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In previous studies of septal heart muscle from HCM patients with hypertrophic
obstructive cardiomyopathy (HOCM, LVOT gradient 50–120 mmHg) we found that the
level of phosphorylation of troponin I (TnI) and myosin binding protein C (MyBP-C) was
extremely low yet samples from hearts with HCM or DCM mutations that did not have
pressure overload were similar to donor heart controls. We therefore investigated heart
muscle samples taken from patients undergoing valve replacement for aortic stenosis,
since they have pressure overload that is unrelated to inherited cardiomyopathy. Thirteen
muscle samples from septum and from free wall were analyzed (LVOT gradients
30–100 mmHg) The levels of TnI and MyBP-C phosphorylation were determined
in muscle myofibrils by separating phosphospecies using phosphate affinity SDS-
PAGE and detecting with TnI and MyBP-C specific antibodies. TnI was predominantly
monophosphorylated and total phosphorylation was 0.85 ± 0.03 molsPi/mol TnI. This
phosphorylation level was significantly different (p < 0.0001) from both donor heart TnI
(1.6 ± 0.06 molsPi/mol TnI) and HOCM heart TnI (0.19 ± 0.04 molsPi/mol TnI). MyBP-C
is phosphorylated at up to four sites. In donor heart the 4P and 3P species predominate
but in the pressure overload samples the 4P species was much reduced and 3P and
1P species predominated. Total phosphorylation was 2.0 ± 0.2 molsPi/mol MyBP-C
(n = 8) compared with 3.4 ± 0.07 (n = 21) in donor heart and 1.1 ± 0.1 (n = 10) in
HOCM heart. We conclude that pressure overload may be associated with substantial
dephosphorylation of troponin I and MyBP-C.

Keywords: troponin I, phosphorylation, aortic stenosis, pressure overload, cardiomyopathy, protein kinase A,
myosin binding protein C

INTRODUCTION

Cardiac muscle contractility is modulated by the β-adrenergic system that primarily acts via
activation of protein kinase A (PKA). In the cardiac muscle sarcomere the main targets of PKA
are myosin binding protein C (MyBP-C) and Troponin I (TnI) and phosphorylation of these
proteins plays a vital role in the enhanced contraction and relaxation kinetics induced by adrenergic
stimulation (Layland et al., 2005b; Barefield and Sadayappan, 2010; Messer and Marston, 2014). In
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non-diseased heart muscle from donor human hearts or from
mice, the level of phosphorylation of TnI and MyBP-C are both
relatively high (Messer et al., 2009; Copeland et al., 2010). TnI has
a total level of phosphorylation of 1.6 molsPi/mol in human and
1.2 in mouse with the majority of TnI being bis-phosphorylated.
MyBP-C has a total level of phosphorylation of 3.4 molsPi/mol
MyBP-C with 4P and 3P species predominating.

In heart disease the phosphorylation level is often low.
For instance in idiopathic (non-ischaemic) end stage heart
failure explants, phosphorylation levels are 0.26 molsPi/mol
TnI and 0.62 molsPi/mol MyBP-C (van der Velden et al.,
2003; Messer et al., 2007; Zaremba et al., 2007; Messer et al.,
2009). In genetic heart disease the situation appears to be
more complex. Explanted heart samples with inherited DCM
can be associated with high or low levels of phosphorylation
in the range 0.3–1.5 molsPi/mol TnI (Memo et al., 2013).
However, myectomy samples taken from patients with inherited
hypertrophic obstructive cardiomyopathy (HOCM) always have
a low level of phosphorylation (Messer et al., 2009; Copeland
et al., 2010; Bayliss et al., 2012). Thus, there appears to be no direct
relationship between mutations causing heart disease and the TnI
and MyBP-C phosphorylation level.

The HCM-associated mutations often cause a hypertrophied
interventricular septum that can lead to left ventricular outflow
tract obstruction (LVOTO). The septal myectomy operation for
patients with HCM is usually indicated to reduce the obstruction
when there is a high Aorta/LV pressure difference, typically
100 mmHg (Firoozi et al., 2002; Elliott and McKenna, 2004). We
hypothesized that the pressure gradient may be a major factor in
inducing the secondary phenotype of HOCM heart. To test this
we have studied TnI and MyBP-C phosphorylation levels in heart
muscle from patients with HCM but without pressure overload
and heart muscle from patients without HCM but with pressure
overload due to aortic stenosis (Bates, 2011).

METHODS

Tissue Sources
Donor hearts and the K280N HCM sample were supplied by
the Sydney Heart Bank (Li et al., 2013; Messer et al., 2016).
Donor sample (NH) had no history of cardiac disease and normal
ECG and ventricular function and were obtained when no
suitable transplant recipient was found. HOCM sample (MV) was
obtained from a patient undergoing septal myectomy operation
at The Heart Hospital (UCL), London (Jacques et al., 2008).
Clinical data for NH and MV has been previously reported in
Messer et al. (2007), Bayliss et al. (2012) and in Supplementary
Table 1. Measurements of TnI and MyBP-C phosphorylation
were described in Messer et al. (2009) and Copeland et al. (2010).

Biopsies were taken from septum and free wall of patients
undergoing valve replacement surgery to relieve aortic stenosis
at the Royal Brompton Hospital, London and Careggi University
Hospital, Florence. The ACTC E99K patient sample was
kindly supplied by Dr. Lorenzo Monserrat, La Coruña, Spain
(Monserrat et al., 2007; Song et al., 2011). Available clinical data
on these samples is given in the Supplementary Material.

Patients gave written consent with PIS approved by the
relevant ethical committee. All samples are anonymised.
The investigations conform to the principles of the
Declaration of Helsinki.

Ethical approval for collection and distribution of the human
heart samples was granted by the Research Integrity, Human
Research Ethics Committee, University of Sydney (Protocol No.
15401); the Joint UCL/UCLH Ethics Committee Rec No: 04/0035;
Outer North East London Research Ethics Committee REC ref:
10/H0701/8; Careggi University Hospital Ref: 2006/0024713 and
Comite Ético de Investigatio ń Clìnica de Galicia. Permission for
study of the samples was granted by the NHS National Research
Ethics Service, South West London REC3 (10/H0803/147).

Measurement of TnI and MyBP-C
Phosphorylation Level
Twenty milligrams of heart muscle sample, stored in liquid
nitrogen were crushed in a liquid nitrogen cooled percussion
mortar and then homogenized in 200 µl buffer (5 mmol/l
NaH2PO4, 5 mmol/l Na2HPO4 pH 7.0, 0.1 mol/l NaCl, 5 mmol/l
MgCl2, 0.5 mmol/l EGTA, 0.1% Triton X-100, 20 mmol/l NaF
and 5 mmol/l DTT with 2 µg/ml each of the protease inhibitors
E64, chymostatin, leupeptin and pepstatin A). The homogenate
was then centrifuged at 16,500 × g for 5 min and the supernatant
discarded. The wash process was repeated and then the pellet
was dissolved in sample buffer containing 8 M urea, 2 M
thiourea, 0.05 M Tris-HCl, pH 6.8, 75 mM DTT, 3% SDS and
0.05% bromophenol blue as decribed (Layland et al., 2005a;
Messer et al., 2007).

TnI phosphorylation levels in heart muscle myofirils was
measured by Phosphate affinity SDS-PAGE as described by
Messer et al. (2009). Discontinuous SDS-PAGE gels were hand-
cast and run using the Mini-PROTEAN system (Bio-Rad).
Gel compositions are as follows: stacking gel: 4% acrylamide
(29:1 acrylamide:bis-acrylamide), resolving gel: 10% acrylamide
(29:1 acrylamide:bis-acrylamide, 100 µM MnCl2 (from 10 mM
stock) and 50 µM Phos-TagTM acrylamide [from 5 mM stock
solution of Phos-TagTM acylamide AAL-107 (NARD Institute,
Hyogo, Japan)] prepared according to suppliers instructions
(Kinoshita et al., 2006).

Gels were probed with the phosphorylation-independent
anti-human-cardiac troponin I (hcTnI) clone 14G5 mouse
mAb (Abcam plc antibodies), 1/2,000 dilution on Western
blots. Secondary antibody was HRP- conjugated anti-rabbit
IgG (1:1,000) and the blots were visualized using ECL (GE
Biosciences). Chemiluminescence was detected by a cooled CCD
camera-based gel imager (G:BOX Chemi HR16, Syngene).

To resolve MyBP-C phosphospecies the myofibril samples
were run on the gels for 165 min. The current was initially
25 mA, raised to 35 mA once the samples had entered the
resolving gel. The gels were Western blotted and probed with
a rabbit polyclonal antibody against cMyBP-C residues 2–14
which recognizes total cMyBP-C or with phosphorylation site-
specific antibodies (Bardswell et al., 2009; Sadayappan et al., 2009;
Copeland et al., 2010).
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FIGURE 1 | Phosphate affinity SDS-PAGE separation of myofibrils, probed with antibody 14G5 to troponin I. (A) Example of separation of phosphospecies.
Phosphorylated protein is retarded in proportion to level of phosphorylation yielding discrete bands for bis- mono- and unphosphorylated troponin I. NH is a donor
heart sample showing a high level of 2P species. The other lanes are aortic stenosis samples which show high level of 1P and 0P species. (B) Distribution of 2P, 1P,
and 0P species in heart muscle samples. The results for each sample are the means of 2–4 replicate assays. S, septum; FW, free wall. Donor heart NH and HOCM
heart MV control results are the mean of replicates included in the same gels as the pressure overload samples. Full data is shown in Supplementary Table 2. (C)
Calculated total phosphorylation level for these samples. (D) Phosphate affinity SDS-PAGE of ACTC E99K mouse, ACTC E99K human heart and TNNT2 K280N
human heart samples with donor and HOCM controls. Total phosphorylation is shown below underneath each lane.
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FIGURE 2 | Phosphate affinity SDS-PAGE separation of myofibrils, probed with antibodies to MyBP-C. (A, top) Example of separation of MyBP-C phosphospecies
probed with 2–14 pan MyBP-C antibody. NH is a donor heart sample showing a high level of 3P and 4P species. The other lanes are aortic stenosis samples which
show less 4P and more 1P and 0P species. (A, lower panels) the same samples probed with antibody specific to phosphorylated ser 302, ser 273 and ser 282. (B)
Distribution of 4P, 3P, 2P, 1P, and 0P species of MyBP-C in heart muscle samples. The results for each sample are the means of 2–4 replicate assays. Donor heart
NM and HOCM heart MV control results are the mean of replicates included in the same gels as the pressure overload samples. Full data is shown in
Supplementary Table 3. S, septum; FW, free wall. (C) Calculated total phosphorylation level for these samples.

RESULTS AND DISCUSSION

Reduced Level of Phosphorylation in
Pressure Overloaded Heart
We studied 13 heart muscle biopsies from intraventricular
septum and free wall taken from patients undergoing valve
surgery to relieve pressure overload and compared them
with previously studied donor heart samples and myectomy
samples from patients with HOCM (Messer et al., 2009;

Copeland et al., 2010). LVOT gradients ranged from 30 to
100 mmHg in the pressure overload patients compared with 90–
120 mmHg in the HOCM patients’ hearts and close to zero in the
donor hearts (see Supplementary Tables 1 and 2).

The levels of TnI and MyBP-C phosphorylation were
determined in muscle myofibrils by separating phosphospecies
using phosphate affinity SDS-PAGE and detecting with TnI
and MyBP-C specific, but phosphorylation-independent
antibodies previously characterized. This technique measures the
proportions of bis-phosphorylated, monophosphorylated
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and unphosphorylated species of TnI. We previously
showed that in donor hearts, 70% of the troponin I is bis-
phosphorylated and 21% is monophosphorylated with a
calculated total phosphorylation of 1.6 ± 0.06 molsPi/mol TnI.
The HOCM samples were just 5% bis-phosphorylated and 30%
monophosphorylated with a calculated total phosphorylation
level of 0.18 ± 0.02 molsPi/mol TnI (Messer et al., 2009;
Figure 1).

In the pressure overload samples, we found that TnI
was predominantly monophosphorylated (0P = 24 ± 2%,
1P = 67 ± 2%, 2P = 9 ± 1%, n = 21) and total phosphorylation was
0.85 ± 0.03 molsPi/mol TnI and was not significantly different
in septum and free wall samples (see Supplementary Figure 1).
Thus in pressure overload samples, the phosphorylation level
was significantly less than donor heart and significantly more
than in HOCM heart Troponin I (p ≤ 0.0001). Western blotting
using antibodies to bis-phosphorylated troponin I confirmed that
phosphorylation at serines 22 and 23 was low relative to donor
heart samples. Mass spectrometry measurements showed that
only Ser22 or Ser23 were phosphorylated with no evidence for
phosphorylation at other sites in Troponin I.

MyBP-C is phosphorylated at up to four sites. In donor heart
samples we showed that the 4P and 3P species predominate
(4P = 43%, 3P = 57%, 2P = 0%, 1P = 0%, 0P = 0%) (Copeland
et al., 2010). In the pressure overload samples the 4P species was
much reduced and 3P and 1P species predominated (4P = 9 ± 3%,
3P = 41 ± 5%, 2P = 1 ± 1%, 1P = 33 ± 2%, 0P 15 ± 4%, n = 15)
(Figure 2). Total phosphorylation was 2.0 ± 0.2 molsPi/mol
MyBP-C (n = 15) compared with 3.4 ± 0.07 (n = 21) in donor
heart and 1.1 ± 0.1 (n = 10) in HOCM heart (Copeland et al.,
2010). Comparison of free wall and septal samples indicated
higher phosphorylation levels in the free wall that was barely
statistically significant (see Supplementary Figure 2). We used
antibodies specific to the main targets of PKA in MYBP-C:
phosphorylation sites at Ser 302, 273 and 283 but found no
consistent pattern of phosphorylation in the pressure overload
samples that was different from the pan-MyBP-C antibody, 2–14.

Normal Level of Phosphorylation in HCM
Samples Without Pressure Overload
To test whether the low level of phosphorylation in HOCM
myectomy samples is due to the mutation or the pressure
overload, we investigated samples from HCM patients that
did not have pressure overload. The ACTC E99K mutation is
associated with HCM, with the hypertrophy often confined to
the apex of the heart and does not develop HOCM (Monserrat
et al., 2007). We have previously studied a biopsy from a
33 year old patient with the ACTC E99K mutation who showed
no signs of LVOTO and was not on any medication (Song
et al., 2011). The tissue sample was obtained from an operation
to repair an atrial septal defect. Troponin I, troponin T, and
MyBP-C phosphorylation levels in myofibrils were the same
as donor heart samples (see Figure 1D). Likewise, The ACTC
E99K mouse model of HCM develops apical hypertrophy without
LVOTO or symptoms of heart failure at 21 weeks (Song et al.,
2011). The HCM mouse myofibrils have the same level of

troponin I, troponin T, and MyBP-C phosphorylation as NTG
littermates (Figure 1D).

We have also studied a heart muscle sample from a patient
with an HCM-causing mutation [homozygous TNNT2 K280N
(Sequeira et al., 2013; Messer et al., 2016; Piroddi et al.,
2019)]. The patient had a myectomy operation that relieved
LVOTO permanently but later developed heart failure requiring
a heart transplant. This sample is from the explanted heart. The
troponin I phosphorylation level was comparable to donor heart
(Figure 1D). These two examples suggest that reduced levels of
phosphorylation are related primarily to the pressure overload.

CONCLUSION

In these limited studies on human heart muscle samples we have
found that a reduced level of phosphorylation of TnI and MyBP-
C, the sarcomeric targets of PKA, is associated with pressure
overload, i.e., a mean transvalvular pressure gradient >40 mmHg,
but is not associated with hypertrophic cardiomyopathy in the
absence of pressure overload.

Since we are using human samples obtained during surgery
our results could be confounded by a number of uncontrolled
variables such as the time between excision of the sample and
freezing and the medication, particularly beta-blockers, taken by
the patients. On the other hand we have more than 12 years
experience making measurements with human heart samples and
have not yet been able to detect a correlation between these
variables and any measurements we made (Messer et al., 2007,
2009; Jacques et al., 2008; Copeland et al., 2010; Song et al., 2011;
Bayliss et al., 2012; Memo et al., 2013).

We do not know the underlying cause of the reduced
phosphorylation levels but in HCM and heart failure there
is evidence for both the reduction in PKA activity and the
increase in phosphatase activity in pathological heart muscle
that could account for this observation. In the diseased
myocardium β adrenoceptors are often downregulated via
receptor phosphorylation and β-arrestin binding (Mangmool
et al., 2018) whilst protein phosphatase activity is enhanced
via inactivation of phosphatase inhibitor-1 (El-Armouche et al.,
2004; Champion, 2005).
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