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Background: In the poorly understood relationship between orthostatic hypotension
and falls, next to blood pressure (BP), baroreflex sensitivity (BRS) and cerebral
autoregulation (CAR) may be key measures. The posture- and movement dependency
of orthostatic hypotension requires continuous and unobtrusive monitoring. This may be
possible using simultaneous photoplethysmography (PPG), electrocardiography (ECG),
and near-infrared spectroscopy (NIRS) signal recordings, from which pulse wave velocity
(PWV; potentially useful for BP estimation), BRS and CAR can be derived. The PPG,
NIRS and PWV signal correlation with BP and BRS/CAR reliability and validity need to
be addressed.

Methods: In 34 healthy adults (mean age 25 years, inter quartile range 22–45; 10
female), wrist and finger PPG, ECG, bifrontal NIRS (oxygenated and deoxygenated
hemoglobin) and continuous BP were recorded during sit to stand and supine to stand
movements. Sixteen participants performed slow and rapid supine to stand movements;
eighteen other participants performed a 1-min squat movement. Pulse wave velocity
(PWV) was defined as the inverse of the ECG R-peak to PPG pulse delay; PPG, NIRS
and PWV signal correlation with BP as their Pearson correlations with mean arterial
pressure (MAP) within 30 s after the postural changes; BRS as inter beat interval drop
divided by systolic BP (SBP) drop during the postural changes; CAR as oxygenated
hemoglobin drop divided by MAP drop. BRS and CAR were separately computed using
measured and estimated (linear regression) BP. BRS/CAR reliability was defined by the
intra class correlation between repeats of the same postural change; validity as the
Pearson correlation between BRS/CAR values based on measured and estimated BP.

Results: The highest correlation with MAP was found for finger PPG and oxygenated
hemoglobin, ranging from 0.75–0.79 (sit to stand), 0.66–0.88 (supine to stand), and
0.82–0.94 (1-min squat). BRS and CAR reliability was highest during the different supine
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to stand movements, ranging from 0.17 – 0.49 (BRS) and 0.42-0.75 (CAR); validity was
highest during rapid supine to stand movements, 0.54 and 0.79 respectively.

Conclusion: PPG-ECG-NIRS recordings showed high correlation with BP and enabled
computation of reliable and valid BRS and CAR estimates, suggesting their potential for
continuous unobtrusive monitoring of orthostatic hypotension key measures.

Keywords: baroreceptor reflex, cerebral autoregulation, electrocardiography, near-infrared spectroscopy,
orthostatic hypotension

INTRODUCTION

Orthostatic hypotension (OH), defined as a blood pressure
(BP) drop of at least 20 mm Hg systolic and/or >10 mm
Hg diastolic after postural change (Freeman et al., 2011), is
highly prevalent in older adults (Cooke et al., 2013; Frewen
et al., 2014; Timmermans et al., 2018), whereas the effectiveness
of non-pharmacological interventions are limited (De Bruïne
et al., 2017). OH may be accompanied by clinical symptoms,
e.g., lightheadedness and dizziness (Juraschek et al., 2017,
2018), and is associated with poor clinical outcome such as
impaired physical performance (Pasma et al., 2014; de Bruïne
et al., 2018; Mol et al., 2018b), falls (Saedon et al., 2016;
Mol et al., 2018a), cognition (Iseli et al., 2019), cardiovascular
diseases (Verwoert et al., 2008; Ricci et al., 2015) and mortality
(Verwoert et al., 2008; Lagro et al., 2012; Rockwood et al.,
2012; Ricci et al., 2015; Frith et al., 2016). Sensitivity for the
diagnosis of OH is higher for continuous BP measurement
than for intermittent BP measurements after standing up,
and continuous BP measurement has shown to be stronger
associated with physical performance (Pasma et al., 2014;
de Bruïne et al., 2018). However, clinical orthostatic BP
measurements do not account for many of the symptoms
and falls patients experience at home, due to the time
varying and posture- and movement dependent nature of
orthostatic BP drop, resulting in a poor reproducibility of
the OH diagnosis (Frith, 2015). Furthermore, the baroreflex
(i.e., change in interval between heart beats as a response to
BP changes) and cerebral autoregulation (CAR, i.e., regulation
of cerebral blood flow during BP changes) are mechanisms
that potentially attenuate the clinical consequences of OH
and are therefore essential to understand the relationship
between OH and clinical outcome (James and Potter, 1999;
Mehagnoul-Schipper et al., 2000; Saint Martin et al., 2013;
Tarumi et al., 2014; Ziegler, 2018). BRS and CAR are not
addressed during regular clinical BP measurements (Mol
et al., 2018c; Zanotto et al., 2018). There is therefore a
need for continuous, unobtrusive, simultaneous assessment of
orthostatic BP, baroreflex sensitivity (BRS) and CAR, which
cannot be performed using the devices currently used in
clinical practice.

Elucidation of the relationship between OH and clinical
outcome (i.e., physical performance, cognitive performance and
falls) through continuous assessment of BP, BRS and CAR in the
home situation may be possible using a combination of non-
invasive measurements, encompassing photoplethysmography

(PPG), ECG and near-infrared spectroscopy (NIRS). PPG may
enable monitoring BP in superficial arteries, e.g., the radial
artery (wrist) or digital artery (finger). PPG amplitude was
reported to correlate with BP (Hennig and Patzak, 2013;
Lim et al., 2015; Gao et al., 2016; Sun et al., 2016; Ding
et al., 2017; Wang et al., 2018). When combined with
ECG, PPG can be used to compute pulse wave velocity
(PWV), a parameter reflecting both BP, arterial stiffness and
arterial vasoconstriction (Salvi, 2017). To assess CAR, cerebral
oxygenation measured using NIRS may be used as a proxy for
cerebral blood flow (Steiner et al., 2009; Kainerstorfer et al., 2015;
Mol et al., 2019).

Prerequisites for clinical application of the BP, BRS and CAR
monitor during postural changes are (a) correlation of PPG,
NIRS and derived PWV with BP after postural change, to enable
BP estimation, (b) good reliability and validity of BRS/CAR
estimates and (c) evidence for the potential additional value
of BRS estimates assessed during postural change compared to
conventional validated BRS measures assessed in rest. In the
present proof-of-concept study in a cohort of healthy adults we
will address these prerequisites during different types and speeds
of postural changes by calculating the correlations between
PPG, NIRS and PWV signals, and measured BP; intra class
correlation between repeats of postural changes; correlations
between BRS/CAR estimates based on estimated and measured
BP; and correlations between BRS assessed during postural
change and in rest.

MATERIALS AND METHODS

Thirty-four participants were recruited by oral and written
advertisement in a university teaching setting at the Radboud
University in Nijmegen, The Netherlands. Sixteen participants
were primarily recruited from university students (subgroup 1),
while 18 participants were primarily recruited from university
employees (subgroup 2). Participants were included if they were
younger than 65 years, and had no history of cardiovascular,
respiratory or neurological disorders resulting in impaired
functioning.

Ethics Statement
The study was performed in accordance with the Declaration of
Helsinki and approved by the Ethics Committee of the Faculty of
Science of the Radboud University in Nijmegen. All participants
signed informed consent.

Frontiers in Physiology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 168

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00168 March 2, 2020 Time: 17:26 # 3

Mol et al. Cardiovascular Responses to Postural Changes

Participant Characteristics
Information about age, height, weight, handedness, alcohol
usage, smoking habits and medication use was obtained from
all participants.

Instrumentation
Two PPG sensors were customized to measure synchronized
output signals with a sampling frequency of 1000 Hz and were
applied to the left radial artery (wrist) and digital artery (distal
digital finger). The left arm was placed in a sling to minimize
differences in height between the PPG measurement location and
the heart. A digital tilt meter was attached to the participants’
trunk to measure the angle relative to the horizontal plane
and to identify the start of postural change. Data recording
was performed using a customized application developed in
MATLAB R2017b (MathWorks, Natick, MA, United States).

Two PortaLite NIRS sensors (Artinis Medical Systems B.V.,
Elst, Netherlands; sampling frequency of 50 Hz) were applied
bilaterally to the forehead, approximately 2 cm above the
eyebrows. Differential pathway factors were estimated based on
wavelength and age (Scholkmann and Wolf, 2013). Oxygenated
hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) were
computed using the modified Lambert-Beer law (Kocsis et al.,
2006). Data recording was performed using Oyxsoft v3 (Artinis
Medical Systems B.V., Elst, Netherlands).

A 5-lead ECG and continuous BP and was measured
using a Finapres non-invasive hemodynamics monitor (Finapres
NOVA, Finapres Medical Systems, Amsterdam, Netherlands),
and applied to the left middle finger. This monitor includes a
module measuring the height of the finger relative to the heart to
enable reconstruction of BP at heart level from BP at finger level.

A common analog reference signal was imported into all
devices to enable off-line synchronization of the signals. The
reference signal consisted of a train of 16 pulses for each minute,
each pulse train coding the time from the start of the experiment
in minutes. Off-line synchronization and storage, and further
analysis of the signals was performed using MATLAB R2017b
(MathWorks, Natick, MA, United States).

Protocol
Participants were asked to void urine before start of the
experiment. Room temperature was kept between 20 and 23 ◦C.
Participants were stimulated to relax, instructed not to talk and to
limit movements not related to tasks.

To keep the total measurement duration per participant
within 2 h, each of the two recruited subgroups underwent
a different experimental protocol (Figure 1). Subgroup 1
performed the following postural changes: A (sit to stand, i.e.,
standing up from sitting position at the preferred speed of the
individuals), B (slow supine to stand, i.e., standing up from supine
position in approximately 10 s) and C (rapid supine to stand,
i.e., standing up from supine position in approximately 3 s).
Subgroup 2 performed postural changes A, D (supine to stand at
preferred speed), E (head up tilt, i.e., tilting from supine position
to 70-degree tilt in 15 s without use of leg muscles) and F (1-min
squat, i.e., an isometric leg exercise test increasing BP). Postural

changes A-E were preceded by a 5-min resting period [to reach
steady state of BP regulation (Frith, 2015)] and followed by a
3-min standing period.

All postural changes were performed in blocks of three repeats
per block. Only two repeats per block were performed for
postural change A and F in subgroup 2. The sequence of the
blocks was randomized to prevent structural influences from
preceding postural changes on following postural changes, except
for the 1-min squat blocks, which were performed at the end of
the protocol as these postural changes might induce fatigue.

Signal Quality Assessment
PPG, NIRS and BP signals were inspected visually for each repeat
of each postural change. Signals not showing a heartbeat for more
than 10 s during baseline (i.e., the 60 s before testing), more than
10 s in the first minute after the start of the test or more than 20 s
in minute two and three after the start of the test, were discarded.

Data Preprocessing
PPG signals were filtered using a 0.05–10 Hz Butterworth band
pass filter to compute PWV (Elgendi, 2012; Akdemir Akar et al.,
2013; Sun et al., 2016). The PPG, NIRS and BP signals were
resampled at 25 Hz. From these resampled signals, a standardized
version (i.e., subtraction of baseline mean and division by
baseline standard deviation) and a filtered version (using a 5-s
moving average filter) were computed.

Pulse Wave Velocity (PWV) Computation
Beat-to-beat PWV was computed using the ECG and the PPG
signals and defined as the inverse of the time between the
R-peak in the ECG to the peak in the first derivative of the
PPG signal. Detection of peaks in the first derivative in the
PPG signal was performed in two steps, to avoid detecting
peaks not corresponding to the upstroke of the PPG wave on
the one hand (i.e., a low specificity) and detecting no peaks at
all (i.e., a low sensitivity) on the other hand. In the first step,
a high specificity, low sensitivity PWV signal was computed,
using high peak detection thresholds (i.e., 3 standard deviations
of the surrounding 5 s of PPG signal). In the second step, a
high sensitivity, low specificity PWV signal was computed using
low peak detection thresholds (i.e., 1.5 standard deviations of
the surrounding 5 s of PPG signal). To compute PWV for as
many heartbeats as possible while preventing erroneous PWV
calculation, the PWV values in the high sensitivity, low specificity
signal exceeding the mean−3 SD or+5 SD of the high specificity,
low sensitivity signals were discarded and the remaining signal
was used for further analysis.

Signal Correlation With BP
PPG, NIRS, and PWV signal correlation with BP was defined as
their correlation with mean arterial pressure (MAP) within 30 s
after each postural change. Filtered signals (5 s moving average
window) were used as these were reported to show the most
clinically relevant representation of the BP data (van der Velde
et al., 2007). The signals were averaged over repeats.

Frontiers in Physiology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 168

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00168 March 2, 2020 Time: 17:26 # 4

Mol et al. Cardiovascular Responses to Postural Changes

FIGURE 1 | The experimental protocol for both subgroups (adapted from Mol et al., 2019). The symbols on the y-axis indicate (from top to bottom): active standing,
head-up tilt, sitting, supine, and squat position. Transitions shown as solid lines indicate preferred speed and dashed lines with small and wide gaps indicate rapid
and slow transitions, respectively.

Baroreflex Sensitivity (BRS) and Cerebral
Autoregulation (CAR)
BRS was defined as inter beat interval (IBI) drop divided by
systolic BP (SBP) drop within 1 min after postural change.
CAR was defined as O2Hb drop divided by MAP drop within
1 min after postural change. All computations were performed
using the 5-s moving average filtered signals. BRS and CAR
values exceeding five times the standard deviation of the other
measurements of the same postural change were discarded.

BRS and CAR were separately computed using measured BP
and estimated BP (Figure 2). BP (both SBP and MAP) estimation
was based on the finger PPG and performed for each participant,
postural change (except the 1-min squat) and repeat, by using
linear regression models with the PPG and BP signals in the
interval between 0 and 30 s as independent and dependent
variables, respectively. For a given repeat, PPG and BP signals
of the other available repeats of the same subject and postural
change were used to compute the regression coefficients. BP was
then estimated as: BP = β0 + β1∗PPG.

The following conventional validated BRS measures
were assessed in rest: sequence method BRS and baroreflex
effectiveness index (BEI) (Bertinieri et al., 1988; Di Rienzo
et al., 2001; Laude et al., 2008; Silva et al., 2019). Sequence
method BRS and BEI were computed based on the 5-min resting
epochs preceding the sit to stand movements, using the criteria
reported by Silva et al. (2019).

Statistical Analysis
Normally distributed continuous variables were presented
using a mean and standard deviation. Variables following
other distributions were presented using the median and
inter quartile range.

Signal correlation with BP was expressed using Pearson
correlation coefficients.

BRS and CAR reliability was defined as their two-way mixed
absolute single measure intra class correlation (ICC) between
repeats of the same postural change. ICCs between 0 – 0.40, 0.40 –
0.59, 0.60 – 0.74, and 0.75 – 1 were regarded as poor, fair, good
and excellent, respectively (Cicchetti, 1994).

BRS and CAR validity was defined as the Pearson
correlation between BRS/CAR estimates based on measured
and estimated BP.

The potential additional value of BRS estimates assessed
during postural change compared to conventional validated BRS
measures assessed in rest was expressed using their Pearson
correlations, lower correlations indicating higher potential
additional value.

RESULTS

Table 1 lists the participant characteristics. The median age of
the 34 included individuals was 25 years [inter quartile range
(IQR) 22–45; 10 female]. Median age of subgroup 1 and 2 was
22.5 years (IQR 21–24) and 37.5 years (26.5–56), respectively, and
the number of included female individuals was 4 and 6.

Signals
Signal Quality Assessment
After signal quality assessment, at least one repeat for each
postural change was available for 31/34 subjects. The proportion
of repeats showing good quality data was overall 329/355 (93%),
and ranged among postural changes from 31/36 (86%; 1-min
squat) to 57/59 (97%; head up tilt). The proportion of signals
discarded after visual quality inspection was 8.5% (wrist PPG),
4.9% (finger PPG), 1.3% (NIRS), and 0.6% (BP). Tables 2, 3
show the available number of repeats per postural change and
the number of repeats per signal discarded after data quality
assessment, respectively.

Signal Characteristics
Figure 3 shows the averaged signals during the sit to stand
movement and Supplementary Appendix A additionally shows
the responses to the supine to stand and head up tilt movements.
The signals showed a similar response to sit to stand and supine
to stand, and consisted of a temporary drop (BP, PPG, O2Hb, and
HHb) or increase (heart rate and PWV) within 30 s after standing
up, reaching a steady state at 60 s after standing up. The responses
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FIGURE 2 | Example computation of baroreflex sensitivity and cerebral autoregulation for the first repeat of supine to stand at preferred speed in one participant. All
signals are filtered using a 5-s moving average filter. The vertical dotted lines indicate the start of postural change, the horizontal dashed lines indicate baseline values
and the crosses indicate the lowest value after standing up. As indicated in the bottom panels, baroreflex sensitivity is computed as inter beat interval drop (E)
divided by the measured (A) or estimated (C) SBP drop. Similarly, cerebral autoregulation is computed as the cerebral oxygenation drop (F) divided by the measured
(B) or estimated (D) MAP drop. PPG, photoplethysmography; au, arbitrary units; SBP, systolic blood pressure; IBI, inter beat interval; O2Hb, cerebral oxygenated
hemoglobin. BRS, baroreflex sensitivity; CAR, cerebral autoregulation.

to head up tilt within 30 s were smaller than the responses to sit
to stand and supine to stand movements.

Figure 4 shows the averaged signals during and after a 1-min
squat movement. All signals, except HHb showed an increase
during squat. After standing up from squat position, wrist and
finger PPG, O2Hb and HHb and BP showed a sudden drop, heart
rate declined slowly and PWV signals increased to rise, reaching
a peak at 20–30 s after standing up and declining thereafter.
Signal characteristics (means, minima and maxima) after postural
changes and during and after the 1-min squat movement are
listed in Supplementary Appendices B, C.

Signal Correlation With BP
Figure 5 shows the PPG, NIRS and PWV signal
correlation with BP after postural change. Finger PPG

and oxygenated hemoglobin signals showed highest
signal correlation with BP, ranging from 0.75–0.79 (sit
to stand), 0.66–0.88 (supine to stand), and 0.82–0.94
(1-min squat).

Baroreflex Sensitivity and Cerebral
Autoregulation
Reliability and Validity
Figure 6 shows BRS and CAR reliability and validity.
BRS and CAR showed the highest ICC between repeats
during supine to stand movements, ranging from 0.17 –
0.49 (BRS) and 0.42-0.75 (CAR). Correlation between
BRS/CAR estimates based on measured and estimated BP
was highest during rapid supine to stand movements, 0.54 and
0.79 respectively.
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TABLE 1 | Participant characteristics, stratified by subgroups.

Characteristic N All (n = 34) Subgroup 1 (n = 16) Subgroup 2 (n = 18)

Age, years, median [IQR] 34 25 [22–45] 22.5 [21–24] 37.5 [26.5–56.0]

Male, n (%) 34 24 (70.6) 12 (75.0) 12 (66.7)

Height, m, median [IQR] 34 1.80 [1.72–1.85] 1.80 [1.75–1.86] 1.80 [1.67–1.85]

Weight, kg, median [IQR] 34 70.5 [65.8–75.0] 70.5 [67.3–74.8] 69.0 [63.8–76.5]

Right-handed, n (%) 34 29 (85.3) 16 (100) 13 (72.2)

Current smoking, n (%) 34 2 (5.9) 1 (6.3) 1 (5.5)

Excessive alcohol use, n (%)* 34 0 (0) 0 (0) 0 (0)

Medication use, n (%) 34 8† (23.5) 3 (18.8) 5 (27.7)

Resting HR, bpm, median [IQR] 34 71 [66 – 78] 71 [66–77] 71 [66–79]

Resting SBP, mmHg, median [IQR] 34 130 [123 – 140] 126 [122–140] 131 [126–145]

Resting DBP, mmHg, median [IQR] 34 82 [76–87] 79 [73–85] 83 [78–96]

Time needed for sit to stand, s, median [IQR] 34 7.0 [5.2–8.0] 6.6 [5.3–9.3] 7.0 [5.2–8.0]

Time needed for slow supine to stand, s, median [IQR] 16 15.6 [14.1–19.1] 15.6 [14.1–19.1] NA

Time needed for rapid supine to stand, s, median [IQR] 16 6.7 [5.7–8.7] 6.7 [5.7–8.7] NA

Time needed for supine to stand at preferred speed, s, median [IQR] 18 9.0 [6.8–11.4] NA 9.0 [6.8–11.4]

Time needed for head up tilt, s, median [IQR] 18 16.4 [16.1–17.4] NA 16.4 [16.1–17.4]

Resting HR, SBP, and DBP were computed as the baseline mean. IQR, interquartile range; SD, standard deviation; BMI, Body Mass Index; HR, Heart rate; bpm, beats
per minute; SBP, systolic blood pressure; DBP, diastolic blood pressure. *Excessive alcohol use is defined as >14 units per week for females and >21 units per week
for males. †Methylphenidate for attention deficit hyperactivity disorder (2 participants), terbutaline for asthma (2 participants), candesartan or hydrochlorothiazide for
hypertension (2 participants), escitalopram for a mood disorder (1 participant), desloratadine for pollen allergy (1 participant).

TABLE 2 | Data availability, repeats.

# Participants # Repeats
(# participants)

Repeats discarded*,
# repeats

(# participants)

Sit to stand 34 3 (16), 2 (18) 6 (5)

Slow supine to stand 16 3 5 (4)

Supine to stand at
preferred speed

18 3 4 (3)

Rapid supine to stand 16 3 4 (4)

Head up tilt 18 3 2 (1)

1-min squat 18 2 5 (3)

Data availability. Number of participants, number of repeats per participant and
availability of extra repeat performed by second observer. *Repeats discarded due
to technical problems affecting all signals such as problems with data storage or
loss of the reference signal needed for proper synchronization of the signals.

Potential Additional Value of BRS Estimates
Assessed During Postural Change
Figure 7 shows the comparison between BRS estimates assessed
during postural change and conventional validated BRS measures
assessed in rest. BRS assessed during sit to stand and head
up tilt was correlated with sequence BRS (r = 0.59 and 0.61,
respectively). Correlations between supine to stand movements
and sequence BRS in rest were low (r = −0.07 – 0.34). All
baroreflex measures showed a low correlation with baroreflex
effectiveness index (r =−0.33 – 0.35).

DISCUSSION

In this proof-of-concept study in a cohort of healthy adults we
found that combined PPG, ECG and NIRS signal recordings

TABLE 3 | Data availability, signals.

Wrist PPG Finger PPG NIRS BP

Sit to stand 8 (5) 4 (3) 0 0

Slow supine to stand 10 (5) 5 (2) 0 1 (1)

Supine to stand at preferred speed 1 (1) 2 (2) 0 0

Rapid supine to stand 8 (6) 3 (2) 2 (1) 1 (1)

Head up tilt 0 0 0 0

1-min squat 1 (1) 2 (2) 2 (2) 0

The table lists the number of discarded repeats per signal, stratified by test
condition. The values in parentheses indicates the number of participants for whom
one or more repeats per signals were discarded.

to estimate BP, baroreflex sensitivity (BRS) and cerebral
autoregulation (CAR) during various postural changes showed
high signal correlations with measured BP, particularly for
finger PPG and NIRS derived oxygenated hemoglobin
(correlations ranging from 0.66 to 0.94). Furthermore, we
found that BRS was of poor to fair reliability and CAR was
of fair to excellent reliability during the supine to stand
movements. Correlations between BRS/CAR estimates
based on estimated and measured BP were 0.54 and 0.79,
respectively. Correlations between BRS estimates assessed during
postural change and conventional validated BRS measures
assessed in rest were particularly low for supine to stand
movements, indicating the potential additional value of the
BRS estimates assessed during these postural changes. These
results suggest the potential clinical value of these techniques for
continuous and unobtrusive monitoring of BP, BRS and CAR as
key measures of OH.

To the best of our knowledge, this is the first study proposing
and assessing a non-invasive technique that might be used for
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FIGURE 3 | Average blood pressure, heart rate, photoplethysmography
(PPG), near infrared spectroscopy (NIRS) and pulse wave velocity (PWV)
during the sit to stand movement. All signals are unfiltered and normalized at
baseline. The red vertical line indicates the onset of the postural change. The
shaded areas indicate the standard deviation. The data represent 24 male
subjects and 10 female subjects. Basel. dev., signal deviation from mean
baseline; SBP, systolic blood pressure; DBP, diastolic blood pressure; O2Hb,
oxygenated hemoglobin; HHb, deoxygenated hemoglobin.

continuous monitoring of posture-related BP, BRS and CAR
in patients with OH. Results on sensitivity and reliability of
NIRS parameters in a subpopulation of this study (n = 15) were
published before (Mol et al., 2019). Other previous research
focused on specific aspects, such as PPG-based BP estimation
(Chen et al., 2012; Sun et al., 2016), cerebral oxygenation changes
during standing up (Mehagnoul-Schipper et al., 2000, 2001;
van Lieshout et al., 2001) and posture related PWV changes
(Foo and Lim, 2006), but never assessed a combined ambulatory
technique for BRS and CAR monitoring.

Signal Correlation With BP
The high correlation with BP found for finger PPG indicates that
this signal might be used for continuous BP estimation during
postural change. The high correlation of O2Hb with BP was
not expected, as O2Hb is not only determined by BP, but also
by CAR (Steiner et al., 2009; Kainerstorfer et al., 2015), which
may act as a high-pass filter (Tarumi and Zhang, 2018), and
cerebral microcirculation (Krakow et al., 2000). The results of the
present study indicate that BP is a relatively large contributor to
cerebral oxygenation.

Finger PWV correlated well with BP during the rapid supine
to stand movement, but not during other postural changes,
potentially due to the fact that BP drop is largest during
rapid supine to stand. However, PWV in theory also reflects
arterial stiffness and arterial vasoconstriction, which are of
interest in patients with OH (Salvi, 2017). The association of
PWV with arterial stiffness and arterial vasoconstriction was
not addressed in the present study, but should be investigated
in future studies by assessing the association of PWV with
carotid intima-media thickness, as a measure of vessel stiffness
(Koivistoinen et al., 2007; Torjesen et al., 2017; Ikonomidis
et al., 2019), and by measuring PWV during hand grip exercise,
which influences vascular sympathetic outflow and thereby
vasoconstriction (Kamiya et al., 2001; Jarvis et al., 2011). If PWV
can be demonstrated to be a good measure of vessel stiffness,
it can potentially be used to differentiate between impaired
baroreflex sensitivity from increased vessel stiffness and other
(e.g., neural) causes.

Baroreflex Sensitivity and Cerebral
Autoregulation
BRS reliability was rather low, which may imply that more than
three rapid supine to stand repetitions may be necessary to cancel
out noise. CAR reliability and validity was higher compared to
BRS reliability and validity, which may be explained by the many
factors (e.g., emotions, mood, respiration) that influence inter
beat interval (Fatisson et al., 2016), which is used to compute
BRS, but not CAR.

BRS and CAR showed highest validity when assessed during
rapid supine to stand movement, potentially because PPG-ECG-
NIRS signal to noise ratio is highest during this postural change.

BRS and CAR computation depends on a good BP estimation,
for which an accurate model is necessary. In this study, simple
linear regression models were used for to this end to provide
first evidence that BP can be estimated from finger PPG signals.
However, substantial inter- and intra-individual variation of the
regression betas was observed, which implies frequent calibration
is necessary to obtain accurate BP estimations. As this is
impractical for the goal of continuous estimation of BP, BRS and
CAR, more robust models should be developed to estimate BP
from PPG-ECG-NIRS data, which may also incorporate heart
rate and PWV signals. This could be performed by training neural
networks, warranting further research.

Correlations between BRS estimates assessed during postural
change and conventional validated BRS measures assessed in rest
were rather low, indicating the potential additional value of the
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FIGURE 4 | Average blood pressure, heart rate, photoplethysmography (PPG), near infrared spectroscopy (NIRS) and pulse wave velocity (PWV) during 1-min squat
movement. All signals are unfiltered and standardized at baseline. The red dotted vertical lines indicate the onset and end of 1-min squat movement. The shaded
areas indicate the standard deviation. The data represent 12 male subjects and 6 female subjects. N = 18. O2Hb, oxygenated hemoglobin; HHb, deoxygenated
hemoglobin.

FIGURE 5 | Signal correlation with blood pressure. Top panel: correlation with mean arterial pressure, evaluated over the first 30 s after postural change. All bars
indicate the median and error bars indicate the inter quartile range. The data represent 24 male subjects and 10 female subjects. N = 34 (sit to stand), n = 16 (slow
and rapid supine to stand) and n = 18 (supine to stand at preferred pace and head up tilt). Bottom panel: correlation with mean arterial pressure during and after
the 1-min squat movement. The data represent 12 male subjects and 6 female subjects (N = 18). HHb, deoxygenated hemoglobin; MAP, mean arterial pressure;
O2Hb, oxygenated hemoglobin; SBP, systolic blood pressure; SD, standard deviation; PPG, photoplethysmography; PWV, pulse wave velocity.
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FIGURE 6 | Baroreflex sensitivity and cerebral autoregulation. Reliability and validity for different postural changes. Reliability is shown for baroreflex sensitivity and
cerebral autoregulation as assessed using the measured and estimated blood pressure. Rapid supine to stand gives most valid measurements of baroreflex and
cerebral autoregulation. The data represent 24 male subjects and 10 female subjects. N = 34 (sit to stand), n = 16 (slow and rapid supine to stand), and n = 18
(supine to stand at preferred pace and head up tilt). BRS, baroreflex sensitivity; CAR, cerebral autoregulation; PPG, finger photoplethysmography.

BRS estimates assessed during these postural changes. The low
correlation may be explained by the non-linear nature of the
baroreflex, implying that a BP variation increase with a certain
factor is not necessarily followed by a change in inter beat interval
variation increase with the same factor (Di Rienzo et al., 2009).

In the present study, BRS was defined as the inter beat interval
drop divided by the SBP drop after standing up. The clinical value
of this BRS measure needs to be further established by addressing
its association with clinical phenotype, e.g., age, presence of
orthostatic symptoms, and physical and cognitive performance.
Furthermore, the underlying physiology should be elucidated
by simultaneous measurements of muscle sympathetic nerve
activity (Marchi et al., 2016). A proper functioning baroreflex
characterized by inter signal coupling of heart rate, BP and
muscle sympathetic nerve activity may be particularly related

to clinical phenotype (Barbic et al., 2019). Development of
barocontrol models is needed to further disentangle different
components contributing to the baroreflex (Porta et al., 2012).

As the NIRS-based measure of CAR used in the present study
may apart from cerebral blood flow also be influenced by cerebral
microcirculation, further external validation of this CAR measure
using cerebral blood flow measurements should be performed in
further research, as well as its association with clinical phenotype.

Accuracy of the BP Measurements Used
as a Gold Standard
In this study, continuously and non-invasively measured
peripheral BP was used to estimate central (aortic) BP, as
in other studies (Pinna et al., 2000; Dell’Oro et al., 2018;
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FIGURE 7 | Comparison between baroreflex measures. Bars in the top panel show the mean of each baroreflex measure, error bars indicating the standard
deviation and small circles the data points corresponding to individual subjects. The bottom panel shows the Pearson correlation coefficient of the correlation
between the different measures. Empty squares indicate that the two baroreflex measures were not available for the same individuals. BEI, baroreflex effectiveness
index; BRS, baroreflex sensitivity; HUT, head up tilt.

Fonkoue et al., 2019; Lázaro et al., 2019; Simpson et al., 2019;
Wakeham et al., 2019). Continuously and non-invasively
measured peripheral BP was demonstrated to give a good
approximation of intra-arterial radial BP in different clinical
populations (Pinna et al., 2000; Ameloot et al., 2014; Smolle et al.,
2015; Berkelmans et al., 2017).

BP drop after the head up tilt movement was smaller
compared BP drop after the active stand movements. This is
accordance with results reported in a previous study and may
be due to a temporary muscle artery vasodilation during active
standing up in contrast to passive tilt, decreasing BP (van Wijnen
et al., 2017). This effect counteracts the BP increasing effect of
muscle use during standing up through increased venous return

and seems to outweigh it in the present and a previous study
(van Wijnen et al., 2017).

Strength and Limitations
The strength of this study is that it systematically assesses
the PPG, NIRS, and PWV correlation with BP after postural
change and the reliability and validity of the derived BRS
and CAR estimates.

The generalizability of this study to the proposed target group
of older adults with OH is limited due to the young age of the
investigated population. Though the investigated population was
relatively healthy, some individuals in the investigated population
used drugs affecting the cardiovascular system. Together with the
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relative underrepresentation of female participants (29.4%), this
limits the representativeness of the results for healthy adults. The
difference in median age between the subgroups was rather large
due to recruitment differences, which limits the comparability
of the subgroups. This should be taken into account when
comparing the results from two postural changes executed by the
two different subgroups, e.g., the rapid supine to stand and supine
to stand at preferred speed movements.

The absence of cerebral blood flow measurements as a gold
standard for CAR measurements and the fact that 7% of the
trials had to be discarded during some repeats due to technical
problems or poor signal quality are limitations of this study.

Correlation of finger and wrist PPG with BP was computed
while the arm was kept at heart height using a sling, which
is a limitation for ambulatory applicability. Future experiments
should be independent of this design by correcting PPG based
BP estimations for the difference in height between heart and
PPG measurement site. This height difference therefore has to be
measured separately.

The currently proposed model to estimate BP based on finger
PPG is dependent on regular calibration of the data, which is an
issue to be addressed in further research.

Clinical Perspectives and Future
Directions
Clinical application of the PPG-ECG-NIRS monitor requires
several additional steps, i.e., making the separate sensors entirely
wireless, improving the BP estimation algorithms, making BP
estimation independent of finger height relative to the heart
and further validation of the BRS and CAR estimates in a
clinical setting. When these requirements are met, PPG-ECG-
NIRS could be applied in patients with impaired mobility or
falls, as suspected due to inadequate BP regulation. The PPG-
ECG-NIRS monitor should provide a personal risk profile of BP
regulation during standing up, which may enable clinicians to
personalize treatment, e.g., giving advice on lifestyle changes or
revising medication.

Further research should address the association of the
investigated parameters with healthy aging and the occurrence of
clinical orthostatic symptoms, mobility impairment and falls. It
should further address the external validity of the CAR estimates
using cerebral blood flow velocity measurements during postural
changes. More robust models should be developed to be able to
continuously monitor BP, BRS and CAR from PPG-ECG-NIRS
signal recordings without the need for frequent calibration.

CONCLUSION

PPG and NIRS signals correlated with BP in healthy adults,
enabling BP estimation. The BRS and CAR estimates derived
from the PPG-ECG-NIRS signals were reliable and valid
during supine to stand movements. This study provides
evidence of the potential additional value of BRS estimates
assessed during postural change compared to conventional
validated BRS measures assessed in rest. The results suggest
the potential clinical applicability of the PPG-ECG-NIRS
signal recordings for continuous unobtrusive monitoring of
BP, BRS, and CAR.
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