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We review a theoretical, coarse-grained description for cardiomyocytes calcium

dynamics that is motivated by experiments on RyR channel dynamics and provides an

analogy to other spontaneously oscillating systems. We show how a minimal model, that

focuses on calcium channel and pump dynamics and kinetics, results in a single, easily

understood equation for spontaneous calcium oscillations (the Van-der-Pol equation). We

analyze experiments on isolated RyR channels to quantify how the channel dynamics

depends both on the local calcium concentration, as well as its temporal behavior

(“adaptation”). Our oscillator model analytically predicts the conditions for spontaneous

oscillations, their frequency and amplitude, and how each of those scale with the small

number of relevant parameters related to calcium channel and pump activity. The minimal

model is easily extended to include the effects of noise and external pacing (electrical or

mechanical). We show how our simple oscillator predicts and explains the experimental

observations of synchronization, “bursting” and reduction of apparent noise in the beating

dynamics of paced cells. Thus, our analogy and theoretical approach provides robust

predictions for the beating dynamics, and their biochemical and mechanical modulation.
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1. INTRODUCTION

The heart is an extraordinary organ. From several weeks after conception, and throughout its
entire life, the heart constantly beats, generating considerable stresses and strains on its tissues
and cells (Hill and Olson, 2012). The individual muscle cells (called cardiomyocytes) that comprise
the heart generate contractile forces (Engler et al., 2008; Hersch et al., 2013; Dasbiswas et al., 2015;
Nitsan et al., 2016) that translate to relatively large periodic deformations of the heart, i.e., beating.
Contraction of adult cardiac cells in tissue is highly regulated by pacemaker cells (Huxley, 1974;
Hill and Olson, 2012), which produce electrical impulses that are transmitted to cardiomyocytes,
signaling them to contract (Hill and Olson, 2012). The pacemaker cells, unlike adult cardiomyocyte
cells, show spontaneous contraction-relaxation cycles even in the absence of an external electrical
signal (Vinogradova et al., 2004, 2006; Maltsev and Lakatta, 2007). These cells beat at a relatively
fixed frequency, between 0.5 and 3Hz depending on the species (Kehat et al., 2001; Yang et al., 2002;
Majkut et al., 2013). We note that embryonic and neonatal cardiomyocytes also show spontaneous
beating, even when cultured as isolated cells (Engler et al., 2006; Tang et al., 2011; Nitsan et al.,
2016).

Cardiac contraction is driven by a rise in cytoplasmic calcium ion concentration ([Ca2+]) that
is coupled to the mechanical contractions of the heart cell (Bers, 2001, 2002). In muscle cells,
[Ca2+] in the cytoplasm is usually maintained at a relatively low concentration compared with
[Ca2+] outside the cell and the [Ca2+] in a membrane-enclosed organelle called the sarcoplasmic
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reticulum (SR) (Ibrahim et al., 2011). Oscillations in cytoplasmic
[Ca2+] are driven by the exchange of calcium ions between
the cytoplasm, the extracellular environment and the SR, which
is achieved by numerous types of ionic channels and pumps
embedded in the extracellular membrane and the SR (Eisner
et al., 2000; Bers, 2002; Reed et al., 2014). Activation of a cardiac
muscle cell is usually induced by fluctuations or changes in ion
channel and pump activity, which cause an influx of calcium
ions into the cytoplasm from either the extracellular environment
or the SR (Maltsev and Lakatta, 2007). Calcium RyR channels
embedded in the SR membrane (Bers, 2002) usually open and
close stochastically (with a probability heavily biased toward the
closed conformation), but when the calcium in the vicinity of
the SR binds to their cytoplasmic side, it forces a conformational
change that increases the opening probability (Bers, 2002; Fill
and Copello, 2002). Opened RyR channels release calcium stored
in the SR into the cytoplasm in a process known as calcium-
induced-calcium-release (CICR) (Bers, 2002). After a certain
amount of calcium is released, RyR channels revert to their
pre-bound dynamics, and ionic pumps restore the cytoplasmic
[Ca2+] to its baseline value (Huxley, 1974; Bers, 2002).

We focus here on the unique role of RyR channels in
the cytoplasmic [Ca2+] cycle, since recent studies have shown
that calcium ion oscillations in pacemaker cells can occur
independently of calcium entry across the surface membrane
(Vinogradova et al., 2004, 2006; Maltsev and Lakatta, 2007).
An important observation is that RyR channels show a time
dependent response to changes in Ca2+ concentration (see
Figure 1) (Valdivia et al., 1995). In these experiments, isolated
RyR channels were incorporated in a synthetic membrane, and
the Ca2+ on the “cytoplasmic” side was dynamically controlled
externally with high precision. When [Ca2+] was varied slowly
(with a time scale of ∼10 s), the opening probability of the
channel followed the instantaneous [Ca2+], in what is referred to
in the physics literature as an “adiabatic process” (Risken, 1984)
(see Figure 1A). However, when Ca2+ was rapidly increased
and held constant (a “step function” increase), the opening
probability showed an “adaptive” response, an initial sharp
increase (overshoot) followed by an exponential relaxation to
a steady-state value, with a typical time-scale of ∼ 100 ms
(Valdivia et al., 1995) (see Figure 1B). This response suggests that
the channel dynamics depends not only on the instantaneous
calcium concentration, but also on the rate at which it changes.
The adaptive response (along with calcium pump activity) turns
out to be a crucial component in the generation of spontaneous
calcium oscillations (Cohen and Safran, 2019).

2. MINIMAL MODEL OF CALCIUM
DYNAMICS

Previous models of calcium dynamics (Dupont et al., 1991;
Wilders et al., 1991; Atri et al., 1993; Tang and Othmer, 1994;
Keizer and Levine, 1996; Jafri et al., 1998; Höfer, 1999; Sneyd
et al., 2017) focus on the short time, molecular details of the
coupled, multi-component kinetic processes that underlie [Ca2+]
oscillations. A key feature of many of those models are slow

regulatory processes (Atri et al., 1993; Keizer and Levine, 1996;
Jafri et al., 1998; Sneyd et al., 2017). As we show below, these
effectively cause a time delay in the response of RyR-calcium
channels to changes in cytoplasmic [Ca2+]. While these models
can numerically reproduce many of the features of calcium
oscillations, it is difficult to obtain intuition as to why myocytes
can spontaneously beat in the first place, and how the onset
and frequency of beating scale with the characteristic biophysical
rates of the system. In contrast, we have recently shown that a
minimal model that accounts only for the adaptive RyR dynamics
coupled to calcium pump activity (Cohen and Safran, 2019)
predicts, in a simple manner, spontaneous calcium oscillations
(see Figure 2 for schematic representation). As we review below,
these dynamics can be mapped onto a single oscillator equation,
with coarse-grained parameters that effectively encapsulate the
microscopic dynamics.

The model focuses on the two most relevant degrees of
freedom, the opening probability of the RyR channel [denoted
by P(t), with an average value P̄], and the cytoplasmic [Ca2+]
concentration [denoted by C(t) with an average value C̄].
The average [Ca2+] concentration reflects a kinetic balance of
channels that increase cytoplasmic [Ca2+], and active pumps
that remove calcium from the cytoplasm (to the SR and or
elsewhere). Note that the average [Ca2+] concentration can
include contributions from an influx of calcium from outside of
the cell (via channel activity, or thermal fluctuations), but these
are not necessary to generate spontaneous oscillations [as also
shown by experimental studies (Vinogradova et al., 2004, 2006;
Maltsev and Lakatta, 2007)]. The dynamics of the RyR channels
are written in the most general form as:

Ṗ = R+[C] (1− P)− R−[C] P (1)

where R±[C] are opening and closing rate of the channel that
depend on [Ca2+] in a general manner. These rates are much
faster [∼100 Hz (Jafri et al., 1998; Fill and Gillespie, 2018)] than
the typical timescale of [Ca2+] oscillations (∼1 Hz). This allows
us to expand Equation (1) around steady-state, and to integrate it
over time. The result is an expression for the deviations of P from
its average p = (P − P̄), as a function of the deviation of [Ca2+]
from its average value c = (C − C̄) :

p(t) ≈ αC̄ c(t)+ β

∫ t

−∞
ċ(t′′)e−H(t−t′′)dt′′ (2)

The first term in the right-hand-side of Equation (2) accounts
for the response of the RyR channel to changes in [Ca2+]
concentration relative to steady-state, with a proportionality
constant α that reflects the changes of the rates R± with
[Ca2+] around steady-state. The second term accounts for the
“adaptive” response of the channel to changes in the [Ca2+]
concentration, with amagnitude proportional to β that quantifies
the overshoot in the channel response to fast changes in the
[Ca2+] concentration. Equation (2) encapsulates the “adaptive”
response observed in experiments (Valdivia et al., 1995). When
[Ca2+] is slowly varied on the cytoplasmic side of the channel
(ċ ≪ 1), the first term dominates, and the opening probability
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follows the instantaneous [Ca2+] concentration (an “adiabatic”
change—see Figure 1A). However, if [Ca2+] is varied quickly
(ċ ≫ 1), the opening probability overshoots by a factor β , and
then slowly relaxes to its “adiabatic” value with a typical rate
H ∼ 10 Hz (Valdivia et al., 1995) (see Figure 1B). The “adaptive”
RyR response to calcium than enters into the kinetic equation for
cytoplasmic [Ca2+]:

Ċ = Jp[C] P(t)− K C(t) (3)

The first term on the right-hand-side accounts for the calcium
released from the SR into the cytoplasm, where Jp[C] is the
calcium current through the open RyR channels which is in
general also a function of cytoplasmic [Ca2+] (Bers, 2002).
The second term accounts for the various process [SERCA
pumps, membrane bound Na+–Ca2+ pumps and mitochondrial
Ca2+ uniports activity (Bers, 2002)] that work to return [Ca2+]
to its steady-state concentration, with K the coarse-grained,
effective pump-rate at which calcium is restored. Note that since
calcium is pumped to the cellular environment, or back into

the SR, K represents an active process that works against the
concentration gradient and as such, requires energy in the form
of ATP hydrolysis (Eisner et al., 2000; Bers, 2002). Expanding
Equation (3) again, around steady-state, inserting Equation (2)
for the RyR dynamics and utilizing again the separation of time
scales between the adaptive response (H ∼ 10 Hz) and the
timescale of [Ca2+] variation (∼1 Hz), allows us to derive a single
equation for the [Ca2+] dynamics (Cohen and Safran, 2019):

m∗c̈+ η∗ ċ+ Ŵ c2ċ+ κc = 0 (4)

with the coarse-grained parameters derived from themicroscopic
dynamics:

m∗ =
β J̄

H2
, η∗ =

(

1−
β J̄

H

)

, κ = K(1− α),

Ŵ = γm∗H (5)

where J̄ is the average current through the channel at
steady-state (C̄) and the non-linear effect characterized by

FIGURE 1 | Isolated RyR channel opening probability P0 as a function of cytoplasmic calcium concentration Ca2+. (A) When the cytoplasmic calcium concentration

(top) was varied slowly (on a scale of ∼10 s), the RyR opening probability (bottom) was shown to follow the instantaneous [Ca2+]. (B) When the calcium concentration

(top) was increased rapidly (∼1 µs) and kept roughly constant afterwards, the RyR opening probability (bottom) displayed a rapid increase (overshoot, denoted by

β—orange arrow), followed by a slow relaxation (with typical rate of ∼10 Hz, denoted by H—blue arrow) to a new steady-state determined by the long time calcium

concentration (denoted by α—green arrow). Adapted from Valdivia et al. (1995). Reprinted with permission from AAAS.

FIGURE 2 | A schematic representation of calcium cycling between the cytoplasm (CP) and the sarcoplasmic reticulum (SR), according to the model presented in

Cohen and Safran (2019) and the main text. RyR channels (orange) embedded in the SR membrane stochastically switch between closed (right) and opened (middle)

conformation—with rates R±[C] that depend on cytoplasmic calcium C. Opened RyR release calcium to the cytoplasm with a current that, in principle, also depends

on cytoplasmic calcium Jp[C]. Calcium is restored to baseline concentrations via calcium pumps embedded in the SR (green, left), the mitochondria, and the cellular

membrane (not shown) with a “lumped” rate K. RyR “adaptive” response to calcium (see Equation 1) is marked by a green arrow.
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γ > 0, enters from the expansion of Jp[C] around steady-state.
This represents (Bers, 2002) the tendency of the current to
decrease with increasing [Ca2+] concentration (for more details
see Cohen and Safran, 2019).

Equation (4) is the famous Van-der Pol equation for a
non-linear, spontaneous oscillator (Guckenheimer, 1980), with
a characteristic frequency �c ≈

√
κ/m∗. To understand the

underlying physics, it is useful to draw an analogy to a classical
“spring and mass” system. Consider an object tethered to a wall
via a horizontal spring, placed on a frictionless surface, and
released from an initial position where the spring is stretched
beyond its equilibrium length. The force exerted by the spring
causes the object to accelerate toward the equilibrium distance.
When it passes that point, the object decelerates till it stops,
reverses direction, and continues in the opposite direction,
letting the cycle begin again. In short, the object overshoots
the equilibrium length of the spring in both the left and
right directions.

In a classical system, the first term in Equation (4) would
represent inertia—which is the tendency of an object to maintain
its velocity. Classical inertia is proportional to the mass of the
object, the larger the mass, the larger the overshoot of the
equilibrium point. In the chemical system of Equation (4)
the “effective mass” m∗ arises from the overshoot of the
steady-state concentration C̄ due to the delayed “adaptive”
response of RyR channels to [Ca2+]. Our model (Cohen and
Safran, 2019) based on Equations (1) and (3) predicts that
the overshot is proportional to the observed overshoot of
the opening probability, β and the channel current J̄. The
expression for the effective mass in Equation (5), predicts
that m∗ decreases as the rate of adaptation H increases. This
is because large H means that the [Ca2+] response quickly
returns to its “adiabatic” value so that the overshooting has
little effect.

The second term in Equation (4), proportional to η∗,
represents an effective, linear friction. In the classical system
friction is proportional to the velocity of the object, and always
oppose the motion of the object. Thus, in the presence of
friction, the oscillations of the mass decrease in amplitude as
time increases and the object asymptotically comes to rest at
the equilibrium length of the spring. Similarly, in the chemical
system the “effective friction” is proportional to the rate of change
of [Ca2+]. However, the “effective friction” can switch from
regular dissipation (η∗ > 0) to “negative dissipation” (η∗ < 0).
When the “effective friction” is positive (η∗ > 0), any oscillations
decay over time and the system effectively goes to its steady
state concentration at long times. On the other hand, if the
“effective friction” is negative (η∗ < 0), any change in the [Ca2+]
concentration is amplified by the friction, which would cause a
divergence in the [Ca2+] concentration as time increases. The
origin of the “negative friction” (as one can see from Equation 5)
is the same feedback effect that gives rise to the “effective mass.”
The increase is eventually saturated by higher order terms in
the friction (third term in Equation 4, ∼ Ŵ, see Appendix B
of Cohen and Safran, 2019 for one possible derivation), which
can be a combination of several microscopic effects (reduction of

[Ca2+] current with increasing cytoplasmic [Ca2+], inactivation
of RyR, variation of the adaptation rate etc.). Thus, given the right
conditions (β J̄ > H), the activation of RyR by [Ca2+] is enough
to destabilize the system.

Finally, in the classical system, the fourth term of
Equation (4) would represent the restoring force applied by
the spring which pulls the object toward the equilibrium
distance. This restoring force in our calcium system is
proportional to the activity of calcium pumps (K), with
a correction due to the “adiabatic” response of RyR to
[Ca2+] (α < 1). It is important to note that, unlike the
classical system, the steady-state around which the chemical
system oscillates is far from equilibrium (since there is
still a large concentration difference between the SR and
the cytoplasm). Moreover, the calcium pumps that work
to restore cytoplasmic [Ca2+] concentrations work against
this concentration gradient, and thus require constant input
of energy (in the form of ATP). Therefore, in contrast to
the classical “passive” oscillator, the chemical oscillator of
Equation (4) is inherently active. In the absence of pump
activity, thermodynamics predicts the system will equilibrate
with the [Ca2+] concentration in the SR and the cytoplasm
becoming equal.

While further experiments are required to evaluate the
parameters of the model, we can estimate those based on
previous models for cardiomyocyte oscillations. As discussed
above, the adaptation time of an RyR channel was measured
as ∼100 ms, which translates to H ∼ 10 Hz (Valdivia et al.,
1995). The average current through an RyR channel used in
previous models (Dupont et al., 1991; Tang and Othmer, 1994)
is on the order of J̄ ∼ 20 µM · s−1. The fact that isolated
cells can switch between relaxation and spontaneous oscillations
dynamics suggests that those are close to the critical transition
of η∗ = 0. Thus, for oscillating cells sufficiently close to
this transition (we take here as an example |η∗| = 0.1),
we estimate β ≈ 0.55 µM−1. We thus approximate the
effective mass as m∗ ≈ 0.1 s−2, which along with a pumping
rate K ∼ 1 s−1 (Dupont et al., 1991; Tang and Othmer,
1994), and α ≈ 0.2 (estimated from Valdivia et al., 1995)
yields an oscillation frequency �c ∼ 2.5 Hz, similar to the
frequencies observed in experiments (Tang et al., 2011; Nitsan
et al., 2016). Note that even further away from the transition to
spontaneous oscillations (β J̄/H≫1), the frequency of oscillations
is even lower.

The amplitude of oscillations in ourmodel scales as∼
√

η∗/Ŵ

(Cohen and Safran, 2019), which represents the combined effects
of both the linear and non-linear friction terms. For the observed
amplitudes of ∼5 µM around the steady-state (Dupont et al.,
1991; Tang and Othmer, 1994), (and for the case of |η∗| ∼
0.1, close to the transition), one can estimate the non-linear
saturation parameter as Ŵ ∼ 0.25 µM−2. Note that the
microscopic origin of the non-linearity can arise from several
different effects (such as saturation of current, direct inactivation
of the adaptation, calcium dependence of the adaptation time
etc.), and more experiments are required to distinguish between
these mechanisms.

Frontiers in Physiology | www.frontiersin.org 4 February 2020 | Volume 11 | Article 164

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Cohen and Safran Cardiomyocyte Oscillations—Lessons From Physics

3. ANALYTICAL PREDICTIONS OF THE
MODEL

3.1. Response to Periodic Perturbations
Our model which derives Equation (4) from the biophysics of
the system, provides an intuitive understanding of the physics of
spontaneous [Ca2+] oscillations, and how it relates to the kinetics
and dynamics of the currents to and from the SR. Moreover, it
predicts how the effective parameters (Equation 5) depend on
the channel and pump properties and thus, the conditions for
the transition from decaying to spontaneous oscillations (η∗ =
0), and the frequency close to this transition (�c ≈

√
κ/m∗)

(Cohen and Safran, 2019). If we add to Equation (4) an external
driving force, we can predicts the response of the system to
external perturbations. In the adult heart, [Ca2+] oscillations
in pacemaker cells effectively determine the heart’s beating rate
(Hill and Olson, 2012). These oscillations are externally paced
by an electrical signal from the brain, which can speed-up or
slow down the heart rate in response to oxygen and nutrient
demand throughout the body. Pacing spontaneous oscillations
is therefore physiologically important in healthy individuals, and
any dysfunction may lead to pathological disease (Brodde et al.,
1995; Eisner et al., 2000).

It was shown in several experiments that cardiomyocyte
beating can be paced electrically (Xia et al., 2000; Radisic et al.,
2004; Serena et al., 2009) or mechanically (Tang et al., 2011;
Nitsan et al., 2016; Viner et al., 2019). For electrical pacing,
the cell is subject to an external electrical field which causes
voltage-sensitive ion channels on the cell membrane (or the
SR) to open, allowing an influx of ions to the cytoplasm
(Berger et al., 1994). For mechanical stimulation, the cell is
subject to an oscillating mechanical force (Tang et al., 2011;
Nitsan et al., 2016; Viner et al., 2019), which can couple to
the cell membrane (or the SR), through integrin adhesions
(Peter et al., 2011), or directly affect actomyosin contractility.
Effectively, the mechanical deformation translates into a flux of
Ca2+ ions into the cytoplasm (either from the environment, or
from the SR).

Recent experiments have shown that purely mechanical
signals, can control the beating of cardiomyocytes (Tang et al.,
2011; Nitsan et al., 2016). In these measurements, nearby
neonatal cardiac cells, seeded ∼100 µm apart on an elastic gel,
synchronize their beating phase and frequency even without
direct contact (Tang et al., 2011; Nitsan et al., 2016). By
introducing (at similar distances) an inert probe that induced
periodic elastic deformations in the substrate, the beating
cells were entrained (i.e., synchronized their beating with the
deformation of the substrate). All this despite that the cell
and probe are not in direct physical contact, or coupled
electrically in any way (Nitsan et al., 2016) (see Figure 3).
Complete synchronization was observed for a range of frequency
differences between the spontaneous and probe frequency.
When the difference in frequencies becomes large enough, the
cells displays “bursting” behavior, where intermittent periods
of synchronized contraction and quiescence are observed.
Interestingly, the bursting regime is characterized by several beats
at the frequency of the probe, followed by a quiescent interval.

The overall duration of the combined beating and quiescence is
comparable to the inverse of the spontaneous beating frequency
of the cell.

To account for the effects of external electrical or mechanical
perturbations (e.g., the mechanical probe in Nitsan et al., 2016),
we supplement Equation (4) on the right-hand-side with external
periodic perturbations fc(t). We consider here the simple cosine-
like perturbation applied in the experiments (Nitsan et al.,
2016)—and add to the right-hand-side of Equation (4) a term
fc(t) = ap ∗ κ cos(�pt), where ap and �p are the amplitude
and frequency of the perturbations, respectively, and κ is a
constant scale factor so that fc(t) has the correct dimensions.
The periodic external perturbation can entrain (synchronize) the
spontaneous beating dynamics of the cell. This can be seen by
deriving from the “forced” version of Equation (4), an equation
for the dynamics of the beating phase φc(t), defined as difference
between the observed beating frequency and the frequency of the
perturbation �p (Cohen and Safran, 2018):

φ̇c = 1�
(

1− Q cos(φc)
)

, Q =
1

2

ap�
2
c

ac 1� �p
(6)

where we define the detuning1� = (�c−�p), the spontaneous
beating amplitude (in the absence of external pacing) ac =
2
√

η∗/Ŵ (Cohen and Safran, 2018), and the tuning parameter
Q. Equation (6) is the well-known result by Adler (1946) for
the synchronization of coupled electrical oscillators. Spontaneous
oscillations occur when the phase changes linearly in time with
the detuning 1� (i.e., φ̇c = 1�), which can only be achieved
in the limit of Q → 0 (very weak perturbations ap ≪ ac, or
very large detuning 1� ≫ 1, see the top panel of Figure 4A).
On the other hand, complete synchronization is achieved when
the phase becomes constant at long times (i.e., φ̇c → 0), which
means that the cell beats with the frequency of the probe �p.
This occurs whenever the tuning parameter Q becomes larger
than unity (i.e., Q > 1), which is the case for large enough probe
amplitudes (ap ≫ ac), or relatively small detuning (1� ≈ 0) (see
Figure 4C). Interestingly, when the tuning parameter is close
to its critical value of unity, but is still below the threshold of
entrainment (i.e., Q ≈ 1), the phase dynamics consist of step-
like increases in the beating phase, which translates to “bursting”
beating behavior where the cell intermittently switches between
beating with the pacing frequency and its spontaneous beating
frequencies. This results in a pattern of several beats with the
frequency of the probe, followed by short quiescence period,
consistent with the experimental observations (see Figure 4B).
Thus, the simple dynamics of the paced version of Equation (4)
can qualitatively account for the spontaneous, “bursting” and
paced dynamics observed in experiments.

3.2. Response to Noise
Equations (4) and (6) predict the onset of spontaneous
oscillations, and their dynamics when subjected to external
pacing in a deterministicmanner. However, the beating dynamics
of cardiac tissue is not completely deterministic. Irregularities
in the beating of the heart have been linked to cardiovascular
disease by numerous studies (Kjekshus, 1990; Gage et al., 2001;
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FIGURE 3 | Experimental entrainment of cardiomyocyte beating by a mechanical probe. Isolated cardiomyocytes (n = 30) seeded on an elastic substrate were subject

to mechanical pacing by an oscillating inert probe located ∼100 µm away from the paced cell. The probe introduced periodic deformations of the underlying

substrate with a frequency ωprobe. The cell beating frequency was measured before (ω0) and ∼15 min after (ωcell ) the pacing probe was activated. The scaled cellular

beating frequency (ωcell/ω0) was plotted vs. the scaled probe frequency (ωprobe/ωo) since ω0 varies between cells. Red dots represent full entrainment by the probe,

i.e., synchronization to the probe frequency (see top left figure, plotting the scaled fluorescent [Ca2+] signal F/F0 of a representative cell). Blue dots represent

“bursting” behavior, where the cell alternates between beating with the frequency of the probe ωprobe and quiescence (see top right figure). The time between

consecutive intervals of quiescence was comparable to ω−1
0 . Reprinted by permission from Springer: Springer Nature (Nitsan et al., 2016).

Benjamin et al., 2018). Arrhythmia (a broad term describing
different pathologies associated with increased, decreased, and
chaotic heart rate) has been shown to increase the risk of stroke
and heart failure (Kjekshus, 1990; Gage et al., 2001). It is therefore
crucial that the heart maintain a regular beating pattern to ensure
the health of an individual.

While it is reasonable to begin our understanding of the
regularity of beating by focusing on an isolated, spontaneously
beating cardiomyocyte, we note that single-cell beating dynamics
are observed to be more stochastic than those of the entire
heart organ (Zaniboni et al., 2000; Nitsan et al., 2016).
The stochasticity is manifested in temporal variability of
the mechanical stresses exerted by the cell (the amplitude
of beating) and of the time between consecutive beats
(or the frequency of beating). This variability represent
the cumulative contribution of many processes that affect
the beating, such as ATP availability, sarcomere structure
and alignment, the activity of calcium channels and pumps
and many other possible effects (Severs, 2000; Bers, 2002;
Kobayashi and Solaro, 2005; Kobirumaki-Shimozawa et al.,
2016). Thus, at long times, both the beating amplitude and
frequency fluctuate around average values that represents

the deterministic, “spontaneous” amplitude and frequency of
each cell.

While fluctuations in amplitude affect the maximal stress
exerted by an individual cardiomyocyte, these are usually small
(∼5%) compared to the average amplitude of contraction
(Domke et al., 1999; Nitsan et al., 2016). At the organ level, this
translates to a roughly constant volume of blood pumped with
each beating cycle. Thus, these fluctuations are less important
from a physiological point of view. However, fluctuations in
the beating frequency (or the time interval between consecutive
beats) can range from a few, to tens of percents over time (Domke
et al., 1999; Zaniboni et al., 2000; Nitsan et al., 2016). Unlike the
fluctuations in amplitude, these deviation can accumulate over
time, which translates to the heart cell “skipping” or “adding”
beats. These deviations may therefore help understand organ
level irregularities, such as arrhythmia.

Recent experiments on isolated, spontaneously beating
cardiomyocytes quantify the noise in beating, and its response
to external mechanical pacing (Viner et al., 2019). It was shown
that cells mechanically paced with amplitudes ap much lower
than those that cause the onset of entrainment (Q = 1, in
Equation 6) displayed an exponential reduction in the variance
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FIGURE 4 | An example of the time evolution of the phase predicted by the theoretical Equation (6) (top row), the resulting scaled oscillation in c(t) (middle row), and

the oscillations observed in experiments (bottom row). Here we fix the cell and probe frequency at �c = 2π , �p = 6π , respectively, and vary the amplitude of pacing to

control the value of Q. (A) Q = 0.2, below threshold of entrainment (Q = 1), the cell beats with its spontaneous frequency �c as indicated by the quasi-linear increase

in phase. Inset: comparison to linear slope (dashed) that shows large regions of slips and much smaller intervals of plateaus. (B) Q = 0.97 Intermittent periods of

entrainment (plateaus) followed by fast “phase-slip” events. This corresponds to the “bursting” behavior observed in experiments (bottom row). (C) Q = 2, above the

threshold of entrainment. The cell beats with the probe frequency �p. Top and middle rows adapted from Cohen and Safran (2018). Top and middle rows reprinted by

permission from Springer: Springer Nature (Cohen and Safran, 2018). Bottom row reprinted by permission from Springer: Springer Nature (Nitsan et al., 2016).

of their beating frequency distribution with the pacing amplitude
(Viner et al., 2019). This result demonstrates that even when
the pacing force is not strong enough to entrain the cell, the
introduction of even a weak, oscillating perturbation is enough
to increase coherence in the beating of cells (the cells still
beat with the spontaneous frequency �c, but with considerably
smaller fluctuations).

We have recently shown theoretically and analytically that the
reduction in apparent noise can be predicted from the simple
model of Equation (4), supplemented by the sum of both an
external pacing force [fc(t) defined above] and a stochastic noise
η(t). The noise term is taken to be Gaussian, with average
〈η(t)〉 = 0 and temporal correlations 〈η(t)η(t) = 2Dδ(t − t′)
(Cohen and Safran, 2018). The presence of stochastic noise
means that there is no deterministic solution and that one
must consider the probability distribution of the time dependent
[Ca2+] concentration. This effectively translated (Hanggi and
Riseborough, 1983; Cohen and Safran, 2018) into the probability
distribution of the beating phase P[φc]:

Ṗ = −
∂

∂φc
(α∗ cos(φc − β)P)+ D∗ ∂2P

∂φ2
c

(7)

with α∗ ∼ ap/ac a measure of the relative strength of pacing,
β ∼ 1� a measure of the phase shift due to the detuning (not to

be confused with the adaptation rate β of the previous section),
and D∗ ∼ D/(a2c�

4
c ) a measure of the magnitude of the noise-

induced fluctuations of the spontaneously beating amplitude and
frequency (i.e., the effective diffusion constant for the phase).
Note that in this treatment, we consider the pacing to be below
the threshold of entrainment (Q≪ 1). Thus, the beating phase in
this case is defined with respect to the spontaneous frequency �c

(and not that of the pacing force �p), and as such is confined to
the range 0 ≤ φc ≤ 2π .

Equation (7) describes a diffusion-like process of the phase φc,
but with a drift due to a periodic potential (Risken, 1984). While
Equation (7) seems intimidating at first, it can actually be easily
understood by examining the ratio α∗/D∗, which represents the
relative strength of the pacing force compared to the inherent
amplitude of the fluctuations. At long times (and given any
initial phase φ0) Equation (7) is expected to go to steady-state
(Ṗ → 0, P → Ps). In the absence of any external pacing
(α∗/D∗ → 0), the inherent noise in the system will cause the
phase φc to randomly diffuse over time, which means that at
very long times the steady-state probability density is flat. This
means that in steady-state the phase can take any value between
0 < φc < 2π with equal probability. However, when the
amplitude of the pacing force is increased (i.e., α∗/D∗ increases),
the probability density narrows, with an average around 〈φc〉 =
β + π/2 (see Figure 5). Note that a narrowing of the phase does
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FIGURE 5 | Stationary probability density Ps(φc) as a function of the shifted

phase (φc − β), for a fixed noise amplitude D∗ = 0.5 [s−1], spontaneous

frequency �c = 1 [rad · s−1] and pacing frequency �p = 1.5 [rad · s−1].

Different colors show different pacing amplitudes with α∗ = 0 (blue)

α∗ = 0.5 [s−1] (orange) and α∗ = 2[s−1] (green). Figure adapted by permission

from Springer: Springer Nature (Cohen and Safran, 2018).

not mean that the cell becomes entrained (i.e., that it beats with
the pacing frequency �p). The average beating frequency is still
fixed at �c, but the fluctuations around this frequency becomes
smaller as α∗/D∗ increases. Indeed, in the limit of strong pacing
α∗/D∗≫1 (but still below the threshold of entrainment, i.e.,Q≪
1), the probability density approaches an infinitely sharp delta
function (∼ δ(φc − β − π/2)), and we regain the deterministic
beating behavior of Equation (4) (with a small effect of the weak
pacing force).

4. CONCLUSION

We have demonstrated here the rich set of behaviors observed
in the dynamics of spontaneously beating, and paced isolated
cardiomyocytes can be captured by a minimal model derived
from calcium pumps and channels dynamics. This approach

allows for an intuitive understanding of spontaneous beating,
and how it reacts to external perturbations. Fundamental
understanding of the physics behind cardiomyocyte beating
can facilitate the design of better medical treatment in the
future. Drawing analogies to well-known physical systems, and
understanding how the coarse-grained observables (amplitude,
frequency, entrainment, fluctuations in beating) scale with
changes introduced to the underlying kinetics, are essential to
bridge the gap between the microscopic and the macroscopic
view of cardiac beating. The resulting theory is useful in
explaining why and how large-scale phenomena (spontaneous
beating, entrainment etc.) emerge in a robust manner from the
microscopic details. Future analysis should focus upon inter
channel coupling within a single cell, and the coupling of calcium
oscillations in neighboring cells (using our model as a basis) as a
first step to predicting tissue level behavior (Grosberg et al., 2011).
Extracting the essence of, and providing simple and testable
predictions to the phenomenon of cardiomyocyte beating is an
important step in deciphering the riddle of the beating heart.
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