In turn, HA has been attributed to
high interstitial fluid pressure and vascular collapse in PDAC
desmoplastic reaction (Provenzano et al., 2012). Enzymatic
degradation of HA has been shown to reduce the interstitial
pressure, restore the microvasculature and enhance the efficacy
of chemotherapy (Kultti et al., 2012; Provenzano et al., 2012;
Jacobetz et al., 2013). Of note is that HA binds to CD44,
commonly expressed by many types of cancer cells, and this
interaction promotes tumor-driving signaling and transport
activities (Slomiany et al., 2009; Toole, 2009). Since CD44 has
also been found on the surface of PDAC cells (Zhao et al., 2016),
the full spectrum of HA roles in pancreatic cancer might be even
more complex; but this notion requires further investigation.

REVERSION TO QUIESCENCE

Since activation of PSCs can often become part of the
pathophysiological process, a number of attempts have been
made to either block the phenotype transition in these cells
or force already activated PSCs back to quiescence. Treatment
with retinol and retinoic acid (both ATRA and 9-RA) was used
to inhibit cell proliferation, expression of activation markers
and the MAPK signaling pathway in these cells; and retinol
even blocked ethanol-induced activation of PSCs (McCarroll
et al., 2006). Further, ligands of PPARγ, a nuclear receptor

FIGURE 2 | Bar chart shows the number of new scientific papers published
each year between 2008 and 2019 with the phrase “pancreatic stellate cells”
in the text (based on online search via PubMed.gov). Trend line (dotted):
y = 3.8179x; R2 = 0.914.
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regulating lipid storage and glucose metabolism, inhibited PSC
proliferation and decreased expression of α-SMA and MCP-1,
suggesting a potential role of PPARγ in the development of
pancreatic fibrosis and inflammation (Masamune et al., 2002).
More recently, it was shown that vitamin D receptor (VDR)
is present in the stroma of human pancreatic tumors, and
its ligand, calcipotriol, reduces markers of inflammation and
fibrosis in mouse models of pancreatitis and pancreatic cancer
(Sherman et al., 2014). A different group demonstrated that while
vitamin D2, vitamin D3 and calcipotriol inhibit activation of
PSCs in vitro, they fail to reverse the phenotype transition after
the cells have already been activated (Wallbaum et al., 2018).

CONCLUDING REMARKS

For the last two decades, there has been a steady (linear) increase
in the number of papers on PSCs published every year (Figure 2).
This new field continues to expand, and increasingly more
efforts are directed toward uncovering the signaling pathways
that control PSC physiology. Since PSC activation underlies the
pathogenesis of pancreatic disorders, the signals that induce

phenotype transition in these cells are of particular interest.
Targeted manipulation of these signals might prevent or even
revert PSC activation and become a useful tool in the therapy of
pancreatic diseases.
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