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Purpose: Chronic heart failure (CHF) is characterized by heightened sympathetic
nervous activity, carotid chemoreceptor (CC) sensitivity, marked exercise intolerance
and an exaggerated ventilatory response to exercise. The purpose of this study was to
determine the effect of CC inhibition on exercise cardiovascular and ventilatory function,
and exercise tolerance in health and CHF.

Methods: Twelve clinically stable, optimally treated patients with CHF (mean ejection
fraction: 43 ± 2.5%) and 12 age- and sex-matched healthy controls were recruited.
Participants completed two time-to-symptom-limitation (TLIM) constant load cycling
exercise tests at 75% peak power output with either intravenous saline or low-dose
dopamine (2 µg · kg−1

·min−1; order randomized). Ventilation was measured using
expired gas data and operating lung volume data were determined during exercise
by inspiratory capacity maneuvers. Cardiac output was estimated using impedance
cardiography, and vascular conductance was calculated as cardiac output/mean
arterial pressure.

Results: There was no change in TLIM in either group with dopamine (CHF: saline
13.1 ± 2.4 vs. dopamine 13.5 ± 1.6 min, p = 0.78; Control: saline 10.3 ± 1.2 vs.
dopamine 11.5 ± 1.3 min, p = 0.16). In CHF patients, dopamine increased cardiac
output (p = 0.03), vascular conductance (p = 0.01) and oxygen delivery (p = 0.04) at
TLIM, while ventilatory parameters were unaffected (p = 0.76). In controls, dopamine
improved vascular conductance at TLIM (p = 0.03), but no other effects were observed.

Conclusion: Our findings suggest that the CC contributes to cardiovascular regulation
during full-body exercise in patients with CHF, however, CC inhibition does not improve
exercise tolerance.
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INTRODUCTION

Chronic heart failure (CHF) is a condition where heart
function is insufficient to meet metabolic demand and is
caused by anatomical or physiological abnormalities of the
heart (McMurray et al., 2012). Independent of its etiology,
CHF has been linked to heightened sympathetic nerve activity
(SNA) (Floras, 1993, 2009; Narkiewicz et al., 1999; Andrade
et al., 2015). Initially, increased SNA in CHF may be a
beneficial adaptation aimed at maintaining cardiac output
(Q) and blood pressure. However, chronically increased SNA
leads to further heart function deterioration and is directly
related to mortality (Cohn et al., 1984). Increased SNA is
provoked by changes in autonomic afferent feedback from
desensitized baroreceptors and ergoreceptors (Piepoli et al.,
1996) as well as increased chemoreceptor activity and sensitivity
(Narkiewicz et al., 1999; Sun et al., 1999a,b) which contributes
to the vicious cycle worsening cardiac function and CHF
(Schultz et al., 2007).

The carotid chemoreceptors (CC) are located within the
carotid body at the bifurcation of the common carotid artery
and are sensitized by changes in circulating stimuli including
O2, CO2, reactive oxygen species, and pro-inflammatory
cytokines (interleukin 6, tumor necrosis factor α). The CC
play an important role in ventilatory control and sympathetic
vasoconstrictor outflow (Guyenet, 2000; Ding et al., 2011;
Porzionato et al., 2013). Giannoni et al. (2009) found
that heightened chemosensitivity to both hypoxia (carotid
chemoreceptors) and hypercapnia (central chemoreceptors)
results in neurohormonal derangement, ventilatory instability,
and ventricular arrhythmias. Importantly, hypersensitivity of
the CC has been shown to independently predict mortality in
patients with CHF (Ponikowski et al., 2001; Jankowska et al.,
2007; Giannoni et al., 2009).

A key feature of CHF is markedly reduced exercise capacity
(i.e., reduced peak oxygen uptake: VO2peak); which is predictive
of mortality (Myers et al., 2002; Conraads et al., 2012). The
reduced VO2peak in CHF, however, cannot be fully explained by
impaired Q, since a peripheral blood flow limitation has also
been demonstrated (Clark et al., 1996; Piepoli et al., 1999; Poole
et al., 2012). Stickland et al. found that in canines, CC activity
is increased during exercise and contributes to the sympathetic
restraint of muscle blood flow both in health and experimental
CHF (Stickland et al., 2007), however it remains to be determined
if the CC is important in cardiovascular regulation and exercise
tolerance in patients with CHF.

Dopamine infused at low doses has been shown to suppress
the CC (Lahiri et al., 1980; Goldberg, 1989; Stickland et al.,
2007). In patients with CHF, CC inhibition with dopamine
has been shown to reduce ventilation (van de Borne et al.,
1998), and improve cardiovascular function at rest (Edgell
et al., 2015). While the CC appears to be activated/sensitized
in CHF, and play a role in vascular regulation at rest, it is
unclear whether CC inhibition improves cardiovascular function,
ventilatory regulation, and exercise tolerance in CHF. Therefore,
the purpose of this study was to evaluate the effects of
CC inhibition with low-dose dopamine on exercise tolerance,

cardiovascular function and ventilation in patients with CHF.
We hypothesized that CC inhibition with low-dose dopamine
would result in improved exercise tolerance in participants
with CHF secondary to improved cardiovascular function and
ventilatory regulation.

MATERIALS AND METHODS

Ethical Approval and Participant
Description
The study was approved by the University of Alberta Health
Research Ethics Board (Biomedical Panel Pro00000526) and is
part of a larger research program evaluating the CC in health
and disease. Data from nine of the control participants in the
current study are included in a manuscript examining the effects
of CC inhibition on exercise tolerance in patients with chronic
obstructive pulmonary disease (COPD) (Phillips et al., 2019).

Twelve participants with clinically stable CHF, and twelve
age- and sex- matched controls were enrolled in the study.
All participants provided written, informed consent. Patients
with CHF classified as New York Heart Association (NYHA)
functional class I – III, receiving optimal pharmacological
treatment (ex: ACE-I/ARB, β-blockers, aldosterone antagonists,
and diuretics) with no recent cardiac events within the
previous 3 months were recruited. Participants receiving
opioids, peripheral dopamine receptor blockers, anxiolytics, and
antidepressants, were excluded. Participants with severe renal
dysfunction, and severe sleep apnea (STOP-Bang questionnaire
score >3, and apnea–hypopnea index >30 as evaluated by
overnight sleep monitoring with ApneaLink Plus, ResMed Ltd.,
Bella Vista, Australia) were also excluded.

Experimental Protocol
A double blind, randomized, placebo-controlled crossover
design was used to investigate the effects of CC inhibition
with dopamine on exercise tolerance, cardiovascular function
and ventilation during whole-body exercise. The protocol,
completed over a period of 3 weeks, consisted of four
sessions conducted on separate days. The first visit comprised
of informed consent, in-depth medical history, a pulmonary
function test, and a symptom limited incremental (20 W ·
2 min−1) cardiopulmonary exercise test. The second visit
involved a basal chemoreflex assessment. The third and fourth
visits consisted of two separate constant work-rate exercise
tests to symptom limitation (TLIM) at 75% of the maximal
work rate using either intravenous (IV) low-dose dopamine
or placebo saline infusion (order randomized). Prior to each
trial, participants were asked to abstain from vigorous exercise,
alcohol, and caffeine for 6 h prior to every visit. Patients with
CHF were advised to take their CV medications as prescribed
on testing days.

Pulmonary Function Test
A full pulmonary function test was completed in accordance
with current guidelines (MacIntyre et al., 2005; Miller et al., 2005;
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Wanger et al., 2005), wherein standardized spirometry, diffusing
capacity, and lung volumes were obtained. The test was
completed using the Vmax metabolic system (Encore229 Vmax,
SensorMedics, Yorba Linda, CA, United States).

Cardiopulmonary Incremental Exercise
Testing
The incremental exercise tests were preceded by a 3-minute
steady state resting period followed by a 1-minute unloaded
cycling period. Participants then began cycling exercise using a
step-wise protocol, wherein the work rate was increased every
2-minutes by 20 W. Ratings of perceived breathing and leg
discomfort (modified Borg scale) (Borg, 1982), and inspiratory
capacity (IC) maneuvers (Guenette et al., 2013) were obtained
at steady-state rest, during the last 30 s of every 2-minute
stage, and at the end of exercise. During every exercise test, all
continuous ventilatory and cardiovascular measurements were
collected during the first 30 s of every second minute of each
stage and linked to the corresponding perceptual ratings and IC
maneuvers to avoid contamination of the expired gas data from
the IC maneuvers (Jensen et al., 2008).

All exercise tests were completed on an electronically braked
cycle ergometer (Ergoselect II 1200; Ergoline, Blitz, Germany),
and cardiorespiratory data were recorded using a metabolic
measurement system (Encore229 Vmax, SensorMedics, Yorba
Linda, CA, United States). Participants were instrumented with
finger pulse oximetry (N-595; Nellcor Oximax, Boulder, CO,
United States) to estimate arterial O2 saturation, and a 12-
lead ECG (CardioSoft, GG Medical Systems, Milwaukee, WI,
United States) to record heart rate. Arterial blood pressure was
obtained through manual auscultation.

Basal Chemoreception Session
Basal chemoreception sessions were completed with participants
laying on a bed in a semi-supine position while single-
lead ECG, brachial blood pressure cuff, and ear-lobe pulse
oximeter (N-595; Covidien, Mansfield, MA, United States)
were attached and continuously monitored and recorded with
a data acquisition system (Powerlab 16/30; ADInstruments,
NSW, Australia). Data were stored for subsequent analysis
using associated software (LabChart 8.0 Pro; ADInstruments).
During the tests, participants wore a nose clip and breathed
humidified air (HC 150; Fisher and Paykel Healthcare) through
a mouthpiece attached to a pneumotachometer (3700 series;
Hans Rudolph, Shawnee, KS, United States) and a gas
analyzer (CD-3A and S-3A; AEI Technologies, Pittsburgh,
PA, United States). The mouthpiece and pneumotachometer
were connected to a continuous flow-through system to allow
the researcher to switch from the hypoxic or hyperoxic gas
blender systems during the chemoreflex tests. Participants
completed an initial 10-minute period of quiet, normoxic
breathing to ensure a stable baseline prior to initiation of the
chemoreflex assessment.

The transient hyperoxic ventilatory response test was used to
quantify CC activity, as previously described (Dejours et al., 1958;
Phillips et al., 2018). In short, following a period of normoxic

breathing, participants breathed hyperoxia (FiO2: 1.0) for 2 min,
and the test was repeated following one minute at normoxia. The
greatest 15-second average reduction in minute ventilation from
baseline was used to quantify CC activity. To improve sensitivity
for comparing between groups, we combined the average change
in ventilation from both bouts of hyperoxia. Participants then
completed a 10-minute recovery period.

A hyperoxic progressive hypercapnic rebreathe test was
completed to estimate central chemosensitivity (Read, 1967).
Elevated central chemosensitivity, combined with increased CC
sensitivity (hypoxic ventilatory response), has previously been
shown to be a prognostic marker in heart failure (Giannoni et al.,
2009). Briefly, a four liter rebreathe bag filled with a hyperoxic gas
mixture (FiO2 = 0.50, FiCO2 = 0.07) was attached to the system.
First, inspired PO2 was raised to ∼350 mmHg (FiO2 = 0.5) for
5 min, and during end-expiration, the valve was turned over
to the rebreathe bag. Participants continued to rebreathe from
the bag until an end-tidal partial pressure of CO2 (PETCO2)
of 55 mmHg was reached or until the participant requested to
terminate the test. Central chemosensitivity was subsequently
evaluated as the slope relating ventilation to PETCO2 calculated
using linear regression analysis (Read, 1967).

Following another 10-minute recovery period, the transient
hypoxic ventilatory response test was administered to evaluate
CC sensitivity (Edelman et al., 1973). During expiration, the
researcher turned the gas blender from normoxic to pure
nitrogen gas (FiO2 = 0.0). Participants inhaled 2–8 breaths
of nitrogen gas, followed by a 2–5 minute recovery period.
Each number of transient breaths was repeated a minimum
of two times to obtain a range of oxygen saturations (SpO2:
75–100%). The average of the two largest consecutive breaths
yielding the highest ventilation following the hypoxic stimulus
was used to calculate the change in ventilation from the
one minute baseline immediately preceding the stimulus
(Ponikowski et al., 2001). The hypoxic ventilatory response was
evaluated as the slope relating the change in ventilation to the
change in SpO2 (Chua and Coats, 1995; Chua et al., 1996a;
Ponikowski et al., 2001).

Constant Work-Rate Exercise Trials
Baseline physiological measurements were obtained for 3 min
in the upright seated position prior to the start of the constant
work-rate cycling exercise tests. This was followed by a 1-
minute period of unloaded pedaling, and then a rapid increase
in workload to 75% of peak work-rate. Exercise endurance time
was recorded from the onset of constant load to the point
of symptom limitation, or when participants were no longer
able to maintain a cadence at or above 50 rpm. Measurement
procedures for the constant work rate tests were identical
to those of the incremental exercise tests, with the addition
of the following procedures. Participants were instrumented
with impedance cardiography (Physioflow R© PF-05, Manatec
Biomedical, France) to estimate Q non-invasively (Bernstein,
1986). The changes in impedance cardiography derived Q
have been found to accurately estimate the changes that occur
during exercise in patients with CHF (Romano et al., 1996;
Crisafulli et al., 2007) and impedance cardiography has been

Frontiers in Physiology | www.frontiersin.org 3 March 2020 | Volume 11 | Article 195

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00195 March 10, 2020 Time: 19:26 # 4

Collins et al. CHF, Dopamine and Exercise

validated against the direct Fick method (Northridge et al., 1990;
Belardinelli et al., 1996). Hemoglobin concentration ([Hb])
was measured at the beginning of each experimental session
(HemoCue 201+ ; HemoCue AB, Angelholm, Sweden) following
IV catheter insertion and immediately after the termination
of the constant work-rate exercise test, during active recovery.
Oxygen delivery was estimated using Q, SpO2 and [Hb]
data. Baseline [Hb] measurements were used to calculate ḊO2
during seated baseline, and the [Hb] measurements obtained
during active recovery were used to calculate ḊO2 at TLIM.
Vascular conductance was calculated as Q/mean arterial pressure
(MAP). Tissue oxygenation was estimated using near infrared
spectroscopy (NIRS; Oxymon MK III, Artinis Medical Systems,
Netherlands), which has been previously shown to be an accurate
estimation of tissue oxygenation during exercise (Wilson et al.,
1989; Boushel et al., 1998; Grassi et al., 1999). Consistent
with previous work, the optodes were secured on the left
thigh at the vastus lateralis using double-sided tape, ensuring
that the optodes were separated by approximately 30 mm
allowing for a depth of penetration of 15 mm (Homma et al.,
1996). The intensities of incident and transmitted light were
recorded continuously and used to estimate the changes in
tissue oxygenation from resting baseline. Extreme care was
taken to ensure consistent optode placement between trials in
an attempt to standardize tissue sampled so as to minimize
measurement variability.

Dopamine/Saline Intervention
Prior to the experimental trials, participants were instrumented
with an IV catheter in the left antecubital vein to allow for the
continuous infusion of either low-dose dopamine hydrochloride
(2 µg · kg−1

·min−1; Hospira, Lake Forest, IL, United States) or
isotonic saline solution (order randomized) administered by a
constant-infusion pump (Alaris, San Diego, CA, United States).
Both the study participant and the lead researcher were blinded
to the experimental condition (saline or dopamine). Only the
nurse, supervising physician and research coordinator were
aware of the condition.

Low-dose dopamine (i.e., 2 µg · kg−1
·min−1) was selected

because it has previously been shown to effectively inhibit the
carotid chemoreceptors in humans (Lahiri et al., 1980; Stickland
et al., 2011; Edgell et al., 2015). Dopamine does not interact with
the central chemoreceptors as it does not cross the blood brain
barrier (Zlokovic, 2008).

Statistical Analysis
Data are presented as mean ± standard error of measurement
(SEM) unless otherwise indicated. For all inferential analyses,
the probability of a Type I error was set at 0.05. A three-
way, repeated measure analysis of variance (ANOVA) was used
to evaluate the effect of: saline versus dopamine (factor A)
during exercise on dependent variables (repeated factor) in
CHF and controls (fixed factor). Two-way repeated-measures
ANOVA was used to evaluate the condition by time interactions
in each group. If main effects or interaction effects were
found, Tukey pairwise comparisons were completed. Unpaired
T-tests were used to evaluate the cardiopulmonary responses

to incremental exercise, the pulmonary function tests, as
well as the ventilatory responses to central and carotid
chemoreceptor stimuli between groups. Statistical analyses were
completed using Sigmaplot 13.0 (Systat Software, San Jose,
CA, United States).

RESULTS

Participants
See Table 1, for participant demographics. Patients with CHF and
controls were matched for age, sex, weight, and height. Mean
ejection fraction (EF) at initial CHF diagnosis was 27.0 ± 3.3%

TABLE 1 | Participant characteristics.

Controls CHF P-value

Participants 12 12

Male/Female 8/4 8/4

Age (years) 58.2 ± 3.8 53.6 ± 3.7 0.13

Height (cm) 168.8 ± 2.0 170.4 ± 2.5 0.48

Mass (kg) 75.1 ± 2.3 85.9 ± 4.2 0.049

BMI (kg ·m−2) 26.5 ± 0.96 29.5 ± 1.0 0.08

Smoking history (pack years) 4.9 ± 2.9 3.7 ± 1.4 0.70

NYHA Functional Class (n)

I 5

II 6

III 1

Ejection Fraction (%) 43.0 ± 2.5

LV mass (g ·m−2) 103.3 ± 6.0

Diabetes Mellitus 0 3

Hypertension (SBP > 140) 0 2

Medication Use (n)

β-blockers 1 10

ACE-I - ARB 0 12

Aldosterone antagonists 0 10

Diuretics 0 6

Statins 0 5

Pulmonary Function

FEV1 (L) 3.4 ± 0.2 3.0 ± 0.3 0.26

FEV1 (% pred) 111.4 ± 3.2 91.1 ± 3.8 <0.001

FVC (L) 4.5 ± 0.3 4.1 ± 0.3 0.41

FVC (% pred) 110.8 ± 3.1 96.8 ± 3.8 0.01

FEV1/FVC (%) 75.3 ± 1.6 72.3 ± 2.3 0.30

FEV1/FVC (% pred) 99.3 ± 1.7 93.7 ± 2.7 0.09

TLC (L) 6.3 ± 0.3 5.7 ± 0.4 0.22

TLC (% pred) 101.3 ± 2.9 90.6 ± 3.8 0.04

RV (L) 1.8 ± 0.1 1.7 ± 0.1 0.64

FRC (L) 3.5 ± 0.2 2.9 ± 0.3 0.11

IC (% pred) 121.9 ± 6.6 105.3 ± 5.4 0.06

DLCO (% pred) 92.5 ± 5.6 77.6 ± 3.4 0.03

Data are presented as n or mean ± SEM. BMI, body mass index; NYHA, New York
Heart Association; LV, left ventricle; ACE-I, angiotensin-converting-enzyme inhibitor;
ARB, angiotensin receptor blocker; FEV1, forced expiratory volume in 1 s; FVC,
forced vital capacity; TLC, total lung capacity; RV, residual volume; FRC, functional
residual capacity; IC, inspiratory capacity; DLCO, diffusing capacity of the lung for
carbon monoxide.
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(n = 9), while EF at study enrolment was 43.0± 2.5% (n = 12; with
a mean improvement of 15 ± 4.1% in EF since initial diagnosis).
Ten study participants had heart failure with reduced ejection
fraction (HFrEF), and two participants had heart failure with
preserved ejection fraction (HFpEF).

Lung Function and Cardiopulmonary
Exercise Test
Pulmonary function and cardiopulmonary exercise test results
are displayed in Tables 1, 2. Total lung capacity (TLC), forced
expired volume in one second (FEV1), forced vital capacity (FVC)
and diffusing capacity (DLCO) were lower in CHF, while no
between-group difference in FEV1/FVC ratio was observed.

As compared to controls, patients with CHF had a significantly
lower relative VO2peak, peak minute ventilation (V̇E), and heart
rate. At peak exercise, patients with CHF had higher arterial
oxygen saturation, and perceived leg discomfort as compared
to controls. There was no between group difference in the
ventilatory response to exercise (i.e., V̇E/V̇CO2), IC or dyspnea.

Central and Carotid Chemoreception
There was no statistically significant difference in resting baseline
V̇E between groups (p = 0.31). The change in V̇E in response
to transient hyperoxia was not significantly different between
groups (CHF: 1.29 ± 0.33 vs. controls: 0.85 ± 0.26 L ·min−1,
p = 0.31). There was no difference in central chemoreflex
responses to the progressive hypercapnic rebreathe test between

TABLE 2 | Peak cardiopulmonary exercise responses.

Control CHF P-value

Work rate (W) 198 ± 22 127 ± 15 0.01

Work rate (% pred) 134 ± 10 79 ± 6 <0.001

V̇O2 (mL · kg−1
·min−1) 38.1 ± 3.5 25.0 ± 2.3 0.01

V̇O2 (L ·min−1) 2.87 ± 0.29 2.12 ± 0.19 0.05

V̇CO2 (L ·min−1) 3.15 ± 0.31 2.28 ± 0.20 0.03

RQ 1.10 ± 0.02 1.08 ± 0.01 0.32

V̇E (L ·min−1) 106 ± 12 69 ± 5 0.01

PETCO2 (mmHg) 32.3 ± 0.6 35.7 ± 1.1 0.02

V̇E/V̇CO2 32.8 ± 0.8 31.7 ± 1.2 0.46

Nadir V̇E/V̇CO2 28.2 ± 0.9 29.0 ± 1.2 0.40

V̇E/V̇CO2 slope 28.3 ± 0.7 27.5 ± 1.4 0.61

fB (breaths ·min−1) 41.8 ± 3.1 34.3 ± 2.7 0.14

IC (L) 3.04 ± 0.22 2.88 ± 0.20 0.59

IC% TLC 48.7 ± 2.2 50.2 ± 2.8 0.68

Delta IC 0.69 ± 0.42 0.16 ± 0.14 0.24

HR (beats ·min−1) 159.8 ± 5.4 108.6 ± 9.6 <0.001

SpO2 (%) 93.0 ± 1.3 97.0 ± 0.3 0.01

Dyspnea (Borg) 6.8 ± 0.6 7.1 ± 0.4 0.69

Leg discomfort (Borg) 6.7 ± 0.4 8.1 ± 0.3 0.02

Data are presented as mean ± SEM. HEWR, highest equivalent work rate;
V̇O2, oxygen uptake; V̇CO2, carbon dioxide production; RQ, respiratory quotient;
V̇E, minute ventilation; PETCO2, partial pressure of carbon dioxide; V̇E/V̇CO2,
ventilatory efficiency; fB, breathing frequency; IC, inspiratory capacity; IRV,
inspiratory reserve volume; HR, heart rate; SpO2, oxygen saturation measured
by pulse oximeter.

groups (CHF: 1.59 ± 0.37 vs. controls: 1.66 ± 0.37 L ·min−1
·

mmHg−1, p = 0.88). Patients with CHF had significantly
higher ventilatory responses to the transient hypoxia test (CHF:
0.81 ± 0.17 vs. Control: 0.39 ± 0.05 L ·min−1, p = 0.04). These
data suggest that the patients with CHF had greater carotid
chemosensitivity than controls, but no differences in central
chemosensitivity.

The Effect of Low-Dose Dopamine on
Exercise Endurance Time
Experimental trial results are displayed in Tables 3, 4. Dopamine
did not have an effect on exercise endurance time in either CHF
patients (saline: 13.1 ± 2.4 min vs. dopamine: 13.5 ± 1.6 min;
p = 0.78) or controls (saline: 10.3 ± 1.2 min vs. dopamine:
11.5 ± 1.3 min; p = 0.25). A three-way analysis of variance
revealed that there was no significant interaction effect between
group (CHF vs. control) and condition (saline vs. dopamine) for
exercise endurance time (p = 0.653).

The Effects of Low-Dose Dopamine on
the Ventilatory Response to Exercise
See Table 3, for the physiological and perceptual responses to
dopamine during constant load exercise at 4-minute isotime, and
Table 4, for the responses at TLIM. The effects of dopamine
on V̇O2, V̇E, and V̇E/V̇CO2 during constant load exercise in
controls and patients with CHF are displayed in Figure 1.
V̇O2, V̇CO2, and V̇E were significantly lower in patients with
CHF, independent of condition, when compared to controls
(p < 0.001, p < 0.001, p < 0.001, respectively). There was no
significant difference in V̇O2, V̇CO2, V̇E or V̇E/V̇CO2 between
conditions at isotime (2- and 4-minute) or TLIM in either
group. Dopamine significantly increased PETCO2 in CHF at
baseline, 2- and 4-minute (p = 0.008, p = 0.007, p < 0.001,
respectively), but not at TLIM (p = 0.26). In controls, dopamine
significantly increased PETCO2 at 2- and 4-minute (p = 0.032
and p = 0.022, respectively), but not at baseline or TLIM and
(p = 0.31 and p = 0.56, respectively). Dyspnea was unaffected by
dopamine throughout exercise in either group (main effect for
condition p = 0.45).

The Effects of Dopamine on the
Cardiovascular Responses to Exercise
The effects of dopamine on the cardiovascular responses to
exercise can be found in Tables 3, (4-minute isotime) and
4 (TLIM), and Figure 2. Cardiac output, heart rate (HR),
stroke volume (SV), MAP, and conductance were lower in
patients with CHF than in controls independent of condition
(Q: p < 0.001; HR: p < 0.001; SV: p < 0.001; MAP: p < 0.001;
conductance: p < 0.001). Q was increased with dopamine
in patients with CHF at TLIM (p = 0.03); likely secondary
to a trend in increased SV (p = 0.05) while no change
in HR was observed. Vascular conductance was significantly
increased with dopamine in CHF (p = 0.01) as well as
controls (p = 0.03) at TLIM, despite no significant changes
in MAP in either group at TLIM (Figure 2). There were no
significant changes in Q, SV or HR in controls with dopamine
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TABLE 3 | Effects of dopamine on physiological and perceptual responses during constant load exercise at 75% peak work-rate in patients with chronic heart failure and
healthy controls at 4-minute isotime.

Control CHF

Condition Saline Dopamine P-value Saline Dopamine P-value

Power output (W) 149 ± 16 149 ± 16 95.3 ± 11 95.3 ± 11

Metabolic

V̇O2 (L ·min−1) 2.39 ± 0.27 2.36 ± 0.27 0.45 1.59 ± 0.13 1.63 ± 0.13 0.23

V̇CO2 (L ·min−1) 2.56 ± 0.28 2.54 ± 0.26 0.81 1.75 ± 0.14 1.78 ± 0.14 0.41

Ventilatory/gas exchange

V̇E (L ·min−1) 76.7 ± 8.1 72.9 ± 6.5 0.15 50.0 ± 3.1 48.4 ± 3.4 0.33

V̇E/V̇CO2 30.2 ± 0.7 29.2 ± 0.7 0.50 29.2 ± 0.9 27.6 ± 1.0 0.24

fB (breaths ·min−1) 29.5 ± 2.3 29.3 ± 1.5 0.88 28.4 ± 1.4 26.5 ± 1.8 0.16

VT (L) 2.59 ± 0.18 2.50 ± 0.18 0.34 1.84 ± 0.15 1.94 ± 0.17 0.21

IC (L) 3.21 ± 0.22 3.22 ± 0.19 0.14 2.94 ± 0.21 3.00 ± 0.17 0.37

IRV,%TLC 9.91 ± 1.6 12.0 ± 1.9 0.21 19.8 ± 1.9 19.3 ± 1.6 0.78

PETCO2 (mmHg) 35.2 ± 0.8 37.5 ± 0.7 0.02 37.7 ± 1.4 40.1 ± 1.3 <0.001

SpO2 (%) 97.6 ± 0.3 96.6 ± 0.5 0.01 96.2 ± 1.2 96.0 ± 0.7 0.80

Cardiovascular

Q (L ·min−1) 13.5 ± 0.8 13.6 ± 1.0 0.79 8.1 ± 0.6 8.4 ± 0.6 0.51

SV (mL) 91.7 ± 4.4 93.6 ± 6.9 0.71 75.9 ± 5.3 78.3 ± 5.1 0.20

HR (beats ·min−1) 146.6 ± 4.2 144.6 ± 4.7 1.00 106.1 ± 4.0 108.0 ± 5.0 0.61

Q/MAP (L ·min−1
·mmHg−1) 113 ± 6.8 120 ± 9.1 0.30 92.9 ± 7.6 99.8 ± 6.8 0.24

MAP (mmHg) 119 ± 3.4 114 ± 3.5 0.21 87.7 ± 3.0 84.6 ± 3.2 0.15

Perceptual

Dyspnea (Borg) 3.8 ± 0.6 3.5 ± 0.5 0.23 3.3 ± 0.5 2.8 ± 0.3 0.23

Leg discomfort (Borg) 4.7 ± 0.6 4.3 ± 0.5 0.56 4.3 ± 0.6 4.0 ± 0.5 0.41

Data are presented as mean SEM. V̇O2, oxygen consumption; V̇CO2, carbon dioxide production; V̇E, minute ventilation; V̇E/V̇CO2, ventilatory efficiency; fB, breathing
frequency; VT, tidal volume; EELV, end-expiratory lung volume; IRV, inspiratory reserve volume; PETCO2, end-tidal partial pressure of carbon dioxide; SpO2, oxygen
saturation measured by pulse oximeter; Q, cardiac output; SV, stroke volume; HR, heart rate; Q/MAP, conductance; MAP, mean arterial pressure.

at 4-minute isotime or TLIM. At TLIM, DO2 was higher
with dopamine in both groups (controls: p = 0.03 vs. CHF:
p = 0.04). This improvement in DO2 at TLIM in controls was
likely secondary to a trend in increased [Hb] with dopamine
(p = 0.07), which was not observed in patients with CHF.
Despite improved DO2 at peak exercise, tissue oxygenation at
the vastus lateralis was unaffected by dopamine in either group
(controls: p = 1.00 vs. CHF: p = 0.96). There were no changes
in ratings of perceived leg discomfort in either group between
both conditions.

DISCUSSION

To date, this is the first study to evaluate the effects of
carotid chemoreceptor inhibition with low-dose dopamine on
exercise tolerance, and cardiovascular and ventilatory regulation
in patients with CHF; and our findings are twofold. First,
CC inhibition with dopamine improved vascular conductance
at TLIM in both groups. Further, dopamine increased Q
and O2 delivery at TLIM in patients with CHF. Second,
despite improvements in vascular conductance/O2 delivery, CC
inhibition had no effect on exercise endurance time in either
group. When combined, these findings suggest that the CC
contributes to cardiovascular control during exercise in both

health and CHF, but the CC does not contribute to exercise
intolerance in CHF.

The Effects of Dopamine on
Cardiovascular Function During Exercise
It has been well documented that CC activity/sensitivity is
increased in both experimental CHF (Sun et al., 1999a,b;
Ponikowski et al., 2001; Stickland et al., 2007) and in patients
with CHF (Chua et al., 1997; Sun et al., 1999b; Ponikowski
et al., 2001; Stickland et al., 2007; Giannoni et al., 2008, 2009).
Furthermore, it has been demonstrated that the CC contributes
to the sympathetic restraint of exercising muscle blood flow both
in health (Stickland et al., 2008, 2011) and experimental CHF
(Stickland et al., 2007). Previous work has shown no CV effect
of CC inhibition in CHF patients performing hand grip exercise
(Edgell et al., 2015), however, the current study demonstrated
that CC inhibition increased vascular conductance and peak Q
during whole-body cycle exercise in CHF. Both central (reduced
convective oxygen transport and Q) and peripheral factors
may be involved in the exercise intolerance typically observed
in CHF (Haykowsky et al., 2015). Peripheral factors limiting
exercise in CHF may include: impaired local skeletal muscle
blood flow (LeJemtel et al., 1986; Sullivan et al., 1989; Wilson
et al., 1993; Esposito et al., 2010), impaired diffusive oxygen
transport (Esposito et al., 2010, 2011) as well as skeletal myopathy
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TABLE 4 | Effects of dopamine on physiological and perceptual responses during constant load exercise at 75% max workload in patients with chronic heart failure and
healthy controls at time of symptom limitation.

Control CHF

Condition Saline Dopamine P-value Saline Dopamine P-value

Time (mins) 10.3 ± 1.2 11.5 ± 1.3 0.16 13.1 ± 2.4 13.5 ± 1.6 0.78

Power output (W) 149 ± 16 149 ± 16 95 ± 11 95 ± 11

Metabolic

V̇O2 (L ·min−1) 2.69 ± 0.31 2.63 ± 0.32 0.18 1.86 ± 0.16 1.89 ± 0.15 0.33

V̇CO2 (L ·min−1) 2.67 ± 0.30 2.66 ± 0.30 0.27 1.93 ± 0.16 1.95 ± 0.16 0.57

Ventilatory/gas exchange

V̇E (L ·min−1) 93.8 ± 10.5 92.3 ± 10.0 0.55 62.5 ± 5.1 61.2 ± 5.0 0.42

V̇E/V̇CO2 35.5 ± 1.2 35.2 ± 1.0 0.84 32.6 ± 1.2 31.5 ± 1.2 0.43

fB (breaths ·min−1) 39.6 ± 2.2 39.3 ± 2.0 0.26 35.1 ± 1.6 34.5 ± 2.5 0.66

VT (L) 2.45 ± 0.15 2.33 ± 0.16 0.18 1.84 ± 0.16 1.86 ± 0.17 0.84

IC 3.25 ± 0.22 3.24 ± 0.19 0.90 2.97 ± 0.20 3.02 ± 0.19 0.35

IRV,%TLC 12.6 ± 1.3 14.7 ± 1.8 0.22 20.2 ± 2.9 21.1 ± 1.9 0.60

PETCO2 (mmHg) 30.9 ± 1.1 31.0 ± 0.9 0.56 33.6 ± 1.2 34.4 ± 1.1 0.26

SpO2 (%) 94.8 ± 0.7 94.8 ± 0.5 1.00 96.5 ± 1.1 95.3 ± 0.9 0.09

Cardiovascular

Q (L ·min−1) 14.7 ± 0.69 15.7 ± 1.1 0.14 8.75 ± 0.82 9.77 ± 0.76 0.03

SV (mL) 92.4 ± 3.8 96.3 ± 7.5 0.23 72.2 ± 6.5 81.1 ± 4.7 0.05

HR (beats ·min−1) 156.1 ± 4.5 158.3 ± 6.0 0.86 117.4 ± 4.0 121.8 ± 5.8 0.24

DO2 (L ·min−1) 3.00 ± 0.22 3.34 ± 0.28 0.03 1.74 ± 0.16 1.94 ± 0.17 0.04

Q/MAP (L ·min−1
·mmHg−1) 124.4 ± 6.1 137.7 ± 9.9 0.03 95.2 ± 6.8 110.4 ± 7.4 0.01

MAP (mmHg) 118.6 ± 3.4 114.0 ± 2.4 0.23 91.0 ± 3.8 88.9 ± 3.8 0.33

Hb (g · dL−1) 15.4 ± 0.6 16.1 ± 0.4 0.07 14.8 ± 0.5 14.8 ± 0.5 0.93

Perceptual

Dyspnea (Borg) 7.8 ± 0.5 7.8 ± 0.6 1.00 6.7 ± 0.5 6.8 ± 0.5 0.69

Leg discomfort (Borg) 8.4 ± 0.6 8.7 ± 0.5 0.40 8.2 ± 0.4 8.8 ± 0.3 0.15

Reason for termination

Legs 5 5 7 9

Dyspnea 2 2 0 0

Both 5 5 5 3

Data are presented as mean SEM. V̇O2, oxygen consumption; V̇CO2, carbon dioxide production; V̇E, minute ventilation; V̇E/V̇CO2, ventilatory efficiency; fB, breathing
frequency; VT, tidal volume; EELV, end-expiratory lung volume; IRV, inspiratory reserve volume; PETCO2, end-tidal partial pressure of carbon dioxide; SpO2, oxygen
saturation measured by pulse oximeter; Q, cardiac output; SV, stroke volume; HR, heart rate; DO2, oxygen delivery; Q/MAP, conductance; MAP, mean arterial pressure;
Hb, hemoglobin concentration.

(Coats et al., 1994). The improvement in Q with dopamine
translated into an increase in oxygen delivery at TLIM in CHF.
Despite the improvement in central convective oxygen transport
with dopamine (i.e., increased DO2), there was no change in
exercise endurance time in patients with CHF. Both vastus
lateralis THb (index of local blood flow) and HHb (index of
O2 extraction) were unaffected by dopamine in patients with
CHF. It is possible that the sympathetic mediated improvement
in total vascular conductance (i.e., vasodilation) and global O2
delivery with dopamine did not translate to improved leg blood
flow and oxygen delivery. Additionally, the lack of effect of
CC inhibition on vastus lateralis HHb, despite improved central
oxygen transport during exercise supports previous evidence
that patients with CHF have a peripheral limitation to exercise
(LeJemtel et al., 1986; Sullivan et al., 1989; Wilson et al., 1993;
Coats et al., 1994; Esposito et al., 2010, 2011; Bhella et al., 2011).
Because THb and HHb were both unaffected with dopamine

in patients with CHF, it is difficult to partition out whether a
sympathetic–mediated restraint in blood flow or an impairment
in vastus lateralis O2 extraction prevented an improvement in
tissue oxygenation and ultimately exercise tolerance (despite
improved central oxygen transport). Future experiments directly
measuring leg blood flow and conductance are required to
better understand the complex relationship between sympathetic
mediated restraint of locomotor blood flow, muscle O2 diffusion
and extraction in CHF.

The Effects of Dopamine on Ventilation
During Exercise
It has been well established that patients with CHF have an
exaggerated ventilatory response to exercise (Weber et al., 1982;
Sullivan et al., 1988; Myers et al., 1992; Koike et al., 1993; Riley
et al., 1994; Kobayashi et al., 1996), which can contribute to the
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FIGURE 1 | Mean ± SEM oxygen consumption (V̇O2), minute ventilation (V̇E), and ventilatory efficiency (V̇E/V̇CO2) at rest and during constant-load cycle ergometry
in controls (A,C,E) and CHF (B,D,F).

sensation of dyspnea (Rubin and Brown, 1984). The elevated
CC sensitivity typically observed in CHF has been linked to
the heightened ventilatory response to exercise (Chua et al.,
1996a). Despite evidence of enhanced carotid chemosensitivity,
the CHF patients in the current study did not demonstrate an
exaggerated V̇E/V̇CO2 response to exercise, and CC inhibition

with dopamine did not reduce minute ventilation or dyspnea
during exercise in CHF. We would suggest that the absence of
an exaggerated V̇E/V̇CO2 in patients with CHF during exercise
could be due to the pharmacological management of these
patients; β-blockers have been shown to lower V̇E/V̇CO2 in
CHF but do not affect the CC (Beloka et al., 2008). We did
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FIGURE 2 | Mean ± SEM cardiac output (Q), mean arterial pressure (MAP), vascular conductance, and vastus lateralis tissue oxygentation [Total Hemoglobin (Hb)]
at rest and during constant-load cycle ergometry in controls (A,C,E,G) and CHF (B,D,F,H). *p < 0.05 saline vs. dopamine within group.
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observe an increase in PETCO2 at baseline and isotime in CHF
patients with CC inhibition, while in controls, PETCO2 was
unaffected by dopamine at baseline, but increased at isotime. The
observed increase in PETCO2, would suggest a relative alveolar
hypoventilation, secondary to CC inhibition. These data suggest
that although the CC may help with matching alveolar ventilation
to metabolic demand, the heightened basal CC sensitivity does
appear to contribute to elevated minute ventilation, dyspnea and
exercise intolerance in CHF.

Methodological Considerations
Historically, work in experimental CHF (Sun et al., 1999b;
Li et al., 2006, 2007; Stickland et al., 2007; Ding et al.,
2008; Marcus et al., 2014) has been on animals that have
pacing-induced (i.e., chronic ischemia) CHF, and these animals
typically do not receive CV medications to help manage
their disease, nor do they typically have co-morbidities.
As a result, there are significant limitations related to the
translation of previous findings in experimental models of
CHF to patients with CHF. Additionally, there is variability
in humans with CHF in terms of: comorbidities, HF etiology,
and emerging pharmacotherapies being used in patients with
CHF. In the current study, both patients with HFpEF
and HFrEF were examined. While there were no apparent
differences with CC inhibition between the two etiologies,
this would need to be confirmed with a properly designed
comparison study.

Original work demonstrating enhanced CC activity/sensitivity
in CHF was completed on patients with lower EF (HFREF)
and higher NYHA functional class (Chua et al., 1996a,b,
1997; Ponikowski et al., 2001) than the patients in the
current study. Further, patients in these previous studies
were not treated with β-blockers or ARBs but were
receiving digoxin. Digoxin is no longer the preferred
treatment for patients with CHF (Lewis et al., 1989), and
has been shown to sensitize the CC (Quest and Gillis,
1971; McQueen and Ribeiro, 1983; Schobel et al., 1994;
Janssen et al., 2010). Future clinical trials investigating
the effect of CC-mediated CV function before and after
treatment may provide further insight into the benefits of
pharmacotherapy on CC function.

To our knowledge, there is no minimally clinically important
difference (MCID) in exercise endurance time with constant
work-rate exercise in CHF, but the MCID in COPD has been
determined to be 101 s (Puente-Maestu et al., 2009). The
current study found a 23.5 ± 83.2 s improvement in exercise
endurance time with dopamine in patients with CHF, which
suggests that the current observed effect size is unlikely to
be of physiological or clinical significance in CHF. Further, a
post hoc sample size calculation was completed based on the
current mean difference in exercise endurance time (mean± SD:
0.39 ± 4.8 min), and estimated that 1184 patients with CHF
would be required to detect a significant effect of CC inhibition
with dopamine in exercise tolerance (effect size = 0.08, α = 0.05,
β = 0.2, power = 0.8). Based on the small absolute increase
with dopamine and the post hoc power calculation, we would
suggest that the inability to detect a difference in exercise

endurance time with dopamine is unlikely the result of being
statistically underpowered.

Limberg et al. (2016) found that there was individual
variability as to the most effective dose of dopamine to inhibit
the CC. In the current study, we used a standardized dose
of IV dopamine hydrochloride (2 µg · kg−1

·min−1) that has
been previously used by our group and shown to inhibit the
CC without resulting in alpha- or beta-adrenergic stimulation
(Stickland et al., 2011; Edgell et al., 2015; Phillips et al., 2018). It is
possible that by using a dose-response curve, we may have found
a more effective individual dose of dopamine for each patient.
However, being concerned about alpha-adrenergic stimulation
with higher doses of dopamine (which could increase SNA and
vasoconstriction) (Hoffman and Lefkowitz, 1990; Ciarka et al.,
2007), we decided to use a conservative dose of dopamine
hydrochloride (2 µg · kg−1

·min−1).
It is generally assumed that low-dose dopamine directly

stimulates dopamine-1 vascular receptors eliciting a vasodilatory
response (Goldberg et al., 1963; Davis et al., 1982; Varriale and
Mossavi, 1997; Elkayam et al., 2008). Work to date has shown
that low-dose dopamine causes vasodilation in conditions of
high CC activity/sensitivity such as CHF (Stickland et al., 2007;
Edgell et al., 2015) and COPD (Phillips et al., 2018). To our
knowledge, vasodilation does not occur with low-dose dopamine
infusion in healthy participants where CC activity/sensitivity
is normal (Lahiri et al., 1980; Stickland et al., 2011; Phillips
et al., 2018). While is it possible that the vasodilation observed
with dopamine could be due to the direct peripheral vascular
actions of dopamine; any peripheral vascular effects of dopamine
would have been consistently observed throughout exercise in
both groups. Importantly, direct stimulation of dopamine-1
vascular receptors would not affect ventilatory control. We have
previously shown that the identical dose of dopamine used in the
current study inhibits resting minute ventilation in CHF patients,
but not healthy controls (Edgell et al., 2015). In the current study,
dopamine increased PETCO2 (indicating a small reduction in
alveolar ventilation) at baseline immediately prior to exercise in
CHF patients, and during exercise in both controls and CHF.
When combined, these results suggest that the cardiovascular
effects of dopamine observed in the current study are secondary
to CC inhibition and not a direct peripheral vascular effect.

CONCLUSION

In conclusion, this study examined the effect of CC
inhibition using low-dose dopamine on exercise tolerance,
and cardiovascular and ventilatory function in patients with
CHF and healthy controls. CC inhibition improved vascular
conductance during exercise in both groups and increased
peak cardiac output and oxygen delivery in CHF, but this did
not translate to improved exercise tolerance in either group.
Additionally, dopamine did not affect minute ventilation nor
dyspnea during exercise in patients with CHF, or controls.
Importantly, this work suggests that the CC contributes to CV
regulation in both patients with optimally treated chronic heart
failure and healthy controls during whole-body exercise.
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