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The myocardium has an intrinsic ability to sense and respond to mechanical load
in order to adapt to physiological demands. Primary examples are the augmentation
of myocardial contractility in response to increased ventricular filling caused by either
increased venous return (Frank–Starling law) or aortic resistance to ejection (the Anrep
effect). Sustained mechanical overload, however, can induce pathological hypertrophy
and dysfunction, resulting in heart failure and arrhythmias. It has been proposed that
angiotensin II type 1 receptor (AT1R) and apelin receptor (APJ) are primary upstream
actors in this acute myocardial autoregulation as well as the chronic maladaptive
signaling program. These receptors are thought to have mechanosensing capacity
through activation of intracellular signaling via G proteins and/or the multifunctional
transducer protein, β-arrestin. Importantly, ligand and mechanical stimuli can selectively
activate different downstream signaling pathways to promote inotropic, cardioprotective
or cardiotoxic signaling. Studies to understand how AT1R and APJ integrate ligand
and mechanical stimuli to bias downstream signaling are an important and novel area
for the discovery of new therapeutics for heart failure. In this review, we provide an
up-to-date understanding of AT1R and APJ signaling pathways activated by ligand
versus mechanical stimuli, and their effects on inotropy and adaptive/maladaptive
hypertrophy. We also discuss the possibility of targeting these signaling pathways for
the development of novel heart failure therapeutics.

Keywords: angiotensin II, AT1R, apelin, APJ, β-arrestin, Frank–Starling law, Anrep effect, cardiac hypertrophy

INTRODUCTION

The working heart adjusts cardiac output to changes in hemodynamic load in order to adapt to
physiological demand. The first adaptation occurs immediately, on a beat-to-beat basis, after the
ventricle is dilated by increased inflow. The relationship between end-diastolic volume and cardiac
output, described by Ernest Henry Starling in a series of papers between 1912 and 1914, has been
called “Starling’s Law of the Heart” or the “Frank–Starling relationship” which explains how the
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heart adapts to change in mechanical load by adjusting its
contractile function (Katz Arnold, 2002). The main cellular
mechanism that underlies the Frank–Starling relationship is
enhanced myofilament sensitivity to Ca2+ at a longer sarcomere
length, commonly referred to as length-dependent activation
(Allen et al., 1974; de Tombe, 2003) (Figure 1, LDA). This
length-dependent activation is modulated by posttranslational
modification of myofilament proteins, such as cardiac troponin
I (cTnI) (Tachampa et al., 2007; Wijnker et al., 2014), myosin-
binding protein C (MyBPC) (Kumar et al., 2015), myosin
regulatory light chain (Toepfer et al., 2016; Breithaupt et al.,
2019) and titin (Hamdani et al., 2017). While the upstream
molecular mechanisms that induce myofilament modifications
and length-dependent activation had been poorly understood,
recent studies suggest the roles of G protein-coupled receptors
(GPCRs): angiotensin II type 1 receptor (AT1R) (Abraham
et al., 2016) and apelin receptor APJ (Peyronnet et al., 2017;
Parikh et al., 2018).

The myocardium has another autoregulatory mechanism to
gradually increase its contractility in the setting of increased
systemic resistance. Gleb Von Anrep first described in 1912
that the heart exhibits progressive increases in contractility in
response to left ventricular dilation induced by aortic clamping
in vivo (von Anrep, 1912). This “Anrep effect” had been
interpreted as secondary to a neurohormonal effect or increased
oxygen consumption due to the change in coronary perfusion
[known as the “Gregg phenomenon” (Gregg and Shipley,
1944)] until Stanley Sarnoff and his colleagues reproduced this
phenomenon in pressure/flow controlled isolated hearts and
defined it as an autoregulation of myocardium (Sarnoff et al.,
1960; Sarnoff and Mitchell, 1961). Subsequently, in isolated
ventricular muscle strips exposed to sudden myocardial stretch,
a gradual secondary increase in isometric/isotonic force was
observed to follow the initial rise in contractility induced by
the Frank–Starling mechanism (Parmley and Chuck, 1973). It
has since been proposed that this “Slow Force Response (SFR)”
(Figure 1, SFR) is the in vitro equivalent of the Anrep effect
(Alvarez et al., 1999). Unlike the Frank–Starling mechanism, SFR
is induced by a gradual increase in Ca2+ transient amplitude
(Allen and Kurihara, 1982; Kentish and Wrzosek, 1998) through
the activation of multiple intracellular components and ion
transporters (Cingolani et al., 2013). Notably, AT1R may control
this signaling pathway (Cingolani et al., 2013).

In response to sustained mechanical stress, the heart
undergoes hypertrophic enlargement characterized by an
increase in the size of individual cardiac myocytes. Although
cardiac hypertrophy can initially be a compensatory response
that temporarily augments and maintains cardiac output
along with the Frank–Starling mechanism and the Anrep
effect, prolonged hypertrophic stimuli can eventually lead
to decompensation, heart failure, and arrhythmia (Levy
et al., 1990; Ho et al., 1993). This pathological hypertrophy
is induced by the activation of GPCRs by ligand or stretch
stimulation, which in turn activates downstream signaling
pathways, including mitogen-activated protein kinase (MAPK),
protein kinase C (PKC), and calcineurin–nuclear factor of
activated T cells (NFAT), leading to myocyte hypertrophy

(Heineke and Molkentin, 2006). Candidates for control of this
mechano-transduction of hypertrophic signaling include AT1R
(Zou et al., 2004) and APJ (Scimia et al., 2012).

The GPCR family is critical both at the bench and bedside,
because the majority of current therapeutic drugs for heart
failure target GPCRs (Lefkowitz, 2004). An expanding area of
GPCR research is focused on the differential activation of G
protein or β-arrestin signaling pathway in a “biased” manner to
selectively promote cardiac beneficial pathways while preventing
stimulation of cardiotoxic pathways. This biased agonism is
achieved by ligands or mechanical stretch that can induce distinct
active receptor conformations that in turn selectively activate
only specific subsets of a given receptor (Figure 2) (Rakesh
et al., 2010; Wisler et al., 2014). β-arrestin is a multifunctional
scaffolding protein that desensitizes ligand-stimulated GPCRs
but also can stimulate other signaling pathways distinct from G
protein-dependent signaling (Reiter et al., 2012). Downstream
of AT1R, chronic G protein-dependent signaling is associated
with adverse outcomes, while β-arrestin-dependent signaling
is considered beneficial for heart failure (Kim et al., 2012).
Importantly, mechanical stress has been proposed to activate
both G protein- and β-arrestin-dependent AT1R signaling
pathways (Zou et al., 2004; Rakesh et al., 2010). In the APJ
signaling system, in contrast, stretch stimulation selectively
activates β-arrestin-dependent pathological pathway (Scimia
et al., 2012), while apelin–APJ binding preferentially promotes
G protein-dependent cardioprotective and prosurvival signaling.
Because β-arrestins work as scaffolds that form complexes by
binding to other proteins, it is conceivable that β-arrestins in
AT1R and APJ show different functions due to their different
binding partners. Thus, the role of these interacting pathways
downstream of GPCRs in myocardial physiology appears to be
receptor-dependent, and further investigation of how AT1R and
APJ integrate ligand and mechanical stimuli to bias G protein
or β-arrestin signaling, thus controlling cardioprotective versus
cardiotoxic programs is important for the discovery of new
therapeutics for heart failure.

This review aims to provide an up-to-date understanding
of AT1R and APJ signaling pathways activated by mechanical
stimuli on cardiac function and pathological hypertrophy, with
special emphasis on biased stretch-mediated engagement of
both AT1R and APJ and their potential roles in initiation or
amelioration of heart diseases. The possibilities of targeting these
pathways for the development of novel heart failure therapeutics
will be discussed. Mechanistic insight will be provided through
review of cell-based and animal models, and the areas of need for
continued investigation will be highlighted.

ANGIOTENSIN II VERSUS
STRETCH-INDUCED AT1R SIGNALING

Angiotensin II type 1 receptor plays pivotal roles in the regulation
of cardiovascular function, and is one of the major targets for
the therapeutic treatment of heart failure (Violin et al., 2013).
Angiotensin II (Ang II), the endogenous ligand for AT1R, is
well known for its action on vasoconstriction and aldosterone
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FIGURE 1 | Length-Dependent Activation (LDA) and Slow Force Response (SFR). Immediately after a cardiac muscle is stretched, there is a rapid Ca2+-independent
rise in developed force (1F1 > 1F0, LDA) followed by a more gradual rise that is associated with an intracellular Ca2+ increase (1F2 > 1F1, SFR).

FIGURE 2 | GPCR signaling induced by different receptor activation. Different
stimulations stabilize the receptors into distinct active conformational states
that couples to a particular G protein or β-arrestin or both to activate diverse
arrays of downstream signaling, resulting in different functional outcomes.

release, while its local action in the heart is also known to
augment myocardial contraction (Petroff et al., 2000) and to
activate hypertrophic signaling (Sadoshima and Izumo, 1993).

It is widely accepted that myocytes respond to mechanical
stretch to release Ang II in an autocrine fashion to activate
AT1R and its intracellular signaling (Sadoshima et al., 1993).
However, the receptor can also directly sense mechanical
stress to activate its downstream signaling, even without
Ang II binding (Zou et al., 2004; Yasuda et al., 2008;
Rakesh et al., 2010). Komuro’s group showed for the first
time that the mechanical activation of AT1R is agonist-
independent in angiotensinogen-deficient mice (Zou et al.,
2004). They also demonstrated that stretch stimulation of
AT1R induces a conformational change of the receptor that is
distinct from the ligand-activated receptor conformation (Yasuda
et al., 2008). Despite some commonalities between stretch-
and ligand-induced AT1R signaling pathways, recent studies
have suggested that mechanical stress differentially activates
β-arrestin-dependent AT1R signaling, which is distinct from
ligand-activated pathways (Rakesh et al., 2010; Wang et al.,
2018). This section summarizes the current understanding
of how AT1R signaling regulates cardiac contractility and
adaptive/maladaptive signaling when the heart is subjected to
mechanical stress. In addition, the therapeutic possibility of
targeting AT1R signaling for mechanical stress-relevant heart
diseases is discussed.
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The Role of Ang II and AT1R in
Ca2+-Independent Inotropic Response
and the Frank–Starling Mechanism
Angiotensin II has a positive inotropic effect in cardiomyocytes
both by myofilament Ca2+ sensitization and intracellular Ca2+

rise (Mattiazzi, 1997; Watanabe and Endoh, 1998). Experiments
in isolated rabbit myocytes demonstrated that Ang II induced
a positive inotropic effect without associated increases in either
Ca2+ inward current or Ca2+ transients, but was accompanied by
intracellular alkalosis that could potentially increase myofilament
sensitivity to Ca2+ (Ikenouchi et al., 1994). It has also been
shown that Ang II increases phosphorylation of myosin light
chain 2 (MLC2) by the MLC–PKC pathway, thereby increasing
myofilament Ca2+ responsiveness (Morano et al., 1988; Clement
et al., 1992). This Ang II–AT1R activation of myofilaments could,
therefore, form the basis for length-dependent activation (Frank–
Starling mechanism). Indeed, Rockman’s group recently revealed
that gene deletion or selective inhibition of AT1R in mouse hearts
abrogates the Frank–Starling relationship (Abraham et al., 2016).

Using β-arrestin1/2 deficient mice, they also found that the
loss of β-arrestin proteins abrogates Frank–Starling relationship
without activating PKC. It has been demonstrated that β-arrestin-
biased AT1R activation enhances myocyte contractility without
increasing intracellular Ca2+ concentration (Rajagopal et al.,
2006), and myofilament Ca2+ sensitivity associated with reduced
TnI and MyBPC phosphorylation and enhanced tropomyosin
phosphorylation (Monasky et al., 2013; Ryba et al., 2017).
However, protein phosphorylation in the β-arrestin1/2 deficient
mice does not differ compared to wildtype controls. This may
be due to distinct β-arrestin signaling pathways downstream
of stretch–AT1R compared to ligand–AT1R stimulation (Wang
et al., 2018). Further detailed investigation of posttranslational
modifications of myofilament proteins by proteomic analyses
will identify novel proteins critical to the AT1R-dependent
modulation of the Frank–Starling relationship.

The Role of AT1R in Ca2+-Dependent
Inotropic Response and Slow Force
Response
In addition to the positive inotropic effect caused by myofilament
Ca2+ sensitization, Ang II enhances contractility by a Ca2+

dependent mechanism. It has been proposed that Ang II–AT1R
binding triggers endothelin-1 (ET-1) production/release, which
in turn activates endothelin type A receptor (ETAR) to induce
transactivation of epidermal growth factor receptor (EGFR)
through ROS-induced ROS release (Cingolani et al., 2006; Yeves
et al., 2015; Zhang et al., 2015). This results in NHE-1 activation
to induce Na+ influx that in turn triggers Ca2+ entry via reverse
mode NCX, thereby enhancing contractility (Petroff et al., 2000;
Pérez et al., 2003) (Figure 3, red arrows). It has been suggested
that these mechanisms could be the basis for the SFR (the in vitro
equivalent of the Anrep effect). Cingolani’s group has described
a similar complex signaling pathway upon stretch-induced Ang
II production, involving autocrine/paracrine activation of AT1R
and ETAR (Cingolani et al., 2011), ROS-induced ROS release

(Caldiz et al., 2007), the transactivation of EGFR (Brea et al.,
2016), ERK1/2 activation (Pérez et al., 2011), and NHE-1 and
NCX activation (Pérez et al., 2001), thus increasing myocyte
contraction (Figure 3, red arrows).

Recently, we demonstrated that transient receptor potential
canonical (TRPC) 6 channel is an additional important upstream
determinant of SFR. Our study demonstrated that gene deletion
and selective blockade of TRPC6 channel abrogates SFR and
the Anrep effect in physiologically loaded myocytes, muscle
strips, and intact hearts (Seo et al., 2014a). More recently, it was
found that TRPC3 is an equivalent contributor to this process
(Yamaguchi et al., 2018) as supported by evidence that TRPC3
and 6 can form functional heterotetramers (Hofmann et al.,
2002). The mechanosensitivity of TRPC6 had been demonstrated
in smooth muscle cells (Spassova et al., 2006) and adult
cardiomyocytes (Dyachenko et al., 2009) exposed to membrane
stretch or shear stress. Some, however, have questioned the
mechanosensing capacity of TRPC6 and attributed it to its
upstream stretch-activated GPCRs and/or artifacts from TRPC6
overexpression in heterologous systems (Gottlieb et al., 2008).
Importantly, TRPC3/6 is a downstream component of AT1R,
and Ang II stimulation is known to activate these channels via
Gαq protein, PLC and diacylglycerol (DAG) signaling pathway
(Onohara et al., 2006). Indeed, stretch-induced slow increase in
Ca2+ was suppressed by either TRPC3/6 or AT1R inhibition
(Yamaguchi et al., 2018). Ca2+ influx through TRPC3/6 may
directly stimulate SFR, while it is also conceivable that TRPC3/6
activates ERK1/2 (Yao et al., 2009; Chiluiza et al., 2013) upstream
of NHE-1, thus inducing an inward Na+ current that in turn
triggers Ca2+ entry via NCX (Poburko et al., 2007, 2008;
Louhivuori et al., 2010) (Figure 3, blue arrows). While many
of these studies have suggested the involvement of AT1R as
an upstream component of SFR signaling pathways, there are
several opposing reports describing that Ang II and AT1R are
not involved in the process because SFR was not suppressed by
Ang II receptor blockers (ARBs) (Calaghan and White, 2001;
von Lewinski et al., 2003; Shen et al., 2013). Despite the inverse
agonistic effect of ARBs (Sato et al., 2016), mechanical stretch
may differentially activate AT1R even in the presence of ARBs
which should normally suppress the ligand-stimulated signaling
pathway. More direct evidence that links AT1R to SFR, using
AT1R-deficient models, will be needed to clarify this mechanism.

Pathological AT1R–TRPC3/6 and
Cardioprotective AT1R–β-Arrestin
Signaling in Pressure-Overload Cardiac
Hypertrophy
It is well established that Ang II can induce cardiomyocyte
hypertrophy through the activation of multiple intracellular
signaling pathways such as the mitogen-activated protein kinase
(MAPK) signaling cascade (Thorburn et al., 1994; Zechner
et al., 1997; Wang et al., 1998a), c-Jun N-terminal kinase
(Sadoshima and Izumo, 1993; Ramirez et al., 1997; Wang
et al., 1998b), Akt–mammalian target of rapamycin (mTOR)
(Gorin et al., 2001; Diniz et al., 2009) and calcium–calmodulin-
activated phosphatase calcineurin (Molkentin et al., 1998;
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FIGURE 3 | AT1R downstream signaling pathways activated by acute stretch or Ang II. Membrane stretch directly or indirectly (by the autocrine release of Ang II)
stimulates AT1R which in turn activates distinct downstream signaling pathways: (1) ETAR–EGFR–ERK1/2–NHE-1–NCX axis (red arrows) and (2)
PLC–DAG–TRPC3/6 axis (blue arrows). The gradual influx of Ca2+ through NCX and TRPC3/6 channels enhances myocardial contractility, thereby initiating SFR.
Ang II-triggered positive inotropic effect (PIE) shares the same pathways.

Wilkins and Molkentin, 2004). In particular, calcineurin
is a pivotal regulator of pathological cardiac hypertrophy
preferentially activated by mechanical stress on GPCRs
(Molkentin, 2004; Heineke and Molkentin, 2006). Once activated
by increases in Ca2+, calcineurin mediates the hypertrophic
response through its downstream transcriptional effector
NFAT (Crabtree and Olson, 2002). It has been accepted that
a major source of Ca2+ for activation of calcineurin is Ca2+

influx through TPRC3 and 6 channels. Indeed, Ang II–AT1R
activation promotes calcineurin–NFAT signaling that requires
the DAG-induced Ca2+ signaling pathway through TRPC3 and
6 (Onohara et al., 2006). Importantly, this signaling pathway
can be activated by mechanical stress. TRPC3 overexpressed
transgenic mice exhibit an increase in calcineurin–NFAT
activation in vivo, and increased hypertrophy after Ang
II/Phenylephrine and pressure-overload stimulation (Nakayama
et al., 2006). In addition, TRPC6 transgenic mice also resulted
in enhanced sensitivity to mechanical stress, with an increase
in calcineurin–NFAT signaling, and severe cardiac hypertrophy
and failure (Kuwahara et al., 2006). Although TRPC3/6 channels
are linked to other GαqPCRs such as ETAR and α-adrenergic
receptors, AT1R may be the putative central actor in stress-
induced hypertrophy, considering the mechanosensing capacity
of the receptor.

AT1R activation by either Ang II or mechanical stress not only
induces pathological signaling but also promotes physiological
hypertrophy and prosurvival signaling. In embryonic, neonatal,
and adult cardiomyocytes, Ang II–AT1R activation promotes
transactivation of EGFR, which in turn activates MAPK and

Akt–mTOR pathways (Thomas et al., 2002; Diniz et al., 2009).
Rockman’s group recently demonstrated that mechanical stress
in cells and the hearts activates AT1R-induced prosurvival
signaling in a β-arrestin-dependent manner that does not require
Ang II release (Rakesh et al., 2010). The formation of an
AT1R–β-arrestin complex by mechanical stress induces EGFR
transactivation and subsequent ERK and Akt signaling pathways,
which suppresses cardiomyocyte injury (Rakesh et al., 2010).
They later found that membrane stretch uniquely promotes the
coupling of the inhibitory G protein (Gαi) that is required for
the recruitment of β-arrestin2 and activation of downstream
signaling pathways, such as EGFR transactivation and ERK
phosphorylation (Wang et al., 2018). Gαi proteins primarily
inhibit the cAMP-dependent pathway by inhibiting adenylyl
cyclase (AC) activity. Although previous studies have shown that
Ang II may promote AT1R–Gαi coupling to inhibit AC and to
regulate Ca2+ channels in certain tissues or cell types (Hescheler
et al., 1988; Maturana et al., 1999), it is not yet clear if the
Gαi–β-arrestin complex has the same function.

Taken together, chronic mechanical stress can induce
both Gαq–TRPC3/6 dependent and Gαi–β-arrestin dependent
signaling pathways to differentially promote pathological and
prosurvival signaling (Figure 4). Although selective Gαq–
TRPC3/6 signaling initially works as an adaptive response to
mechanical stress by enhancing myocardial contractility through
SFR, prolonged signaling eventually worsens cardiac function.
On the other hand, β-arrestin-dependent AT1R signaling is
proposed to enhance cardiac contractility by a Ca2+-independent
mechanism, and chronically activates prosurvival signaling,
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FIGURE 4 | AT1R signaling pathways activated by prolonged mechanical load or Ang II. The AT1R is principally coupled to Gαq protein but is also coupled to Gα i

protein through β-arrestin (β-arr) recruitment when the myocyte is subjected to mechanical load. Ang II- or stretch-induced Gαq signaling activates TRPC3/6 to
initiate Ca2+ influx, which in turn activates calcineurin (CN)–NFAT pathway to promote pathological cardiac hypertrophy (red arrows). AT1R–Gα i coupling induces
EGFR transactivation and Akt/ERK phosphorylation, which promotes physiological hypertrophy and prosurvival signaling (blue arrows).

TABLE 1 | Emerging drugs for heart failure therapeutics targeting AT1R or APJ.

Name of drug Drug class Model studied/clinical trials

TRV120027 β-arrestin-biased AT1R agonist ADHF (Phase 2B BLAST-AHF, no benefit over placebo)

TRV120023 β-arrestin-biased AT1R agonist DCM (mice, improved contractility)

ACI (mice/rats, improved contractility, reduced cell death)

TRV120067 β-arrestin-biased AT1R agonist DCM (mice, improved contractility and structure)

Sildenafil PDE5 inhibitor HFpEF (Phase 3 RELAX, no benefit over placebo)

HFrEF (Phase 3 SIL-HF, recruiting)

BI 749327 TRPC6 inhibitor CHF (mice, improved LV function and reduced fibrosis)

ML233 small molecule APJ agonist No reports on HF

AMG 986 small molecule APJ agonist CHF (Phase 1, terminated)

MM07 G-protein-biased peptide APJ agonist No reports on HF

CLR325 peptide APJ agonist CHF (Phase 2, completed)

ADHF, acute decompensated heart failure; DCM, dilated cardiomyopathy; ACI, acute cardiac injury; CHF, chronic heart failure.

making it a pathway of high clinical potential to ameliorate acute
and chronic heart failure.

AT1R Targeted Therapeutics for
Mechanical Stress-Associated Heart
Diseases (Table 1)
Pathological hypertrophy induced by the overstimulation of
AT1R by Ang II or mechanical stress can eventually lead to heart
failure and sudden death associated with arrhythmia. One of
the current therapeutics for these conditions is AT1R blocking
drugs, known as ARBs. Several ARBs are known to have inverse
agonistic action which can inactivate the GPCR state, and thereby
suppress the constitutive activity of receptors. Such drugs can
suppress mechanical stretch-induced signals through AT1R and

may exhibit enhanced therapeutic effects for these disease states
(Zou et al., 2004; Wei et al., 2011).

While endogenous Ang II activates both G protein and
β-arrestin signaling pathways, several AT1R ligands, such as
[Sar1, Ile4, Ile8]-Ang II (SII), TRV120023, TRV120027, and
TRV120067 have been shown to selectively activate β-arrestin-
mediated pathways and therefore termed as β-arrestin-biased
agonists (Rajagopal et al., 2010; Strachan et al., 2014). These
β-arrestin-biased AT1R agonists have been demonstrated to have
beneficial effects on the disease condition caused by mechanical
stress. For example, TRV120027 causes cardiac unloading action
while preserving renal function in a canine model of acute heart
failure (Boerrigter et al., 2011). However, a Phase 2B trial of
TRV120027 in acute heart failure (BLAST-AHF) resulted in no
benefit over placebo (De Vecchis et al., 2017). On the other hand,
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TRV120023 diminishes myocyte apoptosis caused by mechanical
stress by selectively activating ERK1/2 cardioprotective signaling
pathways in isolated mouse hearts (Kim et al., 2012). Long-
term treatment with TRV120067 in the mouse model of dilated
cardiomyopathy not only prevented maladaptive signaling but
also improved cardiac function by altering the myofilament
response to Ca2+ via β-arrestin signaling pathways (Ryba et al.,
2017). Notably, TRV120023 and TRV120067 have shown better
efficacy in cardiac function and cardioprotection compared to
ARBs, suggesting their possibility to become novel therapeutic
drugs for heart failure.

Targeting AT1R downstream signals, such as protein kinase
G (PKG) and TRPC3/6, could be another therapeutic strategy.
Our study previously revealed that adverse myocardial responses
induced by mechanical stimulation to these channels are
suppressed by post-transcriptional modification of TRPC6
channel by activation of the cGMP–PKG pathway (Seo et al.,
2014a). Indeed, there is growing evidence that stimulation of the
cGMP–PKG pathway within cardiac myocytes dampens cardiac
stress responses, and its activation can attenuate pathological
hypertrophy, protect against ischemic injury and enhance cell
survival (Zhang and Kass, 2011). One means to activate the
cGMP–PKG pathway is to inhibit the degradation of cGMP
by phosphodiesterase-5 (PDE5). PDE5 inhibitors [e.g., sildenafil
(Viagra)] have proven their efficacy in treating pressure-overload
cardiac hypertrophy and failure in animal models (Takimoto
et al., 2005; Nagayama et al., 2009). Although the RELAX
trial, a large clinical trial of PDE5 inhibition in heart failure
with preserved ejection fraction (HFpEF), failed to show robust
beneficial effects (Redfield et al., 2013), single-center trials
in patients with heart failure with reduced ejection fraction
(HFrEF) reported improved exercise capacity and quality of
life (Lewis et al., 2007). Indeed, a meta-analysis of randomized
controlled trials in heart failure shows statistically significant
improvement of clinical outcomes in patients with HFrEF rather
than HFpEF (De Vecchis et al., 2017). Our study demonstrated
that sildenafil attenuates pathological hypertrophy by promoting
TRPC6 phosphorylation by PKG in the mouse model of muscular
dystrophy in which the heart is susceptible to mechanical load
(Seo et al., 2014a). Direct antagonism of TRPC3/6 channels is
also proven effective for preventing pathological hypertrophy
in experiment levels (Seo et al., 2014b). Recently, the orally
bioavailable selective TRPC6 inhibitor (BI 749327) was tested
in mice, providing in vivo evidence of therapeutic efficacy for
cardiac and renal stress-induced disease with fibrosis (Lin et al.,
2019). Thus, direct inhibition of TRPC6 could be an alternative
strategy to effectively suppress pathological cardiac hypertrophy
and failure induced by adverse mechanical stress.

APELIN VERSUS STRETCH-INDUCED
APJ SIGNALING

Apelin receptor is a GPCR that binds the endogenous peptide
apelin (Tatemoto et al., 1998; Lee et al., 2000). This receptor is
widely expressed in the cardiovascular system and is emerging
as an important mediator of both cardiac and vascular function

(Chandrasekaran et al., 2008). In the heart, apelin has been
shown to increase myocardial contraction (Szokodi et al.,
2002), reduce cardiac load (Ashley et al., 2005) and promote
cardioprotective effects (Zhang et al., 2009). Recently, a peptide
named ELABELA (Ryba et al., 2017) or Toddler (Pauli et al.,
2014) was found to bind APJ, exhibiting a cardiac protective
role comparable to apelin (Sato et al., 2017). In addition to this
new ligand, it recently turned out that mechanical stretch can
also directly activate this receptor. It has been proposed that
APJ acts as a bifunctional receptor for both mechanical stress
and apelin to activate separate signaling pathways directed to
inotropic, cardiotoxic, and cardioprotective effects (Scimia et al.,
2012). Intriguingly, unlike AT1R, stretch-induced activation of
APJ triggers pathological hypertrophy through β-arrestin, while
β-arrestin-dependent signaling in AT1R activates prosurvival
signaling. This section summarizes the up-to-date findings of
APJ signaling pathways stimulated by apelin or mechanical stress,
and introduces how each stimulation can bring different cardiac
outcomes. Therapeutic possibilities of biased agonists for heart
failure targeting G protein versus β-arrestin-dependent signaling
pathways are discussed.

The Role of Apelin–APJ in
Ca2+-Independent Positive Inotropic
Effect and Frank–Starling Relationship
A potent inotropic effect of apelin has been demonstrated in
cardiomyocytes (Farkasfalvi et al., 2007; Wang et al., 2008;
Peyronnet et al., 2017), muscle strips (Dai et al., 2006), isolated
hearts (Szokodi et al., 2002; Perjés et al., 2014) and in vivo
heart disease models (Berry et al., 2004; Charo et al., 2009). It
has been proposed that the increase in myocardial contractility
is attributed to both Ca2+-dependent (Dai et al., 2006; Wang
et al., 2008) and Ca2+-independent mechanisms (Farkasfalvi
et al., 2007; Charo et al., 2009; Parikh et al., 2018). The
latter is considered to rely on apelin’s action on myofilament
sensitivity to Ca2+. It was first demonstrated by Farkasfalvi
et al. (2007) in studies with normal and failing cardiomyocytes
that displayed increased sarcomere shortening in the absence of
increased Ca2+ transient amplitude after apelin administration.
They suggested one of the mechanisms involves increased
myofilament sensitivity to Ca2+ as apelin activates NHE-1 with
consequent intracellular alkalinization. Subsequently, a study
using isolated single left ventricular myocytes from apelin
deficient and APJ deficient mice revealed that loss of apelin
or APJ causes impaired contraction with no difference in
intracellular Ca2+ kinetics, suggesting apelin and APJ affect
either myofilament Ca2+ sensitivity or cross-bridge cycling
kinetics (Charo et al., 2009). This may be attributable to the
activation of MLC kinase through parallel and independent
activation of PKCε and ERK1/2 signaling stimulated by apelin
(Perjés et al., 2014).

The phosphorylation level of myofilament proteins can
affect length-dependent activation, which positively regulates the
Frank–Starling relationship. Recently, the direct effect of apelin
on length-dependent activation was examined in mechanically
preloaded cardiomyocytes; apelin increased compliance of the
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myocytes as indicated by the negative regulation of end-
diastolic force-length relationship, which in turn enhanced
contractility as indicated by increased Frank–Starling gain
(dimensionless index for contractility) (Peyronnet et al., 2017).
Increased cardiomyocyte compliance is presumably related to
titin phosphorylation. However, the observed positive regulation
of the Frank–Starling relationship by apelin must be dependent
on other contractile proteins such as cTnI and MLC or alkalosis,
because decreased titin-based stiffness is associated with reduced
length-dependent activation of myocardium (Methawasin et al.,
2014; Ait-Mou et al., 2016; Beqqali et al., 2016). Recently,
we demonstrated that APJ-deficient cardiomyocytes showed
negative regulation of the Frank–Starling relationship with no
increase in Ca2+ transients in response to stretch (Parikh et al.,
2018). Our study also provided mechanistic insights for apelin’s
positive inotropic and Frank–Starling effects. We demonstrated
reduced protein kinase A (PKA) phosphorylation of cTnI at
Ser22/Ser23 in response to apelin. This is known to increase
myofilament Ca2+ sensitivity, and is consistent with apelin-
dependent AC–cAMP–PKA inhibition through Gαi activation
(Szokodi et al., 2002; Scimia et al., 2012) (Figure 5).

The Role of Apelin–APJ in
Ca2+-Dependent Positive Inotropy and
the Anrep Effect
In addition to this Ca2+-independent mechanism, apelin is
thought to exert its inotropic action by increasing the availability
of intracellular Ca2+. Apelin’s inotropic effect in isolated hearts is
dependent on PLC, PKC, NHE-1, and NCX activation (Szokodi
et al., 2002). Notably, this inotropic response develops slowly

FIGURE 5 | APJ downstream signaling pathways for Ca2+ independent
positive inotropic effect (PIE) and length-dependent activation (LDA).
Apelin-induced activation of APJ enhances myofilament sensitivity to Ca2+,
which leads to the positive regulation of LDA. The mechanisms include
intracellular alkalinization by Gαq-dependent NHE-1 activation (red arrows),
Gα i-dependent dephosphorylation of cTnI (black dashed arrows), and the
phosphorylation of MLC (blue arrows, mechanism unknown).

to reach a plateau within 10–30 min and is then sustained,
which is different from classical β-adrenergic receptor activation
that develops rapidly over a matter of seconds. Although
Ca2+ dynamics were not examined in this study, a later study
proposed that apelin-induced increased contractility is the result
of increased Ca2+ transients rather than changes in myofilament
Ca2+ responsiveness (Dai et al., 2006). Most recently, these
observations were consolidated in a report showing that apelin
has positive inotropic and lusitropic actions on isolated myocytes
with enhanced calcium-induced calcium release. This enhanced
Ca2+ release is achieved through increased Ca2+ influx through
NCX and increased rate of Ca2+ uptake to Ca2+ storage by
sarcoplasmic reticulum Ca2+-ATPase (SERCA), as controlled
by PKC-directed phosphorylation (Wang et al., 2008). It is
intriguing that the time course and the signaling pathways
underlying the effect of apelin show some similarities to the
mechanism of SFR (Figure 6 compared to Figure 3), in
which NHE-1 and NCX are the primary downstream actors.
Although the role of APJ in SFR has yet to be fully explored,
it is conceivable that this signaling pathway modulates this
physiological phenomenon both through apelin–APJ binding
and APJ’s mechanosensing ability.

Integration of Apelin and Mechanical
Stimuli in APJ to Differentially Activate
Cardiac Prosurvival and Hypertrophic
Signaling
We previously demonstrated a beneficial effect of chronic
apelin supplementation on cardiac performance with reduced
left ventricular preload and afterload, and increased contractile

FIGURE 6 | APJ downstream signaling pathway for Ca2+ dependent positive
inotropic effect (PIE). APJ activation by apelin also induces PIE that
accompanies increased Ca2+ transient through Gαq-dependent NCX
activation (red arrows). Positive lusitropic effect (increased velocity of
myocardial relaxation) is also induced via PKC-directed phosphorylation of
SERCA.
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function without evidence of hypertrophy (Ashley et al., 2005).
Chronic stimulation of APJ by apelin not only increases cardiac
performance but also attenuates the development of pressure-
overload heart failure through the inhibition of TGF-β-driven
profibrotic activity (Pchejetski et al., 2012) and NOX2-derived
ROS production (Koguchi et al., 2012). In apelin-deficient mice,
hypertrophic response to pressure overload was unchanged, but
the progressive impairment of systolic function was observed
(Kuba et al., 2007). Myocardial infarcted hearts in apelin deficient
mice exhibit exacerbated postinfarction remodeling and impaired
functional recovery with a significant reduction of prosurvival
phospho-Akt and ERK1/2 signals in the infarct and peri-infarct
regions (Wang et al., 2003). These studies clearly demonstrate the
simultaneous inotropic and antihypertrophic effects of apelin in
ischemia and pressure overload.

Conversely, cardiomyocyte-specific overexpression of APJ
causes cardiac hypertrophy and contractile dysfunction in mice
(Murata et al., 2016). This indicates that APJ has a capacity
to activate multiple downstream signaling pathways such as
Gαi- and Gαq-dependent pathways (Chapman et al., 2014),
some of which may be independent of apelin’s protective
effects. It has also been shown that APJ can integrate chemical
(apelin) and mechanical (stretch) stimuli and translates these
into opposite cardiac outcomes by differentially activating
downstream pathways (Scimia et al., 2012). Specifically, apelin

activates APJ through Gαi protein to exert its cardioprotective
effect, while stretch stimulates APJ to recruit β-arrestins, which
promote pathological hypertrophy (Figure 7). At the cellular
level, the mechanosensing capacity of APJ has been confirmed in
H9c2 cardiomyocytes in which the increase in diameter, volume
and protein content of cardiomyocytes under static pressure
was ameliorated by APJ shRNA (Xie et al., 2014). Recently,
our study provided supporting evidence that myocyte-specific
deletion of APJ is protective against pressure-overload heart
failure, showing the abrogation of mechanosensing capacity,
reduced Ca2+ transient, and remarkable suppression of cellular
hypertrophy and fibrosis (Parikh et al., 2018). These studies
suggest that APJ integrates apelin and stretch stimuli, biasing
the level of G protein versus β-arrestin signaling to attenuate
or stimulate hypertrophy. While the downstream mechanisms
of stretch-induced β-arrestin signaling remain undefined, the
function of β-arrestins has also been observed to block the
interaction of APJ with Gαi proteins (i.e., desensitization), which
may contribute to the pro-hypertrophic program (Scimia et al.,
2012). These studies have implications for the consideration
of APJ as a drug target, because the greatest benefit may
be obtained not simply by apelin stimulation, but rather by
selectively activating the Gαi-dependent signaling pathway or by
inhibiting the ability of APJ to respond to mechanical stretch. For
this purpose, further efforts are critical to clarify the intricacies

FIGURE 7 | Diverse APJ signaling pathways activated by prolonged mechanical load or apelin. APJ translates apelin and stretch stimuli into distinct downstream
signaling pathways. Apelin stimulation induces Gα i-dependent signaling to promote physiological hypertrophy and prosurvival signaling through the activation of
Akt–mTOR and ERK1/2 (blue arrows). Gα i also inhibits deleterious cAMP–PKA pathway to serve a cardioprotective role (black dashed arrows). On the other hand,
membrane stretch activates a β-arrestin-dependent program that results in pathological hypertrophy although the detailed downstream mechanisms are unresolved
(red arrows). Importantly, there is a functional interplay between apelin- and stretch-dependent APJ signaling, in which apelin–APJ signaling blunts stretch-induced
pathological signaling while stretch–APJ signaling interferes with apelin-induced Gα i activation. Although the apelin–APJ system involves Gαq-dependent signaling
pathway (Figure 6), the relevance of this pathway to pathological hypertrophy has not been examined.
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of downstream integration of ligand and mechanosensitive
signaling by APJ.

APJ Targeted Therapeutics for
Mechanical Stress-Associated Heart
Diseases (Table 1)
Apelin’s positive inotropy and anti-hypertrophic effects support
its therapeutic potential in preventing and treating cardiovascular
disease. The majority of current heart failure therapies are
targeted at the inhibition of deleterious neurohormonal axes
that are upregulated in the later stages of the disease. In this
aspect, the apelin–APJ system is attractive because it appears to
be downregulated in heart failure (Japp and Newby, 2008), and
stimulation of this pathway may have additive or even synergistic
efficacy to current therapy by targeting complementary but
separate pathways. Indeed, intravenous administration of [Pyr1]
apelin-13, an active fragment of apelin, in heart failure patients
showed efficacy with peripheral and coronary vasodilatation and
increases in cardiac output (Japp et al., 2010).

Nonetheless, the therapeutic application of apelin is limited
because of its extremely short biological half-life and parenteral
administration. This is attributed to the degradation by
endogenous proteases circulating in the blood (Japp et al.,
2008; Zhen et al., 2013). Furthermore, apelin is hydrolyzed
and partially deactivated by angiotensin I converting enzyme
2 (ACE2) (Vickers et al., 2002; Wang et al., 2016). Thus,
many efforts have been directed to the development of apelin
analogs or novel agonists of APJ (Yamaleyeva et al., 2016). In
particular, combinatorial screening of the NIH small molecule
library identified a full non-peptide APJ agonist, ML233, at
activating both Gαi- and β-arrestin-dependent pathways (Khan
et al., 2011). In addition, using molecular dynamics simulations,
Brame et al. (2015) designed cyclic analogs and identified a
biased agonist, MM07, which activates APJ by preferentially
stimulating Gαi-dependent pathways but not β-arrestin. Because
stimulation of β-arrestin pathway could be deleterious, G
protein-biased APJ ligand MM07 represents a potential new
therapeutic for heart failure.

STRETCH-INDUCED
CONFORMATIONAL CHANGE IN AT1R
AND APJ

G protein-coupled receptors adopt distinct conformations to
selectively activate different arrays of downstream signaling
(Rosenbaum et al., 2009; Vaidehi and Kenakin, 2010). Detailed
analysis of the conformational changes is often performed by
crystal structure analysis, but this only allows a static view of a
given receptor conformation. Bioluminescence resonance energy
transfer (BRET) and fluorescence resonance energy transfer
(FRET) techniques allow insight into the kinetics and amplitudes
of agonist- and stretch-induced receptor conformations. Using
these techniques, stretch-induced conformational changes of
AT1R have been studied. BRET revealed that membrane stretch
induces an active AT1R conformation allowing for G protein

activation and subsequent β-arrestin recruitment (y Schnitzler
et al., 2008). More recently, a study using BRET and FRET
demonstrated that G protein activation is not necessary for
β-arrestin recruitment and that mechanical stretch induces a
particular β-arrestin conformation that is distinct from the
agonist-stimulated conformation (Rakesh et al., 2010). Another
approach was also taken to examine the conformational change
of AT1R in response to stretch. Using the substituted cysteine
accessibility method (SCAM) and molecular modeling approach,
Yasuda et al. (2008) showed that stretch stimulation of AT1R
induces a dislocation and a counterclockwise rotation of
transmembrane domain 7 toward the ligand-binding pocket,
a conformation that is distinct from the ligand-activated
receptor conformation. These fascinating data suggest that
conformational change is responsible for biased signaling in
AT1R. Such studies of APJ and examination of the differential
effect of novel AT1R ligands on its conformation could eventually
lead to structure-based drug design focused on selective
inhibition of adverse remodeling via stretch-dependent pathways.

INTERACTION BETWEEN ANG-II–AT1R
AND APELIN–APJ

Neurohormonal interaction between AT1R and APJ systems
has been well-studied. Infusion of Ang II in rats causes an
acute reduction of apelin and APJ levels in the heart, which
is abolished by treatment with an ARB (Iwanaga et al., 2006).
The left ventricular dysfunction observed in apelin deficient
mice is restored to normal levels either by the treatment
with an ARB or by AT1R gene deletion (Sato et al., 2013).
Furthermore, apelin overexpression abolishes Ang II-induced
cardiac hypertrophy in cultured myocytes (Ye et al., 2015). While
a growing literature suggests the antagonistic interplay between
AT1R and APJ systems through neurohormonal interactions,
direct physical interaction between AT1R and APJ has also been
reported. Co-immunoprecipitation and FRET analysis revealed
heterodimerization of AT1R and APJ, in which the interaction
appears to induce the inhibition of the AT1R signaling pathway
(Chun et al., 2008). More recently, it was revealed that AT1R–
APJ heterodimerization is induced by apelin, but is not affected
by Ang II (Siddiquee et al., 2013). To date, the downstream
effects of ligand and stretch stimulation on heterodimeric AT1R–
APJ have not been examined. It is conceivable that AT1R–APJ
heterodimers activate distinct signaling pathways compared to
monomeric receptors, or that the multiple reported downstream
pathways of AT1R and APJ may be partially dependent on the
activation of the heterodimeric receptor. Understanding of this
may lead to the identification of novel ligands with optimal effects
on heart failure pathobiology.

CONCLUSION

Angiotensin II type 1 receptor and APJ are mechanosensitive
GPCRs in the heart, playing vital roles in cardiac physiological
adaptation to changes in mechanical load. However, when a
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mechanical load is excessive and sustained, it can induce
maladaptive hypertrophic signaling. Enormous effort has
been invested in understanding the physiological and
pathophysiological roles of AT1R and APJ signaling to identify
novel therapeutic strategies. Selective activation or inhibition
of mechanically stimulated signaling components by biased
agonists may yield more precise molecular enhancers of desired
inotropic or cardioprotective effects while avoiding detrimental
signaling. In addition, by gaining an improved understanding
of the signaling mechanisms of these receptors in the heart, it is
likely that complementary downstream targets will be identified
to modulate cardiac function and ameliorate disease.
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