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Southern Medical University, Guangzhou, China

Bidirectional molecular movements between the nucleus and cytoplasm take place
through nuclear pore complexes (NPCs) embedded in the nuclear membrane.
These macromolecular structures are composed of several nucleoporins, which form
seven different subcomplexes based on their biochemical affinity. These nucleoporins
are integral components of the complex, not only allowing passive transport but
also interacting with importin, exportin, and other molecules that are required for
transport of protein in various cellular processes. Transport of different proteins is
carried out either dependently or independently on transport receptors. As well as
facilitating nucleocytoplasmic transport, nucleoporins also play an important role in cell
differentiation, possibly by their direct gene interaction. This review will cover the general
role of nucleoporins (whether its dependent or independent) and nucleocytoplasmic
transport receptors in cell differentiation.

Keywords: nuclear pore complexes (NPCs), differentiation, nucleoporin, nucleocytoplasmic transport, nuclear
membrane

INTRODUCTION

The nucleoplasm and cytoplasm are the main locations in which multiple vital processes within cells
take place. These processes require bidirectional molecular trafficking between these domains, but
free motion of molecules is restricted by the double membrane nuclear envelope. However, there
are various nuclear pore complexes (NPCs) embedded in the nuclear pores present on the nuclear
envelope. The NPCs are composed of several units. termed nucleoporins (Nup), which arrange
structurally and form the main channels that facilitate transport between the nucleoplasm and
cytoplasm (Kramer et al., 2008). Small molecules such as small proteins, metabolites, and ions can
pass through these gates by passive diffusion, whereas large molecules require particular transport
receptors, such as importins and exportins.

Nucleoporins in the NPC and their associated importins and exportins, also called karyopherin,
are not only responsible for nucleocytoplasmic transport but are also involved directly or indirectly
(dependently/independently on transport receptors) in various cellular processes, such as cell
differentiation. Variations in the expression of nucleoporins were observed among different cell
types (Guan et al., 2000) and tissues during the development (Jao et al., 2012; Zheng et al.,
2012). Moreover, mutations in several nucleoporins are reported to be involved in several diseases
(Cronshaw and Matunis, 2003; Neilson et al., 2009). In this review, we will specifically discuss the
general role of NPCs and transport receptor proteins in cell differentiation.
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NUCLEAR PORE COMPLEX

Structure and Composition
About 3000 NPCs can be found on the nuclear membrane of a
mammalian cell (Dultz and Ellenberg, 2010). These complexes
are termed the gatekeepers of the nucleus because of their
involvement in almost all nucleocytoplasmic transport. The NPC
is an eightfold symmetrical structure with a molecular weight of
60–125 MDa and consists of 30 different nuclear proteins, which
are collectively called nucleoporins or Nups (Alber et al., 2007). It
has been demonstrated in a cryo-electron tomographic study that
NPCs constitute three distinct regions in the nuclear membrane:
(1) the nuclear basket (so-called because of its basket-like shape),
(2) the cytoplasmic ring from which filaments extend into the
cytoplasm, and (3) the central framework which makes up the
pore (Hurt and Beck, 2015). Nups form various subcomplexes
(Figure 1; Kabachinski and Schwartz, 2015; Beck and Hurt, 2017)
based on their biochemical affinity for each other (Siniossoglou
et al., 2000; Lutzmann et al., 2002).

Depending upon their location, Nups will contain different
types of structural domains such as alpha helices, β propellers,
and phenylalanine-glycine (FG) repeats (Hoelz et al., 2011).
About one third of the NPC is composed of special types of Nups
called FG Nups, which fill the central channel of NPC. These
Nups are assumed to have an unfolded structure that helps them
bind with the transport receptors (Isgro and Schulten, 2007).

Different subcomplexes, mentioned in Figure 1, constitute
the structure of NPCs by arranging in a particular way that
means the cytoplasmic region is on the cytoplasmic side,
while the nuclear basket is on the nuclear side. Membrane
Nups help in anchoring the NPC into a nuclear envelop,
while FG Nups directly lie in the inner most of NPC and
directly interact with the transport. The structure NPC is highly
conserved in eukaryotes and investigation conducted on yeast
and eukaryotes indicated the similarity in the localization and
function of NPC, even though the sequences are not exactly
conserved. In fact, the nucleocytoplasmic transport through
NPC and Nups facilitate various cellular processes (Jamali et al.,
2011). Since various nucleoporin are also crucial in tissue and
organs, their absence or mutation leads to the defect in the
organ’s development (Zheng et al., 2012; Niu et al., 2014). The
structure of an NPC and its Nups are involved in various
cellular processes such as chromatin regulation, cell proliferation,
cell differentiation, and cell fate. For example, a few high
mobile nucleoporins change their localization from NPC to
nucleoplasm and are involved in chromatin interaction (Liang
et al., 2013). In addition, some nucleoporins are also involved
in the direct association with cell signaling protein (Yang et al.,
2015, 2019). Other components of nucleocytoplasmic transport,
the transport receptors, play a crucial role in the transport of
proteins, including transcription factors and signaling molecules
(Yang et al., 2014). Interaction between transport receptors and
nucleoporins is very important in transportation of these proteins
in various cellular processes, including the cell differentiation.
This review will cover the role of various Nups and transport
receptors in cell differentiation.

NUCLEOPORIN SUBCOMPLEXES IN
CELL DIFFERENTIATION

Y-complex/Outer Ring Subcomplex
Recent studies have shown that, as well as their role in
cytoplasmic transport, expressions of nucleoporins are changed
during cell proliferation and differentiation, and thus may be
involved in determining cell fate (Lupu et al., 2008; Gomez-
Cavazos and Hetzer, 2015). A study of the role of Nups
in the differentiation of mouse embryonic stem cells (ESCs)
showed that mouse ESCs with depleted Nup133 were not
only inefficiently differentiated into the neural lineage but also
sustained abnormal pluripotency features (Oct4). A decline in
the capacity of generation of post-mitotic neurons was observed
in the Nup133 deficient neural progenitor cells, which pointed
to its role in the development requirement for the establishment
of neural lineage (Lupu et al., 2008). Study on Hela cells
have not revealed any involvement of Nup133 in the transport
of nuclear protein through NLS (nuclear localization signal)
and NES (nuclear export signal) (Vasu et al., 2001; Walther
et al., 2003). In addition, the localization of NLS dependent
transcription factors Oct4, Nanog, and Bern2 (Pan et al., 2004;
Do et al., 2007; Yasuhara et al., 2007) were also normal in Nup
deficient cells. Moreover, similar expression and localization of
importin α1, and importin α5 in merm (mermaid) and wild-
type embryos was observed. Although Nup133 does not influence
NLS dependent protein transport, it might be possible that it
regulates a subset of proteins using NLS in the independent way
(Lupu et al., 2008).

Another nucleoporin, Seh1, was found to be associated with a
missing oocyte (mio) gene, which is required for the maintenance
of meiotic cycle and oocyte fate during differentiation. The
level of mio protein was reduced in the mutant Seh1 oocyte,
thereby oocyte failed to differentiate and become psuedonurse
cells (Senger et al., 2011). Nup107 in the same complex influenced
the activity of somatic cells by regulating the expression of
gonadal specific genes or by interacting with the tissue specific
factors, that are imperative for the differentiation of nurse
cells and oocyte (Weinberg-Shukron et al., 2015). Nup107 was
also found to influence chondrogenic differentiation in the
zebrafish embryo; an embryo deficient in Nup107 led to impaired
chondrogenic differentiation during pharyngeal arch formation
(Zheng et al., 2012).

Nup96 regulates T and B cell proliferation in innate and
adaptive immune systems. Mice with lower expression levels
of Nup96 showed compromised T cell proliferation because
of a decrease in the expression of interferon-regulated genes
(Faria et al., 2006). Sec13 interacts with Nup96; therefore,
the same trend was observed in a study conducted on mice
with low levels of Sec13 (Moreira et al., 2015). Sec13 may
have a role in the differentiation of retinal cells, according
to a study conducted on Sec13sq198 mutant zebrafish (Niu
et al., 2014). Surprisingly, another member of this complex,
ELYS, influenced the proliferation and development of neuronal,
retinal, and intestinal cells of zebrafish (Davuluri et al., 2008;
de Jong–Curtain et al., 2009).
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FIGURE 1 | Structure of nuclear pore complex and Nups subcomplexes. Each nuclear pore complex (NPC) is embedded in grommet made by the outer and inner
nuclear membrane. Phe-Gly (FG) Nups form the central channel of the nuclear pore complex. The peripheral structure of NPC consists of cytoplasmic filament,
nuclear filament, and nuclear basket.

Cytoplasmic Region
Nup358/RanBP2 is associated with muscle cell differentiation,
and the depletion of Nup358 inhibits the formation of myotubes.
During differentiation, the structure of the NPC was observed
to be changed, and Nup358 was the key component in this
remodeling of the architecture of NPC (Asally et al., 2011).
Differentiation of hippocampal axon-dendritic neurons is also
regulated by Nup358, via interactions with Disheveled (a
mediator of Wnt signaling) and aPKC (Par polarity complex)
(Vyas et al., 2013). Gle1 was found to have a role in motor-axon
arborization and, as in Gle1-deficient zebrafish, neural precursors
failed to differentiate into the terminal stages (Jao et al., 2012).
Schwann cells require Gle1 for differentiation and proliferation
from their precursor cells into myelinating Schwann cells
(Seytanoglu et al., 2016). Perez-Terzi (Perez-Terzic et al., 2003)
studied the role of NPC structure and various Nups and transport
receptors in stem cell-derived cardiomyocytes. Alteration of the
structure of the NPC, nucleoporin expression (Nup214, Nup358,
Nup153), and p62 (involved in nuclear transport) facilitate
the differentiation of ESCs into the cardiac lineage (Perez-
Terzic et al., 2007). Another important nucleoporin, Rae1, was
found to be involved in germ line differentiation in testes of
Drosophila, suggesting the importance of this protein in male
fertility (Volpi et al., 2013).

Inner Ring Subcomplex
In this complex, the expression of Nup155 was observed to be
highest in the skeletal and cardiac muscle cells. Nup155-depleted
mice were shown to die in early embryogenesis, indicating
its significance in embryonic development. The heterozygous

recessive gene of Nup155 was associated with an atrial fibrillation
phenotype (Zhang et al., 2008). Expression of Nup93 was
observed in all cell types of kidney cells, and its mutation
leads to the pathogenesis of focal segmental glomerulosclerosis
(Hashimoto et al., 2019). Knock down of Nup93 causes the
reduction in human podocyte proliferation. Interaction of Nup93
and XPO5 was observed with SMAD 4 signaling protein.
Mutation in Nup93 leads to the abrogation of SMAD activity
which causes Steroid Resistant Nephrotic Syndrome (SRNS)
(Braun et al., 2016). Nup35 regulates the cardiac pH by regulating
the membrane protein NHE1expression (Xu et al., 2015).

Nuclear Basket
Surprisingly, Nup50 and Nup153 are found in both the NPC
and in the nucleoplasm, and they are thus considered mobile
nucleoporins whose movement can be detected in various
locations (Buchwalter et al., 2014; Kitazawa and Rijli, 2017).
For example, Nup50 was shown to promote differentiation of
myoblasts during the development of myotubes with its transport
independent role (Buchwalter et al., 2014). Nup50 was found to
be downregulated along with Kifc1 (kinesin super family) during
muscle cell differentiation in C2C12 cells.

Nup50 relies on Nup153, as depletion of Nup153 causes
displacement of Nup50 from the NPC (Hase and Cordes,
2003). In human ESCs, depletion of Nup153 induced early
differentiation and was found to be involved in silencing the
developmental gene (neural specific genes: Pax6, Blbp, Nes, and
Tubb3) without altering nucleocytoplasmic transport (transport
independent). It binds with the transcriptional start site (TSS) of
developmental genes and facilitates the recruitment of polycomb
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repressor complex 1 (PRC1) (Jacinto et al., 2015). Nup153
interacts with transcriptional factor Sox2 and is downregulated
during the differentiation of neuronal progenitor cells into
neurons (Kitazawa and Rijli, 2017). Nup153 not only interacts
with Sox2 in neuronal differentiation and cell proliferation
(Smitherman et al., 2000; Toda et al., 2017), but also interacts
with and co-regulates other genes, suggesting it might contribute
to determining neural fate (Toda et al., 2017).

Central FG-Nups and Transmembrane
Nups
Among the central FG-Nups, Nup62 plays an important role in
embryonic development (Convergence and extension of gastrula,
dorsoventral patterning, and specification of midline organ
precursor) by recruiting β-catenin in the Wnt signaling pathway,
and also regulates Wnt/β-catenin and the BMP signaling pathway
(Yang et al., 2015).

Nup210 is mobile, dynamic (Rabut et al., 2004), and highly
expressed in many organs, including the brain, skin, lung,
kidney, pancreas, and gut (Olsson et al., 1999). Nup210 was first
studied because of its variation in expression during epithelial
differentiation in metanephric epithelial differentiation. Nup210
was found to be essential not only for myogenic differentiation,
but also for neuronal differentiation. It was found to be expressed
not during the proliferation of ESCs and myoblasts but at the
time of cell differentiation. The dynamic nature of Nup210 is
indicated by the fact that depletion of Nup210 had no influence
on nucleocytoplasmic transport but caused downregulation of
several genes associated with differentiation (D’Angelo et al.,
2012). Comprising a luminal domain and C-domain, Nup210
plays its part in differentiation through the luminal domain,
which is continuous with the endoplasmic reticulum. It has been
suggested that Nup210 regulates calcium homeostasis in the
endoplasmic reticulum during muscle differentiation. However,
further studies are required to determine the effects of Nup210
binding to calcium muscle differentiation (Gomez-Cavazos and
Hetzer, 2015). NDC-1 interacts with SEPTIN to form a complex
that is co-expressed at the manchette and neck region of sperm
during terminal differentiation in mammalian spermiogenesis
(Lai et al., 2016).

Other Nups: Nup98
The effects of Nup98 and Nup96 on the proliferation and
differentiation of the germ line were investigated in Drosophila
(Parrott et al., 2011). The results revealed that the Nup98-96
genes are required for the cell to be in an undifferentiated state.
Specifically, Nup98-96 are required for cell proliferation in the
germ line, which in turn prevents the cell from differentiating.
The binding of the mobile Nup98 to genes linked with
development and differentiation in ESCs was studied by Liang
et al. (2013). Nup98 was observed to bind to and activate neural
developmental genes during the neural differentiation of ESCs.

Role of Nups in Chromatin Regulation
Recent studies have suggested that mobile Nups (e.g., NUP50,
NUP153, and NUP98) can directly associate with chromatin

because they can shuttle from nucleoplasm to NPC (Griffis et al.,
2002, 2004; Buchwalter et al., 2014)., Nup50 is a mobile Nup
independent of its role in nuclear transport, and promotes muscle
cell differentiation by its direct interaction with chromatin
(Buchwalter et al., 2014). Another mobile Nup, Nup98, also
interacts with the chromatin during the embryonic stem cell
differentiation. Nup98 interacts with genes at the NPC in the
early stage of development, whereas in the later stages interaction
of highly inducible genes are reported to occur in the nucleus
interior (Liang et al., 2013). In Hela cells, a nuclear basket
nucleoporin Tpr is essential for heterochromatin organization,
while deleting Tpr results in eliminating heterochromatin
from free regions at NPC (Krull et al., 2010). Moreover,
Nup153 regulates heterochromatin domain in interphase cells
by recruiting Repo-man (CDCA2: Cell division cycle-associated
protein), a protein phosphatase 1 (PP1)-targeting subunit
protein, that ultimately leads to chromatin remodeling (De
Castro et al., 2017; Pascual-Garcia et al., 2017; Rowley and Corces,
2018; Tan-Wong et al., 2009). Furthermore, NPC as a whole
entity acts as a scaffold for the protein mediating epigenetic
mechanism. These proteins include chromatin architectural
protein, chromatin remodeling, and histone modifying proteins
that influence the organization of chromatin (Bickmore and van
Steensel, 2013). In mitogen activated cells, Nup153 and Tpr
recruit an MYC transcription factor that is highly expressed in
cell proliferation (Su et al., 2018). Transmembrane Nup210 is also
involved in the regulation of several genes seemingly transporting
independent manner (D’Angelo et al., 2012). These data provide
potential interest for future studies on the molecular role of
nucleoporins and their interaction with chromatin regulation.
How this interaction impact various cellular processes may need
a comprehensive study.

ROLE OF NPC IN PROTEIN TRANSPORT

The disorderly arrangement of FG-Nups leads to the formation
of a permeability barrier in the NPC. Facilitation of the transport
of specific proteins is controlled by the FG-Nups, allowing the
cell to regulate the movement of molecules at the nucleoporin
level. Nucleoporins contribute to the translocation of specific
molecules carrying a peptide sequence that is recognized by
the karyopherin (transport receptors) (Flores and Seger, 2013;
Ma et al., 2016). Transport receptors have important roles in
nucleocytoplasmic transport and can be classified into specific
transporter protein types, namely importin and exportin (nuclear
transport receptors). Based on their physiological composition,
importins are further divided into two types: importin α and
importin β. Importin α facilitates the movement of nuclear
localization signals (NLS) (monopartite PKKKRKV and bipartite
KRPAATKKAGQAKKKK) (Poon and Jans, 2005) through the
NPC by forming a trimeric complex with the cargo molecule
(NLS) and importin β1.

Thus, NLS-importin and importin β1 interact with multiple
FG-Nups of the NPC during translocation into the nucleus.
Strong interactions of importin β have been observed with
various FG-Nups: Nup358, Nlp1, Nup214, Nup98, Pom121,
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Nup58, Nup54, Nup62, Nup153, and Nup50. Importin β also
has strong interactions with Nlp1, Nup98, and Nup54, whereas
weaker binding is observed with Nup358 and Nup58 (Ma et al.,
2016). On the nuclear side of the NPC, RAN-GTP dissociates
the cargo molecule by interacting with the trimeric complex. FG-
Nups influence the disassociation of this cargo molecule from
the importin α by interacting with the complex (Lindsay et al.,
2002; Matsuura and Stewart, 2005). In the presence of RAN-GTP,
importin α is exported back to the cytoplasm in complex with
cellular apoptosis susceptibility protein (CAS), and importin β1
is recycled back with RAN-GTP (Stewart, 2007; Wente and Rout,
2010; Miyamoto et al., 2012).

Nuclear export requires recognition of a peptide sequence
on the Nuclear export signal (NES i.e., RFLSLEPL and
TPTDVRDVDI in cyclin D (Poon and Jans, 2005) and
LQKKLEELEL in mitogen-activated protein kinase) (Kutay and
Güttinger, 2005) cargo by the exportin, which attaches to the
RAN-GTP. This complex interacts with the Nup for translocation
to the cytoplasm. GTPase is required to ensure the disassembly
of this exportin-cargo complex in cytoplasm. Ran GTPase
ensures the directionality of the transport and regulates transport
receptors by promoting a gradient RanGTP–RanGDP across
the nuclear envelope [(Low RanGTP) in the cytoplasm, (High
RanGTP) in the nucleus]. The procedure is similar to nuclear
import; the only difference is that the RAN-GTP binds to the
complex at the start of export (Figure 2; Askjaer et al., 1998; Guan
et al., 2000; Kutay and Güttinger, 2005).

Various models such as selective phase model, spaghetti oil
model, virtual gate model, and reduction of dimensionality model
have been proposed for use on the transport of molecules through
central FG Nups. Most of the central Nups of NPCs contain
many FG repeats; these Nups are aligned in such a way that they
form a channel, with the FG repeats extending into the middle
of the channel (approximately 200 FG-Nups per channel), thus
establishing a permeability barrier in virtual gate model (Rout
et al., 2003). Spaghetti oil model is based on the interaction of
molecules with the nucleoporin for its translocation across the
NPC. This model proposes the weak binding of nucleoporin and
transport receptors during the molecular movement (Macara,
2001). In the selective phase model, central FG Nups make the
gel like structure through their weak hydrophobic interaction.
Small molecules (<5 nm) can pass through the sieve by passive
transport, but molecules larger than 5 nm require active transport
via interaction with the FG domain (Ribbeck and Görlich, 2001;
Hülsmann et al., 2012; Labokha et al., 2013). The reduction of
dimensionality proposes the movement of molecules by sliding
on the surface of nucleoporin from the cytoplasmic face to the
nuclear face (Peters, 2005).

ROLE OF IMPORTINS IN CELL
DIFFERENTIATION

Importins can be further divided into three subtypes based on
their amino acid sequences (Table 1). Subtype α1 consists of α5,
α6, and α7, whereas α2 is comprised of importin α1 and importin

α8, and the α3 subtype includes importin α3 and importin α4)
(Pumroy and Cingolani, 2015; Miyamoto et al., 2016).

The importin α subtype expresses tissue specificity and
influences the maintenance and formation of tissues. The
structural dissimilarity among the importins alpha indicates that
they regulate the movement of specific cargo proteins between
the nucleus and cytoplasm (Köhler et al., 1997; Tsuji et al.,
1997). Expression levels of different transporter proteins and
their subtypes fluctuate during the differentiation of cells. For
example, importin α1 expression at the mRNA level increased
during the neural differentiation of neural stem cells (Ahn et al.,
2004). Tissue-specific expression was observed during the neural
differentiation of ESCs, wherein the importin α subtype switched
to another subtype during neural development. Importin α1 was
expressed more strongly in undifferentiated ESCs, whereas the
level of importin α5 was higher in differentiated cells (Yasuhara
et al., 2007). Kamikawa et al. (2011) studied the expression of
KPNA2 (which encodes importin α 1) in ESCs and NIH3T3 cells
and found KPNA2 to be higher in ESCs than in NIH3T3 cells.
KPNA2 is activated by regulation of the transcription factors klf4
and klf2 (direct targets of Oct3/4), which helps maintain the ESC
in the undifferentiated state.

Importins α1 and 2 (Da1, Da2) are also required for
differentiation of stem cells of the germ line in Drosophila. The
movement and expression of importin α is tightly regulated
between nucleus and cytoplasm, because overexpression leads
to death during the process of pupation (Gilboa and Lehmann,
2004; Ratan et al., 2008). The expression levels of importins
α1, α2, and α3 changed with the passage of time during
spermatogenesis. The expression of importin α1 and importin
α was initiated in the starts of meiosis and ended during
spermatid differentiation. Planaria (Schmidtea mediterranea) has
two homologs of importin α, Smed-ima-2 and Smed-ima-1,
which are important in stem cell survival and differentiation,
respectively. It has been suggested that these homologs help
to regulate importin α and nucleocytoplasmic transport, thus
contributing to cell differentiation. The exact mechanism by
which these homologs affect stem cell survival needs to be further
understood (Hall et al., 2011; Hubert et al., 2015).

The importin α family also has an important role in
the regulation of myogenesis, wherein myoblasts undergo
differentiation, proliferation, and cell division. Myoblast
proliferation has been found to be regulated both positively
and negatively by KPNA1 (importin α5) and KPNA2 (importin
α1), which suggests the import of particular cargo during
proliferation. KPNA2 plays an important part in the regulation
of myocyte migration, which is necessary for myogenesis. The
roles of these importins in myogenesis are known, but how
they adapt to their roles in aging and disease remain unknown.
Importin α5 is essential for satellite cell proliferation and
survival, as it helps to regulate the import of vital proteins
and thus determine cell fate. Cells with depleted importin
α5 exhibit premature activation and proliferation, leading to
exhaustion and cell death. Moreover, critical protein cargoes are
disrupted because of the impaired localization of importin α5
(Choo et al., 2016).
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FIGURE 2 | Model of nuclear import and export. Cargo containing NLS (Nuclear localization signal) is imported with the help of Importin α and importin β

heterodimer. Nuclear export of cargo having NES (nuclear export signal) is carried out with the help of exportins. Ran GTP is also required during that process.

Importin α2 is the key importin that regulates the circadian
clock in the cell by facilitating the localization of PER1/2 in
the cytoplasm during stem cell differentiation (Umemura et al.,
2014). The center of the circadian clock is in the supra-chiasmatic
nucleus, although recent evidence indicates that the circadian
clock resides in every part of the cell (Dibner et al., 2010).
Various physiological processes, i.e., metabolism, differentiation,

TABLE 1 | Types of human importin alpha.

Importin α

KPNA1 Importinα5

KPNA2 Importin α1

KPNA3 Importin α4

KPNA4 Importin α3

KPNA5 Importin α6

KPNA6 Importin α7

KPNA7 Importin α8

cell proliferation, and stem cell homeostasis, are controlled by the
circadian clock. Comprehensive study is required to understand
the role of nuclear cytoplasmic transport and the circadian clock
in the differentiation of stem cells (Weger et al., 2017).

Regulation by importins of various pro-myelinating factors
such as T3 and CNTF is essential for oligodendrocyte
differentiation. Moreover, a change in Importin α response
had been observed in factors responsible for differentiation.
Upregulation of the expression of importin α3 has been
observed with ciliary neurotrophic factor (CNTF) treatment,
whereas inactivated importin α3 inhibits oligodendrocyte
differentiation. Strong expression of importin α5 and 7 was
observed with T3 treatment in oligodendrocyte differentiation
(Laitman et al., 2017).

The expression of different importins not only varies among
different tissues but also during the process of differentiation.
Dexamethasone-induced differentiation of AR42J into acinar-
like cells was associated with a stronger expression of importins
α3 and α4 after induction, whereas importin α was not
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expressed at any stage. Induction of differentiation of HL60
cells to macrophage phenotypes and granulocytes was carried
out using phorbol myristate acetate (PMA) and Dimethyl
sulfoxide (DMSO), respectively. Importin α1 and 4 were
strongly downregulated in both cases, whereas importins
α3 and 5 were upregulated after PMA treatment (Koehler
et al., 2002). Differentiation of HL60 into macrophages
using 1,25 dihydroxyvitamin D3 (DVD) treatment resulted
in downregulation of gene expression of importins α1, α3,
β1, and β3, whereas importin α5 was upregulated. All-trans
retinoic acid (ATRA)-induced differentiation into granulocytes
resulted in the decreased expression of importins α1, β2, and
β3. Importin α3 was downregulated during the initial period of
differentiation, but values returned 72 h after induction. This
up and downregulation of nucleocytoplasmic transport protein
is an essential element in the differentiation of cells, but further
studies are required for complete understanding of its role
(Suzuki et al., 2008). Furthermore, the different expression levels
of importins during the different stages of differentiation and
their relationships with each other in stem cells need to be
further elucidated.

IMPORTIN β IN CELL DIFFERENTIATION

The importin β family includes not only the importins involved
in the translocation of cargo into the nucleus, but also the
exportins that are responsible for moving the cargo out of the
nucleus (Table 2; Quan et al., 2008). Expression levels of different
importin β family members are altered during the differentiation
of ESCs. Moreover, the expression levels vary among different
cell, e.g., IPO7, IPO11, XPO1, XPO4, and CSe1L have been
shown to be more highly expressed in mouse/ESCs (mESc)
compared with mouse embryo fibroblast cells. Different lineages
from the differentiation of the same mESc cells are found to have
different expression levels of importin β, e.g., neural ectoderm
(NE) differentiated from the mESCs has the highest level of
IPO13 importin β expression. Furthermore, meso-endoderm
differentiated from mESCs has the highest expression of RanBP6,
and the lowest expression of IPO11.

Several genes of the importin β family are essential in
maintaining the pluripotency of ESCs. Knocking down the three
most highly expressed genes (importin 7, XPO4, and RanBP17) of

TABLE 2 | Members of importin β family.

Importin Exportin Bidirectional
receptor/Shuttling
receptor

Importin-β/importin-β1
Transportin-1/importin-β2
Transportin-2/importin-β2b
Importin-4
RanBP5/importin-β3/importin-
5, importin-7, importin-8
Importin-9, importin-11
Transportin-SR/transportin-
3/importin-12

(CRM1/exportin-1,
CAS/CSE1L/exportin-
2, exportin-5,
exportin-6, exportin-7,
exportin-t,
RanBP17

Importin-13
Exportin-4

the importin β family results in differentiation of cells. Importin
β also contributes to lineage specification by regulating levels of
transcription factors. Suppression of XPO4 and RanBP17 leads
to the differentiation of mESCs into endoderm, while XPO4 and
importin 7 are critical components for the initial and final stages
of NE differentiation, respectively (Sangel et al., 2014).

Transportin plays a critical part in muscle cell differentiation
by regulating the transport of the HuR protein between the
nucleus and cytoplasm. Transportin 2 (importin β2b) upregulates
HuR protein into the myoblast nucleus during the early stages
of differentiation. However, cytoplasmic localization of the HuR
protein is observed in differentiated cells (van der Giessen and
Gallouzi, 2007). Transportin 2, along with Ranbp6 (Ran-binding
protein), has been shown to be upregulated in cardiac cells
derived from the differentiation of ESCs (Perez-Terzic et al.,
2007). Another member of the importin β family, importin 13,
is expressed in the brain, lungs, and eyes, and has an important
role in differentiation and physiologic function. Limbal epithelial
progenitor cells have high expression levels of importin 13, which
plays an important role in the proliferation and differentiation
of these progenitor cells (Wang et al., 2009; You et al., 2013).
Cytoplasmic localization of importin 13 is essential during the
initial stages of brain development, after which it is localized in
the nucleus. This suggests its importance in brain development
in mammals (Suzuki et al., 2006).

Expression of exportin during DVD-induced cell
differentiation in HL60 cells was also studied, showing
that exportin 1 and exportin t were downregulated during
differentiation. Reduction in exportin 1 levels suppresses protein
synthesis, which leads to growth arrest of cells (Ribbeck and
Görlich, 2001). Reduction in expression of exportins, i.e., XPO1,
XPO5, XPO6, XPO7, and XPOt, was also found both in DVD-
and ARTA-induced HL60 differentiation (Suzuki et al., 2006).
Exportin 1 and 7 have important roles in the process of erythroid
differentiation. Exportin 1 regulates erythropoiesis by nuclear
localization of HSP70. Exportin 7 also facilitates terminal
differentiation via nuclear maturation in the erythroblast
(Hattangadi et al., 2014).

How this nucleocytoplasmic transport affects the various
cellular processes, specifically cell differentiation, can be
explained by the fact that NPC is involved in the transport
of different transcription factor/differentiation/pluripotency
factors (Yang et al., 2014) which includes Oct4 (Lin et al.,
2012), Sox2 (Baltus et al., 2009), Oct6, and Brn2 (Yasuhara
et al., 2007). Different transport receptors were reported to be
involved in the transport. For example, Oct4 which keeps the
cells in an undifferentiated state and is shuttled by importin
α, while Oct6 and Brn2 are necessary for the differentiation
of ES cells into neural lineage. Importin α2/β1 shuttled Oct4
into the nucleus in the undifferentiated cells, whereas importin
α4/β1 and/or importin α1/β1 shuttles Oct6 and Brn2 into the
nucleus upon differentiation into neural lineage. Export of Oct4
from the nucleus to cytoplasm is carried out involving CRM
export. A recent model suggests that Oct4 is exported by passive
diffusion, however, the exact mechanism is not yet clear (Oka
et al., 2013). Another transcription factor Sox2 is also imported
by Importin β alone or Importin α5/β1 (Yasuhara et al., 2007).
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Importin α2 is essentially required for the maintenance of Oct4
expression in cells in the nucleus (Young et al., 2011). Export of
Sox 2 was reported to be due to protein acetylation on the NES
signal which mediates the nuclear export and degradation of
sox2 in cytoplasm (Baltus et al., 2009). These studies suggest that
transport receptor’s mediated transport of transcription factors
might be the key for differentiation.

NUCLEOPORINS AND TRANSPORT
RECEPTORS IN MESENCHYMAL STEM
CELL (MSC) DIFFERENTIATION

Liu et al. (2010) conducted a study on the expression
levels of various genes encoding the components involved in
nucleocytoplasmic transport in the differentiation of MSC cells.
Upregulation was observed for the genes that encode Nup37,
Nup160, Nup98, Nup62CL, and Nup43, as well as importin α3,
α4, α5, and α6, during osteogenic induction compared with the
adipogenic condition. Adipogenic induction led to decreased
expression levels of various nucleoporins (Nup50, Nup205,
Nup188, Nup93, Nup153, Nup155, Nup88, Nup62, Nup214,
Nup107, and Nup35) and transport receptors (KPNB1, IPO8, and
IPO11) compared with the osteogenic condition. Importin 9 and
exportin 6 are also important components in the differentiation
of MSCs in osteogenesis. Importin 9 helps to translocate the actin
G monomer from the cytoplasm to the nucleus, whereas exportin
6 is involved in the export of F-actin. Knocking down importin
9 led to the inhibition of osteogenesis, whereas the inhibition of
exportin 6 stimulated the osteogenic process (Sen et al., 2017).

NUCLEOPORIN ASSOCIATED CELL
SIGNALING IN CELL DIFFERENTIATION

Nucleoporins are also involved in several cell signaling
pathways that are essential for the survival, proliferation,
and differentiation of cells. These include Wnt signaling,
which relies on the β-catenin repeatedly interacting with
nucleoporin (Sharma et al., 2016). Some studies have
suggested that the movement of β-catenin occurs mostly
via the transcription factor LEF 1 (lymphoid enhancer-binding
factor 1) in a piggy-back manner (Huber et al., 1996; Kim
and Hay, 2001). Recent studies on zebrafish reported that
Nup62 was found to be involved in the activation of the
Wnt pathway through the facilitation of the active import
of β-catenin (Yang et al., 2015, 2019). Another important
component of the Wnt signaling pathway, APC, which is
critical for the maintenance and activation of β-catenin, was
also found to be associated with FG-Nup153 and Nup358
(Collin et al., 2008). There might be a possibility of direct
association between β-catenin and FG Nups that still needs
further validation.

Modulation of the Wnt pathway is also involved in the
differentiation of pluripotent stem cells, e.g., ESCs, into specific
lineages. In intestinal stem cells, it helps to maintain homeostasis,
whereas in hemopoietic stem cells, Wnt activation enhances cell

proliferation (Bhavanasi and Klein, 2016). In mesenchymal stem
cells, the Wnt signaling pathway was shown to be pro-osteogenic
and anti-adipogenic (James, 2013). Further studies are required
to understand the role of nucleoporins in mediating the Wnt
signaling pathway and determining cell fate.

Another important pathway is extracellular signal-regulated
kinase 1 and 2 (ERK1/2), which interacts with nucleoporin
and influences nucleocytoplasmic transport. Nup214, Nup153,
Nup30, and TPr are phosphorylated by interaction with
ERK1/2. Nup is known to be a bona fide substrate of
the ERK1/2 pathway. Interaction of ERK1/2 with Nup50
causes alterations in nucleocytoplasmic transport that results in
impaired translocation of importin β. However, the molecular
mechanism of this alteration in nucleocytoplasmic transport
remains to be elucidated (Michailovici et al., 2014).

The ERK1/2 signaling pathway has an important role in cell
proliferation and differentiation. In muscle progenitor cells, ERK
is the key regulator between proliferation and differentiation.
Translocation of ERK to the nucleus or cytoplasm leads to
cell proliferation and differentiation, respectively (Michailovici
et al., 2014). ERK signaling also has a mediating role in the
differentiation of Bone Marrow Stem cell into endothelial cells
induced by VEGF (Xu et al., 2008). ERK is a key regulator
of switching between osteogenic and adipogenic differentiation
in human MSC cells (Jaiswal et al., 2000). Further studies are
required to investigate the roles of nucleoporins and signaling
pathways in determining cell lineage.

CONCLUSION AND FUTURE
PERSPECTIVE

Nucleoporins are not only involved in structuring the nuclear
pore complex but also play an important role in translocating
various molecules. Translocation of molecules requires the
interaction of nucleoporins with importins and exportins. Several
studies mentioned above have described the role of nucleoporins
in cell differentiation, wherein they are directly required for
many cells to differentiate into other cell types. Among the
nucleoporins, several are confined to the NPC, however, a
few mobile nucleoporins have been found in both NPCs and
the nucleoplasm. This suggests that nucleoporins are involved
not only in bidirectional transport but also in chromatin
regulation. For example, Nucleoporin from the nuclear basket,
being on periphery, have direct chromatin interaction which
might modulate cell differentiation. Interestingly, the role of
Nup153 and Nup50 in nuclear basket is independent of transport
receptors, however, high-resolution imaging techniques is crucial
to see the NPC-chromatin interaction. In addition, it is
essential to understand the molecular mechanisms in genome
regulation mediated by NPC and Nups and how these genome
regulations subsequently influence the cell fate. Recently a
comprehensive review (Donnaloja et al., 2019) regarding the
prospective role of Nups in the mechano-transduction has
been published. They proposed a model, wherein application of
mechanics from the Sun1 protein of Linker of Nucleoskeleton
and Cytoskeleton to Nup153 causes the nuclear stretch which
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ultimately affects the nuclear transport in mechanics. NPC could
be the aspect in the field of mechanobiology which still lacks
complete understanding.

Moreover, there are some Nups, e.g., Nup210 (transport
independent) and Nup133, which are found to be positively
regulated in the differentiated state of cells, which also
indicates that different Nups might regulate differently to
affect the cell fate. Furthermore, nucleoporin interactions with
importin and exportin are required for transport of different
protein/transcription factors essential for cellular processes. In
addition, a few signaling molecules (e.g., β-catenin) have been
shown recently to be regulated directly with FG nucleoporins
(nup62) during nucleocytoplasmic transport. The role of FG-
Nups and its interaction with receptors in the translocation of
different protein molecules creates potential questions regarding
how FG Nups interact with each other in this transport
and how FG Nups show affinity to these particular transport
receptors to regulate the transport from NPC in different cell
processes. In fact, various studies in this review on nucleoporins
and the transport concluded its importance in determining
cell lineage during differentiation. However, further studies
are required at a molecular level to investigate the role of
nucleoporins, along with those of importin and exportin, in cell
differentiation.

Limited data are available regarding the role of nucleoporin
and nucleocytoplasmic transport in stem cell differentiation. For
example, in mesenchymal cell differentiation, only a few studies
have been carried out to determine the expression of Nups during
the differentiation. Further investigations should be carried out to
fully understand their role in the stem cell lineage. Furthermore,
extensive studies are required on different transport proteins
and their cargos to understand their roles in various cellular
processes, including cell differentiation.
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