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Oncolytic viruses are of growing interest to cancer researchers and clinicians, due to their

selectivity for tumor cells over healthy cells and their immunostimulatory properties. The

immune response to an oncolytic virus plays a critical role in treatment efficacy. However,

uncertainty remains regarding the circumstances under which the immune system either

assists in eliminating tumor cells or inhibits treatment via rapid viral clearance, leading to

the cessation of the immune response. In this work, we develop an ordinary differential

equation model of treatment for a lethal brain tumor, glioblastoma, using an oncolytic

Herpes Simplex Virus.We use amechanistic approach tomodel the interactions between

distinct populations of immune cells, incorporating both innate and adaptive immune

responses to oncolytic viral therapy (OVT), and including a mechanism of adaptive

immune suppression via the PD-1/PD-L1 checkpoint pathway. We focus on the tradeoff

between viral clearance by innate immune cells and the innate immune cell-mediated

recruitment of antiviral and antitumor adaptive immune cells. Our model suggests that

when a tumor is treated with OVT alone, the innate immune cells’ ability to clear the

virus quickly after administration has a much larger impact on the treatment outcome

than the adaptive immune cells’ antitumor activity. Even in a highly antigenic tumor with

a strong innate immune response, the faster recruitment of antitumor adaptive immune

cells is not sufficient to offset the rapid viral clearance. This motivates our subsequent

incorporation of an immunotherapy that inhibits the PD-1/PD-L1 checkpoint pathway

by blocking PD-1, which we combine with OVT within the model. The combination

therapy is most effective for a highly antigenic tumor or for intermediate levels of innate

immune localization. Extreme levels of innate immune cell activity either clear the virus

too quickly or fail to activate a sufficiently strong adaptive response, yielding ineffective

combination therapy of GBM. Hence, we show that the innate and adaptive immune

interactions significantly influence treatment response and that combining OVT with an

immune checkpoint inhibitor expands the range of immune conditions that allow for

tumor size reduction or clearance.
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1. INTRODUCTION

Oncolytic viral therapy (OVT) shows promise as a cancer
treatment option that selectively targets cancer cells over healthy
cells. Viral therapy is also viewed as a type of immunotherapy
because the viral presence stimulates an adaptive immune
response (Kaufman et al., 2015). However, after decades of
development, OVT has yet to become a widely used treatment
option. This is likely due to the multifaceted immune response to
the virus, surrounding which uncertainty remains.

This work adds to a growing literature developing
mathematical models of OVT. In Wodarz (2001), Wodarz
developed a model to study the virus-specific and tumor-specific
cytotoxic T lymphocyte response to OVT, and determined
the viral and host conditions that produce an optimal tumor
response. Wodarz and Komarova (2009) and Komarova and
Wodarz (2010) focus on the role of the viral infection rate
and develop a general framework to study oncolytic viral
dynamics. Eftimie et al. (2011) study the phenomena of
multi-stability and multi-instability that arise in interactions
between an oncolytic virus and adaptive immune cells, and they
conclude that the immune response is primarily responsible
for multi-stability, while the virus is primarily responsible for
multi-instability. Eftimie and Eftimie (2018) investigate the
role that two disparate types of macrophages, M1 and M2, can
play in enhancing OVT, finding that polarization toward M1
or M2 phenotype can enhance OVT through either anti-tumor
immune activation or increased cytotoxic activity, and that
the total number of macrophages plays a consequential role in
treatment outcomes. Friedman et al. (2006) consider the effect
of the immunosuppressive drug, cyclophosphamide, on glioma
response to OVT, and find that it decreases the percentage of
uninfected tumor cells.

Many of the papers within this body of work focus on
either the innate immune response or the adaptive immune
response to OVT, and we build on this work by incorporating

both of these branches of the immune system and focusing
on the interactions between them. The innate immune system

plays two major roles in response to OVT: clearance of the
virus and recruitment of adaptive immune cells (McDonald and

Levy, 2019). The adaptive immune system, and in particular,
the CD8+ T cells, target tumor-associated cognate antigens, in
order to specifically target and kill tumor cells. Hence, the innate
immune cells play a complex role in response to OVT, potentially
clearing the virus before the infection takes hold within the tumor
microenvironment, while simultaneously recruiting antitumor
adaptive immune cells. We investigate the circumstances under
which the innate immune system either assists or hinders viral
therapy, thereby providing insight regarding the barriers to
successful cancer treatment.

In particular, we study the use of an oncolytic Herpes Simplex
Virus (HSV) to treat glioblastoma (GBM), the most aggressive
primary malignant brain tumor, killing half of all patients within
a year of diagnosis, and nearly all patients within 2 years
(Alexander and Cloughesy, 2017). The standard treatment of
care for GBM is surgical resection, followed by concurrent
radiotherapy and chemotherapy, and subsequent cycles of

adjuvant chemotherapy until the tumor recurs (Stupp et al.,
2005). A major impediment to GBM treatment is the frequent
development of resistance to the standard chemotherapy agent,
temozolomide (Hegi et al., 2005; Zhang et al., 2012). Thus,
novel therapies are frequently being developed and tested for use
in conjunction with, or as an alternative to, temozolomide, to
effectively treat GBM. In this work, we consider the effectiveness
of OVT as an alternative treatment modality, by developing
and analyzing an ordinary differential equation model of GBM
response to OVT.

Our results from modeling GBM response to OVT suggest
that this treatment is frequently ineffective due to the inhibition
of T cell activity by the PD-1/PD-L1 immune checkpoint. PD-1
(programmed cell death-1) is a protein expressed on activated T
cells, and its ligand, PD-L1, is frequently upregulated on cancer
cells, on innate immune cells, and on T cells (Cheng et al.,
2013; Shi et al., 2013). When PD-1 on the surface of a T cell
is engaged by PD-L1 on neighboring tumor or innate immune
cells, the T cell becomes dysfunctional or “exhausted” and loses
the ability to kill its target cells. In recent years, monoclonal
antibody therapies against PD-1 and PD-L1, known as immune
checkpoint inhibitors, have been developed to target the PD-
1/PD-L1 pathway (Barber et al., 2006; He et al., 2015; Speranza
et al., 2018). Our initial model investigations suggest the necessity
of increased T cell activity in response to OVT, so we also
present a second model that combines OVT and an anti-PD-1
immunotherapy, known as nivolumab.

Complex interactions frequently arise when combining cancer
therapies, so a number of mathematical models have been
developed to study combination treatments. To highlight
a few examples, de Pillis et al. (2006) develop a model
of tumor response to a combination of chemotherapy and
immunotherapy. In Lai and Friedman (2017) model the
combination of a cancer vaccine that activates dendritic cells
with an immune checkpoint inhibitor, finding that these
treatments work effectively together, and developing a notion
of synergy between the drugs. In Bagheri et al. (2011)
model the combination of an oncolytic adenovirus with
MEK-inhibitor treatment. Kim et al. (2018, 2019) investigate
the effect of combining OVT, natural killer cell treatment,
and a proteasome inhibitor known as bortezomib, suggesting
dosing strategies that account for factors in the tumor
microenvironment. Our work supplements the existing literature
by investigating a combination of an oncolytic Herpes simplex
virus with anti-PD-1 immunotherapy, while focusing on the
crucial role of the innate immune cells in response to
this treatment.

The outline of this paper is as follows: in section 2 we
describe our mathematical model with OVT alone, followed by
a modified version that incorporates the combination of OVT
and an immune checkpoint inhibitor. In this section, we also
describe the use of experimental murine data to calibrate the
parameters used in the model. In section 3, we present our results
with OVT alone, in section 3.1, suggesting a need to combine
OVT with anti-PD-1 immunotherapy. We proceed in section 3.2
by discussing the increased efficacy of the combination therapy
over OVT alone, and the multifaceted role of the innate immune
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TABLE 1 | Model variables.

Variable Description Units

Ts Susceptible tumor cells #

TI Infected tumor cells #

V Free viral particles pfu

Z Activated innate immune cells #

YT Adaptive tumor-specific immune cells #

YV Adaptive virus-specific immune cells #

P Concentration of PD-1 µM

system in response to the combination therapy. We summarize
these results and discuss future directions in section 4.

2. MATERIALS AND METHODS

We have developed a model to investigate the treatment of GBM
through OVT and an immune checkpoint inhibitor. We use in
vivo parameter values to simulate GBM in a murine model. We
first present a model including OVT alone, and then we present
an additional equation to incorporate the immune checkpoint
inhibitor. In the initial set of seven equations, we model the
temporal changes in five immune/cancer cell types; the oncolytic
virus, which we assume to be HSV; and the molar concentration
of PD-1 molecules expressed by the cells within the model. In
the second version of the model, we modify the equation for the
molar concentration of PD-1, and add an equation describing
the molar concentration of an anti-PD-1 immunotherapy drug,
which we assume to be nivolumab. The initial set of seven
variables are listed in Table 1.

Figure 1 provides a visual representation of the model. The
labeled connections between cell types in Figure 1 correspond
to specific terms in the model equations described in the next
section. Model parameters and their sources are listed in Table 2,
and the process used to estimate them can be found in section 2.2
and in the Appendix.

2.1. Model Equations
The initial model consists of a system of seven non-linear
differential equations, listed below. Each equation describes the
rate of change in hours of the population of a single cell type or
of the virus. We assume that the innate immune cell population
includes both macrophages and natural killer cells, due to the
positive feedback loop that exists between these two cellular
types. Macrophages engulf and destroy viral particles, while
natural killer cells primarily target and kill infected cells, so in
our model we assume the collective group of innate immune cells
are activated by and target both viral particles and infected tumor
cells. The innate immune cells release cytokines, which recruit
adaptive CD8+ T cells, and we assume that the T cells can be
divided into two groups that primarily target either viral antigens
or tumor antigens (McDonald and Levy, 2019). Following Lai and
Friedman (2017) and Nikolopoulou et al. (2018), we incorporate
suppression of these adaptive immune cells via the PD-1/PD-L1
checkpoint with the factor F(P, L) in Equations (5),(6).

We start simulations with the initial conditions Xs = 105

cells, V = 107 pfu (plaque-forming units), and all other cell
populations beginning at 0. Time t = 0 represents the time at
which the initial viral dose is administered, and we assume that
any pre-treatment antitumor immune activity is factored into the
net tumor growth rate, so there are no new immune cells being
recruited to target the tumor at the time of the initial viral dose.

2.1.1. Oncolytic Viral Therapy Alone
Equation (1), shown below, models the susceptible tumor
population. The term (1a) represents logistic growth of the
susceptible tumor cells with intrinsic growth rate rt , and with a
carrying capacity CT for all tumor cells. We assume a baseline
growth rate of 0.0192 per hour, corresponding to a tumor
doubling rate of about 35 days, and a carrying capacity of 5.157×
108 cells. We obtained these values by fitting a logistic growth
curve to control data in Linsenmann et al. (2019), displayed in
Figure 2A. Note that in Friedman et al. (2006), they use a similar
value of 0.02 h−1, based on the growth of glioma cells.

The term βTsV represents viral infection of susceptible tumor
cells at rate β , which shifts tumor cells from the susceptible
population to the infected population, TI . We assume a baseline
viral infection rate of 2.5 × 10−9 virion−1h−1, but vary this
parameter in much of the numerical analysis. The final term,
(1c), represents the killing of susceptible tumor cells by tumor-
specific adaptive immune cells, YT . We use Michaelis-Menten
kinetics to model saturation in the immune response, assuming
that an over-abundance of tumor cells restricts movement within
the tumor architecture (Kirschner and Panetta, 1998). The kTA
denotes the maximum immune killing rate of tumor cells, for
which we assume a baseline value of 1

24 cell−1h−1 from Mahasa
et al. (2017), corresponding to each T cell killing one tumor cell
each day. The parameter hT represents the population of Ts at
which the immune cells lyse tumor cells at half of their maximum
killing rate. We use a baseline value of hT = 2.7 × 104 cells
from Banerjee et al. (2015), but we allow for a feasible range that
includes much smaller values, as seen in Mahasa et al. (2017).

dTs

dt
= rtTs

(

1−
Ts + TI

CT

)

︸ ︷︷ ︸

(1a) Tumor growth

− βTsV
︸ ︷︷ ︸

(1b) Viral
infection

− kTAYT
Ts

hT + Ts
︸ ︷︷ ︸

(1c) Adaptive
immune killing

(1)

Equation (2) models the infected tumor population, in which
term (2a) denotes the addition of cells to the population TI

via viral infection of susceptible tumor cells at rate β . Term
(2b) denotes the death of infected cells, induced by the viral
infection, at rate δT . We assume a baseline viral lysis rate
of δT = 1/18 h−1 from Friedman et al. (2006). The final
three terms, (2c)–(2e), denote the killing of infected cells via
innate immune cells, antitumor adaptive immune cells, and
antiviral adaptive immune cells, respectively. All three types of
immune killing are modeled using Michaelis-Menten kinetics,
analogously to the immune killing term in Equation (2). We
assume the killing rate of infected tumor cells by antiviral T
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FIGURE 1 | A schematic diagram of the model, depicting the interactions between the susceptible and infected tumor cells, innate and adaptive immune cells, and

the virus. Susceptible tumor cells become infected by the oncolytic virus, and following successful viral replication within the infected cells, these cells lyse to give rise

to new viral particles. Innate immune cells, representing both macrophages and natural killer cells, become activated when they encounter the virus or viral antigens

on the infected cells, and subsequently target and kill viral particles and infected cells. The innate immune cells present viral and tumor antigens to CD8+ T cells,

which activate antiviral and antitumor T cells. Antiviral T cells attack and kill infected cells and viral particles, and antitumor T cells target both infected and susceptible

tumor cells. The inset diagram displays the inhibition of adaptive immune cell activity by the PD-1/PD-L1 immune checkpoint.

cells is kIA = 1
24 cell−1h−1 from Mahasa et al. (2017), and we

estimate a killing rate of infected tumor cells by innate immune
cells with kI = 0.02 cell−1h−1. We estimate this value based on
the assumption that T cells primarily target infected cells, while
innate immune cells primarily target the virus itself, and thus the
innate immune-mediated killing rate should be smaller than the
adaptive immune-mediated killing rate of infected cells.

dTI

dt
= βTsV

︸ ︷︷ ︸

(2a) Viral
Infection

− δTTI
︸︷︷︸

(2b) Viral
lysis

− kITI
Z

hI + Z
︸ ︷︷ ︸

(2c) Innate killing

− kTAYT
TI

hI + TI
︸ ︷︷ ︸

(2d) Antitumor
adaptive killing

− kIAYV
TI

hI + TI
︸ ︷︷ ︸

(2e) Antiviral
adaptive killing

(2)

Equation (3) models the virus population, with term (3a)
representing the addition of new viral particles that are released
when an infected tumor cell lyses. The parameter bT denotes
the viral burst size released from each infected cell, which we
assume to be 50 viral particles per cell, the estimated burst size

for HSV, from Friedman et al. (2006). The term kVZVZ represents
consumption of the virus by innate immune cells at rate kVZ .
We estimate a baseline value for kVZ and use the values for the
rate at which primed innate immune cells consume a pathogen
from Reynolds et al. (2006), and the mean rate of phagocytosis by
macrophages in the presence of an unlimited supply of targets,
from Branwood et al. (1992), to dictate a feasible range for kVZ .
The term (3c) represents viral clearance by antiviral adaptive
immune cells. We estimate that the adaptive immune-mediated
killing rate of the virus kVA << kIA, stemming from our
assumption that the innate immune cells have a larger impact
than adaptive immune cells on the clearance of the virus itself.
The final term (3d), corresponds to clearance of the viral particles,
resulting from local non-specific immune cells in the tumor
region.We use clearance rateω = 0.025 h−1 from Friedman et al.
(2006), corresponding to a half-life of about 1.15 days.

dV

dt
= bTδTTI

︸ ︷︷ ︸

(3a) Viral
burst

− kVZVZ
︸ ︷︷ ︸

(3b) Innate
killing

− kVAVYV
︸ ︷︷ ︸

(3c) Adaptive
killing

− ωV
︸︷︷︸

(3d) Natural
clearance

(3)
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TABLE 2 | Model parameters.

Parameter Description Baseline Range References

1 rt Tumor cell growth rate 0.0192 h−1 0.005–0.05 Friedman et al., 2006

2 CT Tumor cell carrying capacity 5.157× 108 cells 107 − 109 Fit from Linsenmann et al., 2019

3 β Viral infection rate 2.5× 10−9 pfu−1h−1 2.5× 10−13 − 2.5× 10−7 Okamoto et al., 2014, Est.

4 δT Death rate of infected tumor cells 1
18 h−1 1/48− 1/9 Friedman et al., 2006

5 ω Viral clearance rate 0.025 h−1 0.001–1 Friedman et al., 2006

6 bT Burst size of infected cells 50 pfu/cell 10–1,350 Friedman et al., 2006

7 aZ Rate of infected cell-mediated proliferation of innate immune

cells

2.4× 10−6 cell−1h−1 2.4× 10−8 − 2.4× 10−4 Estim.

8 aZV Virus-mediated activation rate of resting innate immune cells 0.1 pfu−1h−1 2.4× 10−4 − 0.2 Reynolds et al., 2006

9 δZ Death rate of innate immune cells 0.008 h−1 5× 10−4 − 1/12 Eftimie and Eftimie, 2018

10 δYT Death rate of tumor-specific adaptive immune cells 3.75× 10−4 h−1 0.001− 0.0074 Banerjee et al., 2015; Mahasa

et al., 2017

11 δYV Death rate of virus-specific adaptive immune cells 5.54× 10−3 h−1 0.001–0.01 Mahasa et al., 2017

12 kI Killing rate of infected cells by innate immune cells 0.02 cell−1h−1 0.001–0.1 Estim.

13 kVZ Killing rate of virions by innate immune cells 0.005 cell−1h−1 0.001− 2 Est., Reynolds et al., 2006

14 kTA Killing rate of tumor cells by tumor-specific adaptive immune

cells

1
24 cell−1h−1 0.0004–0.2 Mahasa et al., 2017

15 kIA Killing rate of infected cells by virus-specific adaptive immune

cells

1
24 cell−1h−1 0.0004–0.2 Mahasa et al., 2017

16 kVA Killing rate of virions by virus-specific adaptive immune cells 10−5 cell−1h−1 10−6 − 10−3 Estim.

17 aTZ Activation rate of tumor-specific adaptive immune cells via

innate immune cells

0.025 h−1 10−3 − 0.1 Estim.

18 aVZ Activation rate of virus-specific adaptive immune cells via

innate immune cells

0.025 h−1 10−3 − 0.1 Estim.

19 aAT Rate of tumor cell-mediated proliferation of tumor-specific

adaptive immune cells

0.0016 cell−1h−1 10−5 − 10−1 Mahasa et al., 2017

20 aAI Rate of infected cell-mediated proliferation of virus-specific

adaptive immune cells

0.025 cell−1h−1 10−5 − 0.1042 Mahasa et al., 2017

21 hT Half-saturation constant of tumor cells 2.7× 104 cells 40–105 Banerjee et al., 2015; Mahasa

et al., 2017

22 hI Half-saturation constant of infected tumor cells 104 cells 20–5× 104 Banerjee et al., 2015, Est.
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FIGURE 2 | (A) Shows the logistic growth fit to murine GBM size data in the absence of treatment, from Linsenmann et al. (2019). We use this to determine the net
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Equation (4) models the activated innate immune cell
population, in which term (4a) represents the activation of
resting innate immune cells. The parameter sZR denotes the
rate at which new resting innate immune cells arrive in the
tumor microenvironment. These resting cells are activated by
interactions with the virus at rate aZV , and previously activated
innate immune cells recruit more resting innate immune cells at
rate aZZ, creating a positive feedback loop. We assume that the
activation of resting innate immune cells occurs quickly, and thus
use a quasi-steady state analysis for the resting innate immune
population to obtain term (4a), as shown in Reynolds et al.
(2006). We use baseline parameter values sZR = 0.08 cell h−1,
aZV = 0.1 pfu−1 h−1, and aZZ = 0.01 cell−1 h−1 from Reynolds
et al. (2006). Term (4b) represents increased proliferation of
innate immune cells, induced by interactions with infected cells.
Here we estimate aZ to be 2.4 × 10−6 cell−1h−1, or equivalently
5.7 × 10−5 per infected cell per day. This accounts for
macrophages and natural killer cells signaling to and recruiting
each other, resulting in an innate immune cell positive feedback
loop, with the assumption that activation occurs more commonly
by encountering the virus itself, rather than by encountering
infected cells. The term δZZ denotes natural innate immune cell
death, at rate δZ , which we assume to be δZ = 0.008 h−1 from
Eftimie and Eftimie (2018).

dZ

dt
=

sZR(aZZZ + aZVV)

δZR + aZZZ + aZVV
︸ ︷︷ ︸

(4a) Activation of resting
innate immune cells

+ aZTIZ
︸ ︷︷ ︸

(4b) Infected
cell-mediated
proliferation

− δZZ
︸︷︷︸

(4c)
Natural
death

(4)

Equation (5) models the tumor-specific adaptive immune
response. Term (5a) models the recruitment of T cells by innate
immune cells, in which we assume a recruitment rate of aTZ =

0.025 h−1. This is an ad hoc estimate, as this relationship
has not been well-explored previously, and we rely on the
parameter sensitivity analysis to consider a range of values for
this parameter. Term (5b) represents the proliferation of adaptive
T cells due to the presence of tumor antigens on both susceptible
and infected tumor cells. We assume a baseline value for the
tumor cell-mediated proliferation rate of tumor-specific adaptive
immune cells, aAT , of 0.0016 h−1, converted from the rate in
Mahasa et al. (2017). We again use Michaelis-Menten kinetics
with half-saturation constant hT to model the saturation of T
cell activity, due to the restrictive tumor architecture. The factor
F(P, L) factor represents suppression of T cell activation and
proliferation via the PD-1/PD-L1 checkpoint. P, L denote the
molar concentrations of PD-1 and PD-L1, respectively, expressed
by cells within the model. The molar concentrations are obtained
by first calculating the PD-1 expression on all T cells and the
PD-L1 expression on all T cells, tumor cells, and innate immune
cells, as outlined in the Appendix. As P and L increase, so
does the number of PD-1/PD-L1 complexes within the tumor
region. This increase corresponds to a smaller F(P, L) value,
modeling the inhibition of T cell activity. Term (5d) represents
natural death of antitumor T cells. We use δYT = 3.75 × 10−4

h−1 from Mahasa et al. (2017), corresponding to a half-life of
about 77 days.

dYT

dt
=












aTZZ
︸ ︷︷ ︸

(5a)
Activation
via innate

immune cells

+ aATYT
Ts + TI

hT + Ts + TI
︸ ︷︷ ︸

(5b) Tumor cell-
mediated proliferation












F(P, L)
︸ ︷︷ ︸

(5c) PD-1-
PD-L1

suppression

− δYTYT
︸ ︷︷ ︸

(5d) Natural
death

(5)

Equation (6) models the adaptive virus-specific immune
response. Term (6a) represents the recruitment of CD8+ T cells
by innate immune cells. We assume equal activation rates of
antitumor and antiviral T cells via innate immune cells, so we use
the same estimate, aVZ = aTZ = 0.025 h−1. Term (6b) represents
the proliferation of virus-specific CD8+ T cells resulting from
viral antigens expressed on infected cells, and we use infected
cell-mediated proliferation rate aAI = 0.025 cell−1h−1 from
Mahasa et al. (2017). Similarly to Equation (5), the factor
F(P, L) represents the PD-1/PD-L1-mediated inhibition of T cell
activation and proliferation. The parameter δYV denotes the rate
of natural cell death of antiviral T cells.We use δYV = 5.54×10−3

h−1 from Mahasa et al. (2017), corresponding to a half-life of
5.2 days.

dYV

dt
=













aVZZ
︸ ︷︷ ︸

(6a)
Activation
via innate

immune cells

+ aAIYV
TI

hI + TI
︸ ︷︷ ︸

(6b) Infected
cell-mediated
proliferation













F(P, L)
︸ ︷︷ ︸

(6c) PD-1-
PD-L1

suppression

− δYVYV
︸ ︷︷ ︸

(6d) Natural
death

(6)

dP

dt
= ρp

(
dYT

dt
+

dYV

dt

)

︸ ︷︷ ︸

(7a) PD-1 expression on
adaptive immune cells

, (7)

where dYT
dt

and dYV
dt

denote the expressions in Equations
(5) and (6), L denotes the molar concentration
of PD-L1 within the tumor microenvironment,
represented by

L = ρL(YT + YV + ǫT(Ts + TI)+ ǫZZ)
︸ ︷︷ ︸

PD-L1 expression on adaptive immune cells,
tumor cells, and innate immune cells

(8)

and

F(P, L) =
1

1+ PL/KYQ
(9)
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2.1.2. With Immune Checkpoint Inhibitor
When we incorporate the immune checkpoint inhibitor within
the model, the functional forms for Equations (1)–(6) remain
the same. For the equation describing PD-1 concentration, we
modify Equation (7) and replace with (10) below. We also add an
eighth equation, representing the change in molar concentration
of an anti-PD-1 immunotherapy drug, A, as follows:

dP

dt
=

P

YT + YV

(
dYT

dt
+

dYV

dt

)

︸ ︷︷ ︸

(8a) PD-1 expression on
adaptive immune cells

− µPAPA
︸ ︷︷ ︸

(8b) Blocking
by anti-PD-1

(10)

dA

dt
= A(t)

︸︷︷︸

(9a)
anti-PD-1
dosing

− µPAPA
︸ ︷︷ ︸

(9b) Depletion by
blocking PD-1

− δAA,
︸︷︷︸

(9c)
Natural
depletion

(11)

In the presence of anti-PD-1 therapy, Equation (10) models
the total number of free molecules of PD-1 within the tumor
microenvironment. In term (8a), we replace ρp from Equation
(7) with P/(YT + YV ), since the mass of PD-1 changes when the
drug binds to it. Hence the ratio between the mass of a PD-1
molecule and the mass of a T cell does not remain constant in the
presence of the anti-PD-1 drug. Term (8b) models the binding
of the drug to PD-1 at rate µPA, thereby blocking the PD-1 from
forming a complex with PD-L1.

In Equation (11), A(t) represents the source of the anti-PD-1
drug, which is derived from pharmacokinetic data in section
2.2. Term (9b) models the depletion of the drug as it binds
to PD-1. Term (9c) represents the natural depletion of free
drug that has not bound to PD-1. We estimate the parameter
δA, the natural decay rate of anti-PD-1, to be 0.0019 h−1,
converted from the half-life of 15 days, published in Brahmer
et al. (2010). In our parameter sensitivity analysis, we vary δA in
the range 1.37 × 10−3 − 0.058 h−1, converted from the range
in Nikolopoulou et al. (2018). To estimate the drug-mediated
blocking rate of PD-1,µPA, we use a similar argument to one used
in Lai and Friedman (2017) to obtain µPA = 8.945 L/µmol/h.
See the Appendix for a full derivation of this parameter value.

2.2. Immune Checkpoint Parameter
Estimation
The function in terms (5c) and (6c) is defined in Equation
(9), with L given by (8). In the expression for L, the molar
concentration of PD-L1 in the tumor microenvironment, ρL,
denotes the molar concentration of PD-L1 per T cell. In our
simulations, we use ρL = 2.510 × 10−11µM. See Appendix

for the full derivation of this parameter value. To complete the
derivation of term (6c), we defineQ to be themolar concentration
of PD-1/PD-L1 complexes formed from the binding of PD-1 and
PD-L1, modeled by

P + L
αPL
−−⇀↽−−

δQ

Q,

where αPL, δQ are the association and dissociation rates of Q. As
in Lai and Friedman (2017) and Nikolopoulou et al. (2018), we
assume that the association and dissociation ofQ are fast (Mautea
et al., 2015), so applying a quasi-steady state argument, we can
approximate Q using the equation:

Q =
αPL

δQ
PL.

In Lai and Friedman (2017), they incorporate T cell inhibition via
Q in the T cell differential equation by multiplying the activation
terms by the following factor:

1

1+ Q/KTQ
.

They define KTQ = 1
2 Q̄ = 1

2
αPL
δQ

P̄L̄, where P̄, L̄ denote the steady

state quantities for P, L. Thus, we define KYQ = 1
2 P̄L̄ so that we

can rewrite the previous factor as

F(P, L) =
1

1+ PL/KYQ
.

We use KYQ = 1.296 × 10−9µM2, as determined by a process
outlined in the Appendix.

Equation (7) models the micromolar concentration of PD-1
(in µmol/L) within the tumor microenvironment in the absence
of anti-PD-1 treatment. PD-1 is expressed on T cells, so we can
represent P by

P = ρp(YT + YV ),

where ρp denotes the molar concentration of PD-1 per T cell.
In our simulations, we use ρp = 1.259 × 10−11µM. See the
Appendix for a full derivation of this parameter value. By
differentiating this equation with respect to t, we obtain the

equation shown for dP
dt
.

The approved flat dosage regimen for nivolumab is 240 mg
every 2 weeks. In Lee et al. (2018), they cite that the flat dosage
results in similar exposure to 3 mg/kg. The typical treatment
schedule consists of a single intravenous dose of 3 mg/kg
nivolumab, administered for 1 h, once every 2 weeks. We use
pharmacokinetic data from the Phase I study in Brahmer et al.
(2010) to relate the dosage, D, in mg/kg to plasma concentration
Cmax, in µg/mL. As shown in Figure 2B, we obtained the
following linear relationship:

Cmax(D) = 20D+ 9.2.

We convert this to µM units using the molar mass of nivolumab,
1.436×10−1 g/µmol (Wishart et al., 2017). Hence, Ĉmax, theµM
plasma concentration, is given by

Ĉmax(D) = Cmax(D)×
10−3 g*mL

µg*L

1.436× 10−1 g/µmol
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Thus,

Ĉmax(D) = 0.139D+ 0.064.

For simplicity, we use Ĉmax(3 mg/kg) = 0.481 µM as our baseline
estimate for A(t) during the hour following each anti-PD-1 dose.
Hence, for each time td at which anti-PD-1 is administered,

A(t) =

{

0.481 td ≤ t < td + 1

0 otherwise.

3. RESULTS

3.1. Oncolytic Viral Therapy Alone
First, we discuss our results for the model in the absence of an
immune checkpoint inhibitor, given by Equations (1)–(7).

3.1.1. Parameter Sensitivity Analysis
We perform a global parameter sensitivity analysis with OVT
alone, to simulate a virtual experimental trial with 300 mice,
each with distinct tumor and immune characteristics. We use
this analysis to identify the parameters that most significantly
contribute to treatment efficacy.We first determined a reasonable
range of values in which to vary each model parameter using
estimates in the literature when available, and otherwise
estimating based on available biological information, as shown
in Tables 2, 3. We performed the sensitivity analysis using
Latin hypercube sampling (LHS) and partial rank correlation
coefficient (PRCC) analysis (McKay et al., 1979). See the
Appendix for details describing this process.

We performed the global sensitivity analysis with four
different simulation endpoints, at t = 100, t = 300, t = 1, 000,
and t = 3, 000 h. Figure 3 depicts the PRCC for each
parameter and each endpoint, determined through this global
sensitivity analysis. In all cases, the parameter with the strongest
relationship to the final tumor size was β , the viral infection rate.
The tumor cell growth rate, rt , was another highly significant
parameter for t ≤ 300. However, on the longer time scale, when
t = 1, 000 or t = 3, 000, the tumor carrying capacity, CT , had a
more significant impact on the final tumor size than the growth
rate. The parameter kVZ , representing the innate immune-
mediated killing rate of virus, also gains some significance as the
simulation end time increases, but on a much smaller scale than
the viral infection rate and tumor carrying capacity.

We are particularly interested in the role that the immune
system plays in treatment success. In order to isolate this effect,
overshadowed by the impact of the viral infection and tumor
growth properties in the full sensitivity analysis, we perform
another sensitivity analysis, varying only the parameters directly
related to the innate immune response and fixing all other
parameters. This models a trial of mice with similar tumors,
treated by the same virus, but characterized by distinct innate
immune responses to the treatment. We found that the most
significant innate immune-related parameter on an intermediate
time-scale is the innate immune-mediated killing rate of virus,
kVZ . Using the notation P(x, t) to denote the PRCC between

the parameter x and the tumor size after t h, the PRCC for
kVZ was P(kVZ , 300) = 0.6591, indicating a strong direct
correlation between this parameter value and the susceptible
tumor population after 300 h. The left plot in Figure 4A displays
the tumor size for each simulation within the innate immune
sensitivity analysis with simulation endpoint t = 300 h, as a
function of the innate immune-mediated killing rate of virus,
kVZ . The second most significant parameter in this analysis
was the source of the innate immune cells, sZR, with PRCC
P(sZR, 300) = 0.3241, indicating a moderate direct relationship
to the post-treatment susceptible tumor population, shown in
Figure 4B. The PRCC between each remaining innate immune-
related parameters and the susceptible tumor population was
under 0.09.

We continued this investigation by isolating the parameters
directly related to the adaptive immune response and fixing all
other parameters, simulating an experimental trial of mice with
similar tumors and viral treatment, but characterized by distinct
adaptive immune responses to the treatment. When varying only
parameters related to the adaptive immune response, there was
very little variation in tumor size after 300 h for most parameter
sets. However, the parameter with the strongest correlation to
tumor size was the virus-specific adaptive immune-mediated
killing rate of virus, kVA, with a strong direct relationship,
indicated by P(kVA, 300) = 0.7961. Figure 5A displays the
susceptible tumor population as kVA varies, and we observe
that most simulations ended at a comparable high tumor size
level, but for very large values of kVA, this post-treatment tumor
size increases further, due to rapid killing of the virus by the
adaptive immune cells. The second most significant parameter
is the innate immune-mediated activation rate of virus-specific
adaptive immune cells, aVZ , with P(aVZ , 300) = 0.3128,
and the third most significant parameter is the rate of tumor
cell-mediated proliferation of tumor-specific adaptive immune
cells, aAT , which can be interpreted as the level of antigenicity
of the tumor. The PRCC between this parameter and the
tumor size after 300 h is P(aAT , 300) = −0.1228, indicating an
inverse relationship between antigenicity and the tumor size.
Although aAT does not have a strong correlation coefficient when
compared to the parameter kVA, Figure 5B shows that the only
simulations resulting in a reduced tumor size had high levels
of antigenicity. Thus, there seems to be an important range of
aAT that allows for more successful therapy results, making the
tumor antigenicity level potentially more interesting than the
adaptive immune-mediated killing rate of virus.

3.1.2. Treatment Dependence on Viral Infection Rate
We observed in the global sensitivity analysis that the
effectiveness of oncolytic viral therapy to treat GBM is highly
dependent on the viral infection rate. The infectivity of an
oncolytic virus is not an intrinsic property of the system; this
viral characteristic can be genetically modified via gene deletions,
so it is undoubtedly a parameter worthy of investigation. We
investigate the effect of the viral infectivity by fixing all other
parameters at their baseline level while varying only the viral
infection rate, β . Due to uncertainty regarding a biologically
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TABLE 3 | Parameters used in immune checkpoints.

Parameter Description Baseline Range References

23 KYQ Inhibition of T cells by PD-1/PD-L1 1.296× 10−9 (µM)2 10−10 − 10−8 Lai and Friedman, 2017, Est.

24 ρp Molar concentration of PD-1 per T cell 1.259× 10−11 µM 10−12 − 10−10 Nikolopoulou et al., 2018, Est.

25 ρL Molar concentration of PD-L1 per T cell 2.510× 10−11 µM 10−12 − 2× 10−10 Nikolopoulou et al., 2018, Est.

26 ǫT Expression of PD-L1 on tumor cells vs. T cells 10 1–50 Estim.

27 ǫZ Expression of PD-L1 on innate immune cells vs. T cells 10 1–50 Estim.

28 sZR Source of the resting innate immune cells 0.08 cell h−1 0.005− 0.2 Reynolds et al., 2006

29 aZZ Activation of resting innate immune cells by previously

activated innate immune cells

0.01 cell−1h−1 0.005− 0.2 Reynolds et al., 2006

30 δZR Death rate of resting innate immune cells 0.12 cell−1h−1 0.069− 0.12 Reynolds et al., 2006

31 δA Decay rate of anti-PD-1 0.0019 h−1 1.37× 10−3 − 0.058 Brahmer et al., 2010;

Nikolopoulou et al., 2018

32 µPA Anti-PD-1 blocking rate of PD-1 8.945 L/µ mol/h 6.45− 2.73× 102 Lai and Friedman, 2017

achievable upper bound for viral infectivity, we let β vary in a
large range, for the purpose of identifying the level of infectivity
required for successful treatment. For each distinct β level, we
simulate the model until t = 3, 000, when all populations have
settled toward their steady state behavior. Figure 6 shows in
yellow that there is a clear threshold, β ≈ 4.9×10−8, above which
the tumor is eliminated through treatment, and below which
the tumor reaches its carrying capacity. There is little available
information about specific limitations for viable oncolytic viral
infection rates, so it may be the case that many oncolytic viruses
cannot feasibly reach this high level of infectivity.

We also investigate the degree to which this critical β

threshold changes as the immune landscape changes. To model
a tumor in a strong innate immune environment, we increase
the two most influential innate immune parameters, kVZ and
sZR, to the upper bounds of the ranges over which we vary
these parameters in the sensitivity analysis, i.e., to kVZ = 2
cell−1h−1 and sZR = 0.2 cell h−1. As β varies, the dotted
green line in Figure 6 shows that the strong innate immunity
prevents treatment success for all levels of viral infectivity, which
we hypothesize is due to the rapid innate immune-mediated
clearance of all viral particles.

It may also be the case that the oncolytic viral treatment is
administered to a tumor that elicits a strong adaptive immune
response. In order to test the benefit that the strong adaptive
immune response may confer to treatment response, we increase
the antigenicity parameter aAT , whose upper range yielded a
reduced tumor size in the sensitivity analysis, to 0.05 cell−1h−1.
As β varies, the dashed purple curve in Figure 6 shows that
the viral infection threshold shifts downward from the baseline
case, suggesting that in an environment with a strong adaptive
immune response, treatment can be effective with a less infectious
virus, due to the increase in tumor-mediated recruitment of
adaptive immune cells.

3.1.3. Innate Immune Suppression of OVT
In the previous subsection, we observe that on its own, a strong
innate immune response negatively impacts the tumor response
to OVT. However, intuition suggests that when paired with

a strong adaptive immune response, for a sufficiently strong
innate response, the innate immune cell recruitment of adaptive
immune cells could potentially outweigh the rapid clearance of
the virus. In Figure 7, we consider the tumor size after 300 h as
the source of innate immune cells, sZR varies. The curve in blue
shows a monotone increase in tumor size in the baseline case,
as sZR increases. The green curve shows the results in a tumor
microenvironment with a strong adaptive immune response,
modeled as before, with a high level of tumor antigenicity,
aAT = 0.05 cell−1h−1. In this case, the tumor size again increases
monotonically with sZR, albeit deviating to some extent from
the baseline case for large sZR values. The monotonic behavior
suggests that even when paired with a strong adaptive immune
response, the strong innate immune system is not beneficial to
OVT response. Hence, with a larger innate immune presence,
the faster recruitment of adaptive immune cells is not sufficient
to offset the rapid viral clearance from the innate immune cells.

However, in the absence of PD-1/PD-L1 immune suppression,
i.e., when F(P, L) = 1 in Equations (5), (6), we observe
the opposite trend for large sZR. The dashed yellow curve in
Figure 7 shows that eliminating the immune checkpoints in the
baseline case has essentially no effect on the treatment response,
but when paired with a strong adaptive immune response,
displayed in purple, the tumor size decreases for sufficiently
large sZR. Hence, without the PD-1/PD-L1 suppression of T-cell
activity, the faster recruitment of adaptive immune cells resulting
from a large innate immune presence, can yield more effective
treatment results. This suggests that for tumors with strong
adaptive immunity, combining OVT with immunotherapies that
inhibit the PD-1/PD-L1 checkpoint may improve treatment
efficacy. These observations motivated the inclusion of anti-PD-
1 immunotherapy in our model. We will discuss the results from
the combination therapy model in the following section.

3.2. Combination Therapy With Anti-PD-1
Next, we discuss our results for the model that includes both
oncolytic viral therapy and the immune checkpoint inhibitor,
anti-PD-1, described by Equations (1)–(6), (10), (11).

Frontiers in Physiology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 151

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Storey et al. Modeling OVT in GBM Treatment

Full parameter sensitivity analysis, without anti-PD-1
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FIGURE 3 | Parameter sensitivity analysis without anti-PD-1. Bar plot of the partial rank correlation coefficient between each model parameter and the susceptible

tumor population at the end of the simulation, shown for simulation end points at t = 100, t = 300, t = 1, 000, and t = 3, 000 h.

3.2.1. Parameter Sensitivity Analysis
We also perform a parameter sensitivity analysis with both
oncolytic viral therapy and anti-PD-1 immunotherapy, using
the method described in section 3.1.1, in order to identify
parameters that gain or lose significance with the combination
therapy, when compared to the sensitivity analysis with OVT
alone. Figure 8 displays the PRCC for each parameter in this
global sensitivity analysis. We will represent this PRCC by P̂

when it refers to the model with anti-PD-1. The most substantial
difference between this analysis and the analysis with OVT
alone relates to the parameter aAT , representing the level of
tumor antigenicity. With anti-PD-1, the PRCC between aAT and
tumor size after 1,000 h is P̂(aAT , 1, 000) = −0.4532, and after
3,000 h is P̂(aAT , 3, 000) = −0.4705, whereas with oncolytic
viral therapy alone, the corresponding PRCC values for aAT are

P(aAT , 1, 000) = −0.0411 andP(aAT , 3, 000) = −0.0316. Hence,
the parameter aAT has a much stronger correlation with post-
treatment tumor size when the tumor is treated with anti-PD-
1, suggesting that tumor antigenicity contributes significantly
more to the effectiveness of the combination therapy than to
the effectiveness of OVT alone. Otherwise, the viral infection
rate, β , is still the most significant parameter for simulation
end-time t ≤ 1, 000. For t = 3, 000, the parameter aAT
surpasses β , with P̂(aAT , 3, 000) = −0.4705 and P̂(β , 3, 000) =
−0.3071. We also note that the carrying capacity, CT , is much
less significant with anti-PD-1 than with OVT alone, suggesting
more effective treatment with the combination therapy, leading
to more frequent tumor size reduction or clearance.

Analogously to the previous section, we perform additional
sensitivity analyses, first varying only the parameters directly
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FIGURE 4 | Tumor size in innate immune sensitivity analysis. The tumor size (A) as a function of kVZ , the killing rate of the virus by innate immune cells, and (B) as a

function of sZR, the source of innate immune cells. We use t = 300 h as the endpoint for the innate sensitivity analysis. The PRCC between kVZ and the susceptible

tumor population is P (kVZ , 300) = 0.6591, and between sZR and the susceptible tumor population is P (sZR, 300) = 0.3241.
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FIGURE 5 | Tumor size in adaptive immune sensitivity analysis. The tumor size is shown (A) as a function of kVA, the killing rate of the virus by virus-specific adaptive

immune cells, and (B) as a function of aAT , the tumor-mediated proliferation of tumor-specific adaptive immune cells. We use t = 300 h as the endpoint for the

adaptive sensitivity analysis. The partial rank correlation coefficient (PRCC) between kVA and the susceptible tumor population is P (kVA, 300) = 0.7961, and between

aAT and the susceptible tumor population is P (aAT , 300) = −0.1228.

related to the innate immune response and fixing all other
parameters, and subsequently varying only the parameters
directly related to the adaptive immune response. In the innate
immune case, the results were very similar to those with OVT
alone, and we summarize these in the Appendix. Similarly to the
global parameter sensitivity analysis, when we vary only adaptive
immune-related parameters, the parameter aAT is much more
significant with anti-PD-1 than without this treatment. With
anti-PD-1, the PRCC is P̂(aAT , 300) = −0.3213, as compared
to P(aAT , 300) = −0.1228 with OVT alone. This is the second
most significant parameter in this analysis, surpassing the innate
immune-mediated activation rate of virus-specific adaptive

immune cells, aVZ , with P̂(aVZ , 300) = 0.2685. The most
significant parameter is again the adaptive immune-mediated
viral killing rate, kVA, with P̂(kVA, 300) = 0.6995, reduced from
the PRCC value without anti-PD-1 of P(kVA, 300) = 0.7961.
Although |P̂(aAT , 300)| is smaller than |P̂(kVA, 300)| in this
adaptive immune parameter sensitivity analysis, large values of
aAT seem to contribute to tumor clearance, as shown in Figure 9.
In contrast, the parameter kVA does not seem to contribute to a
reduction in tumor size, but rather, high values of kVA lead to
larger tumors. Hence, the tumor antigenicity level, aAT , seems to
be the most important adaptive immune-related parameter, with
respect to tumor size reduction and clearance when treated with
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FIGURE 6 | Long-term tumor size, after 3,000 h, as the viral infection rate, β

varies. The tumors were treated with a single oncolytic viral dose, and we

compare between a baseline tumor and a tumor with strong innate or a strong

adaptive immune system. In the strong innate case, kVZ = 2 and sZR = 0.2. In

the strong adaptive case, aAT = 0.05.

FIGURE 7 | Innate immunity tradeoff. We display the susceptible tumor

population after 300 h without anti-PD-1, as the source of innate immune

cells, sZR varies. We compare the baseline parameter regime with a stronger

adaptive immune response, given by aAT = 0.05, in the presence of

suppression of T-cell activity via the PD-1/PD-L1 pathway and also in the

absence of T cell suppression via the PD-1/PD-L1 pathway.

both anti-PD-1 and OVT. Compare Figure 9with Figure 5 to see
that the tumor reduction for large aAT is muchmore striking with
anti-PD-1 than we observed without anti-PD-1.

3.2.2. Treatment Dependence on Viral Infection Rate,

With Anti-PD-1
We determined in the global sensitivity analysis that the
effectiveness of OVT and anti-PD-1 immunotherapy to treat
GBM is dependent on the viral infection rate, but this dependence
is less severe with anti-PD-1 than without. We investigate this
further by varying only the viral infection rate, β , while fixing

all other parameters, and comparing the tumor size after 3,000
h. In Figure 10, the blue curve displays the susceptible tumor
population after treatment with anti-PD-1, with all parameters
outside of β at their baseline levels. In this case, there is a
larger viral infection range that will lead to tumor clearance,
as compared to the yellow curve showing the tumor size after
treatment with OVT alone. The threshold for tumor clearance
without anti-PD-1 is β = 4.9 × 10−8, whereas with anti-PD-1,
tumor clearance occurs for all β ≥ 2.5× 10−8, and 5× 10−10 <

β < 3.2 × 10−9 will likely also lead to tumor clearance. In this
range of β values, treatment success is highly sensitive to the
timing of the viral infection and to the timing of the immune
response. Hence, for 5 × 10−10 ≤ β ≤ 3.2 × 10−9, treatment
success is likely, but the treatment results are less predictable.

We also observe the sensitivity to infection and immune
response timing when varying the dosing of the virus. Figure 11
shows the difference between the cell and viral populations when
one viral dose is administered at t = 0, in 11(a) and 11(b), and
when one initial dose is followed 7 days later by a second viral
dose, in 11(c) and 11(d). In both cases, anti-PD-1 is administered
intravenously for 1 h, every 2 weeks. We observe that the
combination therapy results in tumor clearance when a single
viral dose is administered. Interestingly, when an additional viral
dose is administered 1 week after the first dose, the treatment
actually becomes ineffective, with the tumor rebounding to
its carrying capacity level. One possible explanation for this
phenomenon is that the administration of an additional viral dose
after stimulating an immune response can counteract treatment
progress by diverting the attention of the immune response from
the tumor alone to additional viral particles. The absence of a
viral oscillation in the simulation with two doses, in comparison
with the rapid viral oscillation just before 800 h in the single
dose case, suggests more active immune-mediated killing of the
virus when two doses are administered. It is also possible that
this effect may be the result of an increased innate immune
cell population, stemming from the second viral dose, which
in turn produces a larger concentration of PD-L1 within the
tumor microenvironment. This observation warrants follow-
up work, to experimentally study the effect of multiple viral
doses in combination with immune checkpoint inhibitors. The
discrepancy in tumor response in these two cases emphasizes the
sensitivity of the tumor response to viral and immune response
timing. Additionally it suggests that the primary role of the
oncolytic virus is its stimulation of the immune system, rather
than its cytotoxic effect on tumor cells.

We also consider treatment dependence on viral infection rate
as the immune landscape changes. In the case of a strong innate
immune response, simulated using kVZ = 2 and sZR = 0.2, there
is a range of large β values that lead to treatment success with
both anti-PD-1 and OVT, shown in red in Figure 10, in contrast
to no tumor size reduction for any β with OVT alone, shown
in green. However, the β range for tumor clearance with a strong
innate immune response is quite high, suggesting the rapid innate
immune-mediated clearance the virus prevents treatment success
unless the virus is infectious enough to persist until a sufficient
adaptive immune response has been initiated. Note that the
results for a strong adaptive immune response, treated with both
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Full parameter sensitivity analysis, with anti-PD-1
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FIGURE 8 | Parameter sensitivity analysis with anti-PD-1. Bar plot of PRCC values for each model parameter, shown for simulation end points at t = 100, t = 300,

t = 1, 000, and t = 3, 000 h.

OVT and anti-PD-1 immunotherapy, are not shown in the figure
because this case leads to eventual tumor clearance for all viral
infection rates. Hence, for any oncolytic virus, without the PD-
1/PD-L1 checkpoint suppression of adaptive immune activity, a
high level of tumor-mediated adaptive immune cell proliferation
is sufficient to successfully clear the tumor.

We find that in all cases, combining OVT with anti-PD-
1 decreases the viral infection rate threshold for effective
treatment, increasing the likelihood of developing an oncolytic
virus that is sufficiently infectious to successfully treat
murine GBM. However, a strong innate immune response
on its own makes the therapy less effective, so we next
investigate the dynamics that occur in a microenvironment
equipped with both strong innate and strong adaptive
immune responses.

3.2.3. Innate Immunity Tradeoff, With Anti-PD-1
Wefind in the previous sections that the source of innate immune
cells, sZR, is positively correlated with post-treatment tumor size,
and that increasing the innate immune cell presence in the tumor
microenvironment leads to an increase in the viral infection rate
threshold required for effective treatment. Hence, in a typical
tumor environment, the net contribution of the innate immune
cells to the combination therapy success is negative, due to their
role in viral clearance. In section 3.1.3, we determined that this
was the case with OVT alone, even as the strength of the adaptive
immune response increased.When the tumor is treated with both
OVT and anti-PD-1, Figure 12A shows the tumor size after 300
h as the source of innate immune cells, sZR varies, in the baseline
case and when paired with a strong adaptive immune response,
represented by an increased aAT . This figure is analogous for
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combination therapy to Figure 7 for OVT alone, and we observe
that for sufficiently large sZR, the tumor size actually reaches
a maximum and then declines as sZR increases. This behavior
confirms our hypothesis from the previousmodel that combining
OVT with anti-PD-1 treatment allows the antitumor immune
response to reach its full potential; the strong innate response,
combined with a strong adaptive immune response is sufficient

FIGURE 9 | Tumor size in adaptive immune sensitivity analysis with anti-PD-1,

as a function of aAT , the tumor-mediated proliferation of tumor-specific

adaptive immune cells. We use t = 300 h as the endpoint for the adaptive

sensitivity analysis. The PRCC between aAT and the susceptible tumor

population is P̂ (aAT , 300) = −0.3213.

to clear the tumor relatively quickly. Without anti-PD-1, such
a parameter regime would yield a larger tumor than in the
baseline case.

In Figure 12B, we consider the dynamics within the tumor
microenvironment on a longer time scale, until t = 1, 000 h,
as sZR varies. In this figure, all other parameters are set to their
baseline level, and we observe that there is a large range of
sZR that leads to eventual tumor clearance. There is one small
blip occurring around sZR = 4 × 10−4, in which the tumor
returns to carrying capacity, due to sensitivity to the timing of
the immune response; For small values of sZR, there are a few
discontinuities in the long-term tumor size, due to sensitivity to
the timing of the immune response. The tumor rebounds to its
carrying capacity when the innate immune population decline is
precisely timed to prevent an oscillation of the viral population,
driven by the bursting of infected cells. This viral oscillation is
required to stimulate a surge in adaptive immune activity that
ultimately clears the tumor. Outside of this small range, tumor
clearance occurs, except in the highest ranges of sZR, in which
we hypothesize the influx of innate immune cells clears the virus
too quickly.

Next we vary the strength of the innate immune response
and the adaptive immune response simultaneously. In Figure 13,
we display the parameter values in the sZR − aAT space that
yield post-treatment tumor clearance or recurrence to tumor
carrying capacity by t = 4, 000 h. Figure 13A shows the long-
term results when the tumor is treated with OVT alone, while
Figure 13B shows the results with both OVT and anti-PD-1
immunotherapy. With OVT alone, tumor clearance only occurs
for a very small range of large aAT values, i.e., when the tumor
is highly antigenic. After combining OVT with anti-PD-1, tumor
clearance occurs for a larger upper range of aAT , but for weak and

FIGURE 10 | The susceptible tumor population after 3,000 h as the viral infection rate, β varies. The susceptible population is shown both with and without anti-PD-1,

and we compare between a baseline tumor and a tumor with strong innate or a strong adaptive immune system. In the strong innate case, kVZ = 2 and sZR = 0.2. In

the strong adaptive case, aAT = 0.05.
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intermediate values of aAT , there are ranges of innate immune
levels leading to tumor clearance, interspersed with ranges
leading to tumor growth. This suggests a much more complex
relationship between the two facets of the immune system, when
exposed to both therapies. For large and small sZR values, the
tumor rebounds to its carrying capacity for all low-intermediate
values of aAT , confirming that the long-term behavior described
above for the baseline aAT is representative of the behavior
in the extreme sZR ranges as aAT decreases. Similarly to the
discontinuities seen in Figure 12B, for intermediate parameter
values there are a few irregular instances interspersed within
the blue clearance region, in which the innate immune response
timing precludes an essential viral oscillation, thus leading to
tumor rebound, rather than immune-mediated clearance of
the tumor. Note that in the uncolored regions, namely for
intermediate values of sZR and low values of aAT , the tumor

starts to shrink early on, but then slowly rebounds when the
adaptive immune populations begin to decline. At t = 4, 000,
the susceptible population falls between 4 × 108 and 5 × 108

for all simulations in this range, illustrated by a representative
simulation in Figure S3 in the Supplementary Material, and
eventually by about 105 h, the susceptible population falls within
0.1% of the carrying capacity.

Overall, we see that there is a significantly larger range of
aAT that makes the combination therapy effective, as compared
to OVT alone. Additionally, there are ranges of innate immune
strength that can be beneficial to the combination therapy,
yielding eventual tumor clearance, which we did not see in
the absence of anti-PD-1. The precise relationship between the
innate and adaptive immune response to OVT and anti-PD-
1 immunotherapy is still not well-understood, but our work
suggests there are parameters regimes in which these operate
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FIGURE 13 | Long-term behavior as innate and adaptive immune response vary, without and with anti-PD-1. We display parameter values in the sZR − aAT space that

yield post-treatment tumor clearance in blue, and recurrence to tumor carrying capacity in red. The figure on the left shows the results after a single oncolytic viral

dose is administered, while on the right, treatment included the initial viral dose, followed by a dose of anti-PD-1 every 2 weeks. All other parameters are set at their

baseline values. (A) Oncolytic virus only (B) Oncolytic virus and anti-PD-1.

in synergy, when the anti-PD-1 allows the antitumor adaptive
immune cells to be sufficiently active.

4. DISCUSSION

In this work, we first developed a model of GBM response
to OVT and the resulting response from innate and adaptive
immune cells. We parameterized the model using in vivo data
from murine GBM models and performed sensitivity analyses to
determine which parameters most significantly impact the tumor
response to treatment. In Friedman et al. (2006), they concluded
that a tumor cannot be eradicated by OVT unless the burst size is

large. We found a similar limiting threshold, but in our model,
this is a viral infection rate threshold, rather than burst size,
below which tumor eradication is not possible. The infection
rate is a modifiable viral feature, but effective oncolytic viral
treatment requires an infectivity level that may not be biologically
achievable. With a viral infection rate on the order of 10−9

pfu−1h−1, varying the strength of the adaptive immune response
does not significantly improve tumor response to OVT alone, but
it does increase the viral infection range under which the tumor
can be eliminated. We found that a stronger innate immune
response, driven primarily by an increase in the localization
of the innate immune cells and the innate immune-mediated
viral killing rate, leads to a less effective treatment, due to more
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rapid viral clearance by macrophages and natural killer cells.
Even when combined with a strong adaptive immune response,
the innate immune response has an antagonistic effect on OVT
efficacy. Our results suggest this is due to the limitations on T cell
productivity, imposed by the PD-1/PD-L1 immune checkpoints.

Thus, we chose to incorporate a second cancer treatment
within the model, via an immune checkpoint inhibitor, in order
to investigate the effect of this immunotherapy in combination
with OVT. In this case, the viral infection rate is still the
most significant parameter on the short-to-intermediate time
frame. However, the tumor antigenicity level is much more
significant when the tumor is treated with the combination
therapy than with OVT alone. This is indicative of the fact
that the adaptive immune system plays a much more significant
role in response to the combination therapy than to OVT
alone. Under the combination therapy, there is a larger viral
infectivity range under which the tumor can be eliminated,
increasing the possibility of developing a sufficiently infectious
virus to combine with anti-PD-1 to eliminate murine GBM.
However, there is a high degree of sensitivity to the timing of
viral infection and immune response, suggesting that subsequent
doses following an initial viral dose may interfere with the
stimulated immune response.

In addition, there is a much more complex relationship
between innate and adaptive immune cells in the presence of both
OVT and anti-PD-1; under some circumstances, when treating
a highly antigenic tumor, increasing the strength of the innate
immune response can improve treatment efficacy. Hence, on its
own, OVT is unlikely to effectively treat GBM, but combining
with anti-PD-1 can lead to successful treatment, particularly
when treating highly antigenic tumors. In such cases, a more
rapid innate immune response enhances, rather than counteracts,
the treatment. Our work builds upon Wodarz’ investigations
into oncolytic viral and adaptive immune interactions inWodarz
(2001), by determining innate immune conditions required for
effective viral treatment.

We supplement the study in Eftimie and Eftimie (2018),
which focused on the role of macrophages in response to OVT,
by combining this focus with the interactions between innate
and adaptive immune cells. With the inclusion of immune
checkpoints within our model, our results suggest that outside
of very extreme cases, tumor elimination is not possible with
OVT alone. However, when combining OVT with anti-PD-1,
in tumors below a certain antigenicity threshold, we confirm
Eftimie’s conclusion that tumor elimination strongly depends
on the total number of innate immune cells. For sufficiently
high levels of antigenicity, the influence of innate immune
activity diminishes. In the future, we would like to include
both M1 and M2 macrophages within our model framework
to determine whether this distinction affects our model results.

Our model suggests that it may be beneficial to perform testing
of immune cell levels within the tumor microenvironment
and of tumor antigenicity, in order to improve predictions
of treatment efficacy. Additionally, vaccinating the host
with tumor-specific antigen could help to enhance the
antitumor adaptive immune response, thereby improving
treatment outcomes.

A limitation of this model is that it is not spatially explicit,
so it does not account for the spatial distribution of various cell
types and the diffusion of the virus and anti-PD-1 drug. We
plan to extend this work by incorporating spatial heterogeneity
within the tumor, in order to investigate the degree to which
this heterogeneity impacts treatment efficacy. Additionally we
calibrate our model parameters using data from mouse models,
which prevents direct translation to human patients. However,
our work provides information that can be used to inform a
clinical trial. We would like to follow up this work by first
validating our computational predictions using experimental
mouse models, administering a combination of HSV and the
immunotherapy nivolumab to GBM in a range of immune
landscapes. Our work also suggests that investigating the
maximum level of tolerable infectivity for oncolytic viruses
would benefit GBM treatment development. Subsequently,
if the experiments confirm the necessary conditions and
dosing protocol that yield tumor control or elimination,
then this could provide the impetus for a clinical trial for
GBM patients.
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