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In skeletal and cardiac muscles, contraction is triggered by an increase in the
intracellular Ca2+ concentration. During Ca2+ transients, Ca2+-binding to troponin C
shifts the “on–off” equilibrium of the thin filament state toward the “on” sate, promoting
actomyosin interaction. Likewise, recent studies have revealed that the thin filament
state is under the influence of temperature; viz., an increase in temperature increases
active force production. In this short review, we discuss the effects of temperature on
the contractile performance of mammalian striated muscle at/around body temperature,
focusing especially on the temperature-dependent shift of the “on–off” equilibrium of the
thin filament state.
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INTRODUCTION

Under physiological conditions, striated muscle generates force and heat. Skeletal muscle plays
a critical role in maintaining body temperature which increases during exercise. Human body
temperature is maintained at ∼37 ± 1◦C throughout the day (Refinetti, 2010; Geneva et al., 2019).
In humans, body temperature rises to ∼39◦C during exercise (Saltin et al., 1968) and exceeds
∼40◦C during heat-related illnesses (e.g., heat stroke and malignant hyperthermia) (Glazer, 2005;
Rosenberg et al., 2015). Physiologists have long perceived that a change in body temperature
affects the mechanical properties of skeletal and cardiac muscles, such as active force generation
and shortening velocity. However, the molecular mechanisms are yet to be fully understood, due,
primarily, to the fact that sarcomere proteins have varying degrees of temperature sensitivity. Here,
we briefly review the effects of temperature on the mechanical properties of skeletal and cardiac
muscles in the range between ∼36 and ∼40◦C, and discuss how striated muscle works efficiently
at/around body temperature.

EXCITATION–CONTRACTION COUPLING

Contraction of skeletal and cardiac muscles is initiated by depolarization of the sarcolemmal
membrane. In skeletal muscle, sarcolemmal depolarization directly triggers the release of Ca2+

from the sarcoplasmic reticulum (SR) via ryanodine receptors; however, in cardiac muscle, it is

Abbreviations: [Ca2+]i, intracellular Ca2+ concentration; RCC, rapid cooling contracture; SPOC, spontaneous sarcomeric
auto-oscillations; SR, sarcoplasmic reticulum; Tm, tropomyosin; Tn, troponin.
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the Ca2+ entry from the extracellular fluid through voltage-
dependent L-type Ca2+ channels that triggers the Ca2+ release,
a mechanism known as Ca2+-induced Ca2+ release (Bers,
2002; Endo, 2009). In both skeletal and cardiac muscles,
an increase in the intracellular Ca2+concentration ([Ca2+]i)
promotes Ca2+ binding to troponin C (TnC) on thin filaments
(Fukuda et al., 2009; Kobirumaki-Shimozawa et al., 2014).
Unlike in skeletal muscle, cardiac myofilaments are not fully
activated under physiological conditions because [Ca2+]i is
maintained relatively low (∼10−6 M), even at the peak of systole
(Bers, 2002). Because of this partial activation nature, cardiac
myofilaments exhibit non-linear properties, such as length-
dependent activation (Kobirumaki-Shimozawa et al., 2014) and
spontaneous sarcomeric auto-oscillations (SPOC) (see Ishiwata
et al., 2011; Kagemoto et al., 2018). In both skeletal and cardiac
muscles, lowering [Ca2+]i dissociates Ca2+ from TnC, resulting
in dissociation of myosin from thin filaments, i.e., relaxation.

Ca2+-DEPENDENT ACTIVATION OF THIN
FILAMENTS

Ca2+-activated muscle contraction is mediated by regulatory
proteins, i.e., troponin (Tn) and tropomyosin (Tm), which form
a complex on actin filaments. At rest, the Tn–Tm complex
prevents/weakens actomyosin interaction. At this “off ” state, the
carboxyl-terminal domain of TnI strongly binds to actin, and
Tm blocks myosin binding to actin and/or force production of
bound myosin. When [Ca2+]i is increased, Ca2+-bound TnC
interacts with TnI, and the carboxyl-terminal domain of TnI is
dissociated from actin. The Tn conformational changes result
in displacement of Tm on actin, which subsequently induces
myosin binding to actin and force generation (e.g., Haselgrove,
1973; Huxley, 1973; Lehman et al., 1994; Vibert et al., 1997; Xu
et al., 1999; Fukuda et al., 2009; Risi et al., 2017; Matusovsky
et al., 2019). It has been reported that during the shift of the
thin filament state from “off ” to “on,” strongly bound myosin
cooperatively enhances binding of neighboring myosin molecules
that have ATP and thereby potentially produce force (Greene and
Eisenberg, 1980; Trybus and Taylor, 1980).

MODULATION OF MYOFIBRILLAR Ca2+

SENSITIVITY

The “on–off ” equilibrium of the thin filament state is most
typically reflected as Ca2+ sensitivity of active force development
in skinned fibers. The parameter pCa50 (=−log[Ca2+]) (required
for half-maximal Ca2+-activated force) is widely used to express
Ca2+ sensitivity; an increase in the pCa50 value indicates an
increase in Ca2+ sensitivity and vice versa. Ca2+ sensitivity
is influenced by various factors, such as the intracellular
concentrations of Mg2+ (Fabiato and Fabiato, 1975; Best et al.,
1977; Donaldson et al., 1978), MgATP (Fabiato and Fabiato,
1975; Best et al., 1977), MgADP (Fukuda et al., 1998, 2000) and
inorganic phosphate (Kentish, 1986; Millar and Homsher, 1990;
Fukuda et al., 1998, 2001), and ionic strength (Kentish, 1984;

Fink et al., 1986) and pH (Fabiato and Fabiato, 1978; Orchard
and Kentish, 1990; Fukuda and Ishiwata, 1999; Fukuda et al.,
2001). Ca2+ sensitivity is likewise under the influence of
phosphorylation/dephosphorylation of thick or thin filament
proteins. Most importantly, protein kinase A, activated upon
β-adrenergic stimulation in cardiac muscle, phosphorylates TnI,
resulting in a decrease in Ca2+ sensitivity via weakening of the
TnI–TnC interaction (see Solaro and Rarick, 1998 for details).
Likewise, other translational modifications such as glycation
(Papadaki et al., 2018) and acetylation (Gupta et al., 2008) may
affect Ca2+ sensitivity.

EFFECTS OF TEMPERATURE ON THE
MECHANICAL PROPERTIES OF
CARDIAC MUSCLE

A rapid decrease in solution temperature generates contraction
in intact cardiac muscle [rapid cooling contracture (RCC):
see Kurihara and Sakai, 1985; Bridge, 1986]. The mechanism
of RCC can be explained as follows: upon lowering of the
solution temperature, Ca2+ is released from the SR via ryanodine
receptors (Protasi et al., 2004), causing contraction in a Ca2+-
dependent manner. Chronic cooling also enhances contraction
in intact cardiac muscle under varying experimental conditions
(hypothermic inotropy) (Shattock and Bers, 1987; Puglisi et al.,
1996; Mikane et al., 1999; Janssen et al., 2002; Hiranandani et al.,
2006; Shutt and Howlett, 2008; Obata et al., 2018) (see Figure 1A
and Table 1 for effects of alteration of temperature on striated
muscle properties). For instance, Shattock and Bers (1987)
reported that cooling from 37 to 25◦C increases twitch force
greater than approximately ∼fivefold in “intact” rabbit and rat
ventricular muscle. However, cooling from 36 to 29◦C decreases
maximal Ca2+-activated force in “skinned” rabbit ventricular
muscle, coupled presumably with depressed actomyosin ATPase
activity, with no significant change in Ca2+ sensitivity (Harrison
and Bers, 1989) (cooling to 22◦C decreases both force production
and Ca2+ sensitivity, see Table 1). We, therefore, consider that
hypothermic inotropy is caused by the positive effect of cooling
on [Ca2+]i minus its negative effect on myofibrils: viz., cooling
increases the amplitude of the intracellular Ca2+ transients and
prolongs the duration of the amplitude (i.e., longer time to
peak [Ca2+]i and slower [Ca2+]i decline) (Puglisi et al., 1996;
Janssen et al., 2002; Shutt and Howlett, 2008), hence, augmenting
contractility in a Ca2+-dependent manner, by a magnitude
greater than the decrease at the myofibrillar level.

In contrast, an increase in temperature to∼40–42◦C has been
reported to decrease end-systolic pressure in canine (Mikane
et al., 1999; Saeki et al., 2000) and rat (Obata et al., 2018) hearts.
The findings of these studies were confirmed by a study using rat
ventricular trabeculae where twitch force was decreased by∼30%
accompanied by an increase in temperature from 37 to 42◦C
(Hiranandani et al., 2006). The mechanisms of hyperthermic
negative inotropy are yet to be clarified; however, a decrease in
the peak or duration time of Ca2+ transients is likely to underlie
the inhibited active force production.
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FIGURE 1 | Schematic showing the effects of altered temperature on functional properties of mammalian striated muscle. (A) Top: relationship of temperature vs.
endo-systolic pressure in mammalian hearts. Inset: time-course of ventricular pressure at different temperatures. Blue, gray, and red lines indicate hypothermic,
physiological, and hyperthermic conditions, respectively. Middle: relationship of temperature vs. Ca2+ transients (left) and twitch force (right) in intact muscles. Blue,
gray, and red lines indicate hypothermic, physiological, and hyperthermic conditions, respectively. Bottom: relationship of temperature vs. Ca2+ sensitivity (left) and
maximal force (right) in skinned muscles. (B) Effects of rapid cooling (left; shown in blue bar) or rapid heating (right; shown in red bar) on [Ca2+]i (top) and force
(bottom) in intact cardiomyocytes. Rapid cooling increases both [Ca2+]i and force, while rapid heating increases force with little or no influence on [Ca2+]i .
(C) Effects of a change in temperature on thin filaments. Increasing temperature 1) enhances Ca2+ binding to TnC (see top graph) and 2) induces Ca2+-independent
thermal activation of thin filaments via partial dissociation of the Tn–Tm complex from actin (see bottom graph), thereby coordinately acting to increase the fraction of
the “on” state of thin filaments. See text for details.

HEATING-INDUCED CONTRACTION IN
RESTING MUSCLE

Physiologists have realized for nearly a century that despite being
under resting conditions, the warming of muscles increases active
force, known as “heat contraction” or “heat rigor”. For instance,
Vernon (1899) investigated heat contraction in cardiac and
skeletal muscles that had been obtained from 18 species of cold-
blooded animals. Likewise, Hill (1970) reported in frog sartorius
muscle that resting tension is increased in a linear fashion with
increasing temperature from 0 to 23◦C and more steeply in the
higher temperature range. Later, using intact and skinned rabbit
skeletal muscle fibers, Ranatunga (1994) confirmed Hill’s finding
that resting force is increased in a linear fashion in the low
temperature range, i.e., <∼25◦C and more sharply increased in
the higher temperature range (30–40◦C).

Recently, we demonstrated that rapid and repetitive heating
via infrared laser irradiation (0.2 s at 2.5 Hz) induces transient
and reversible shortening in isolated intact rat ventricular
myocytes (Oyama et al., 2012). In this previous study, at the
baseline temperature of 36◦C, the magnitude of the rise in
temperature to induce myocyte shortening was ∼5◦C. It is

important that this temperature-dependent contraction occurs
in a Ca2+-independent manner, and instead, it is regulated
at the sarcomere level. Indeed, intracellular Ca2+ imaging
with fluo-4 revealed little or no increase in [Ca2+]i upon
infrared laser irradiation, and heating-induced contraction was
blocked by the myosin II inhibitor blebbistatin. A similar
phenomenon was observed in C2C12 myotubes (from mouse)
when temperature was increased from 36.5 to 41.5◦C using gold
nanoshells in combination with near-infrared laser irradiation
(Marino et al., 2017). These studies using differing preparations
indicate that a rise in temperature from physiological ∼37 to
∼40◦C directly activates sarcomeres in a Ca2+-independent
fashion (Figures 1B,C).

THERMAL ACTIVATION OF THIN
FILAMENTS

The characteristics of heating-induced contraction are consistent
with the notion that Ca2+ sensitivity is increased with increasing
temperature above 37◦C (e.g., Ranatunga, 1994; Oyama et al.,
2012). Mühlrad and Hegyi (1965) reported that increasing
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TABLE 1 | Effects of alteration of temperature on functional properties of mammalian striated muscles.

Preparation Parameter Temperature
change (◦C)

Change in
parameter value

Direction, change
in parameter value

References

Canine heart (isolated) Systolic pressure (mmHg) 35.9→30.7
35.9→39.8

69.4→102.0*
69.4→44.8*

Increase
Decrease

Mikane et al., 1999

Canine heart (isolated) Systolic pressure (mmHg) 36.3→41 125.1→80.5*** Decrease Saeki et al., 2000

Rat heart (isolated) Systolic pressure (mmHg) 37→32
37→42

103.4→134.6*
103.4→76.0*

Increase
Decrease

Obata et al., 2018

Guinea pig cardiac muscle Force 36.5→17 – Increase Kurihara and Sakai, 1985

Rabbit cardiac muscle Force 30→1 – Increase Bridge, 1986

Rabbit cardiac muscle Twitch force 37→25 – Increase Shattock and Bers, 1987

Rat cardiac muscle Twitch force 37→25 – Increase Shattock and Bers, 1987

Rat cardiac muscle Twitch force (mN/mm2) 37.5→30 30→86 Increase Janssen et al., 2002

Rat cardiac muscle Twitch force (%, normalized
at 37◦C)

37→32
37→42

–
100→67.2

Increase
Decrease

Hiranandani et al., 2006

Rabbit cardiac muscle Twitch shortening (%) 35→25 7.6→13.1** Increase Puglisi et al., 1996

Ferret cardiac muscle Twitch shortening (%) 35→25 2.9→4.9* Increase Puglisi et al., 1996

Cat cardiac muscle Twitch shortening (%) 35→25 10.8→6.0* Decrease Puglisi et al., 1996

Guinea pig cardiac muscle Twitch shortening (%) 37→22 2.6→8.3* Increase Shutt and Howlett, 2008

Rabbit cardiac muscle (skinned) Maximal force (%, normalized
at 22◦C)

36→29
36→22

118.5→108*
118.5→100**

Decrease
Decrease

Harrison and Bers, 1989

Rat skeletal fiber Resting force (intact)
Resting force (skinned)

30→40
30→40

–
–

Increase
Increase

Ranatunga, 1994

Rat cardiac muscle Shortening 36→41 – Increase Oyama et al., 2012

C2C12 myotube Shortening (%) 36.5→41.5 0→2.4* Increase Marino et al., 2017

Rabbit cardiac muscle Ca2+ transient amplitude (nM) 35→25 248→454** Increase Puglisi et al., 1996

Rat cardiac muscle Ca2+ transient amplitude (µM) 37.5→30 0.73→1.33 Increase Janssen et al., 2002

Guinea pig cardiac muscle Ca2+ transient amplitude (nM) 37→22 35→157* Increase Shutt and Howlett, 2008

Actin (RS) + Tm (HC) + Tn
(HC) + HMM (RS)

Sliding velocity at pCa 5
Sliding velocity at pCa 9
Sliding velocity at pCa 9

∼20→∼60
∼20→∼43
∼43→∼60

–
–
–

Increase
No change
Increase

Brunet et al., 2012

Actin (RS) + Tm (HC) + Tn
(BC) + HMM (RS)

Sliding velocity at pCa 5 (µm/s)
Sliding velocity at pCa 9 (µm/s)

25→41.0
25→40.8

6.4→17.9
0→14.5

Increase
Increase

Ishii et al., 2019

Actin (RS) + Tm (HC) + Tn
(BC) + HMM (BC)

Sliding velocity at pCa 5 (µm/s)
Sliding velocity at pCa 9 (µm/s)

24→40.0
24→39.9

1.19→8.89
0→3.37

Increase
Increase

Ishii et al., 2019

Rabbit cardiac muscle (skinned) pCa50 (active force) 36→29
36→22

5.473→5.494 (NS)
5.473→5.340**

No change
Decrease

Harrison and Bers, 1989

Rabbit skeletal myofibril pCa50 (ATPase) 30→37 7.05→7.52 Increase Mühlrad and Hegyi, 1965

Rabbit skeletal myofibril pCa50 (ATPase) 30→40 – Increase Murphy and Hasselbach, 1968

TnC (BC) pCa50 (Ca2+ binding) 21→37 5.29→5.42* Increase Gillis et al., 2000

TnC (HC) pCa50 (Ca2+ binding) 30→45 5.04→5.17 Increase Veltri et al., 2017

Data obtained under various experimental conditions are summarized. Sliding velocity was obtained in the in vitro motility assay with reconstituted thin filaments (actin
plus Tn–Tm). BC, bovine cardiac; HC, human cardiac; HMM, heavy meromyosin; RS, rabbit skeletal. *P < 0.05; **P < 0.01; ***P < 0.001. NS, not significant.

temperature in the range of 0–37◦C reduces [Ca2+] for
half-maximal and maximal ATPase activity in rabbit skeletal
myofibrils. Warming to ∼40◦C further reduces [Ca2+] for
half-maximal ATPase activity in rabbit skeletal myofibrils
(i.e., increased Ca2+ sensitivity) (see Murphy and Hasselbach,
1968), and interestingly, the Ca2+ sensitivity is lost at ∼50◦C
(Hartshorne et al., 1972).

By taking advantage of the in vitro motility assay, recent
studies confirmed heating-induced activation of thin filaments
by measuring the sliding velocity of reconstituted thin filaments.
Brunet et al. (2012) analyzed sliding movements of thin filaments
that had been reconstituted with human cTn and Tm at
temperatures above ∼43◦C under relaxing conditions in the

absence of Ca2+ (+EGTA). We performed a rapid-heating
experiment using infrared laser irradiation and found that thin
filaments that had been reconstituted with bovine cTn and
human Tm exhibited sliding movements at >∼35◦C in the
absence of Ca2+ (Ishii et al., 2019). Because the sliding velocity
was ∼30% at 37◦C compared to the maximum, this previous
finding suggests that thin filaments are partially activated
in diastole at physiological body temperature, enabling rapid
and efficient myocardial dynamics in systole (see Ishii et al.,
2019 for details).

The molecular mechanisms of thermal activation of thin
filaments are yet to be fully understood. One possible mechanism
is “partial dissociation” of Tn–Tm from F-actin upon increasing
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temperature (as discussed in Oyama et al., 2012; Ishii et al.,
2019); viz., Tanaka and Oosawa (1971) demonstrated that Tm
dissociates from F-actin at >∼40◦C. Later experiments by
Ishiwata (1978) on reconstituted thin filaments (F-actin plus
Tn–Tm) showed that Tn–Tm starts to partially dissociate from
F-actin at ∼41◦C, with dissociation temperatures of 48.8 and
47.0◦C in the absence and presence of Ca2+, respectively.

While in older studies the structural changes in thin filaments
were unable to be detected, newer studies suggest that heating-
induced Ca2+-independent contraction may result not only from
partial dissociation of Tm or Tn–Tm from F-actin but also from
structural changes in Tn, Tm, or both. Consistent with this view,
Kremneva et al. (2003) reported that thermal unfolding occurs
in Tm in reconstituted thin filaments comprised of F-actin and
Tn–Tm. They found that a low-temperature transition reflecting
the denaturation of the C-terminus of Tm started to occur
at ∼40◦C in the presence of 1 mM EGTA (hence under the
relaxing condition). Likewise, it has previously been reported
that instability of the coiled-coil structure of Tm is essential for
optimal interaction with actin (Singh and Hitchcock-DeGregori,
2009). It is therefore likely that the unfolding of Tm may promote
the shift of the thin filament state from the “off ” state to the
“on” state and thereby gives rise to, at least in part, heating-
induced contraction.

It is likewise known that the Ca2+-binding affinity of TnC
is increased with temperature. For instance, Gillis et al. (2000)
reported that the Ca2+-binding affinity of bovine cardiac TnC
is increased with temperature within the range between 7 and
37◦C. The affinity of human cardiac TnC for Ca2+ also increases
with temperature within the range between 21 and 45◦C (Veltri
et al., 2017). It should be noted that the temperature sensitivity of
TnC for Ca2+ is isoform dependent. For instance, Harrison and
Bers (1990) reported that the cooling-induced decrease in Ca2+

sensitivity is attenuated after reconstitution with skeletal TnC in
skinned rat ventricular muscle.

POSSIBLE USE OF LOCAL HEATING
FOR THE TREATMENT OF DILATED
CARDIOMYOPATHY

Accumulating evidence shows that mutations in sarcomere
proteins, including Tn subunits (TnT, TnI, and TnC) and Tm,
modulate Ca2+ sensitivity and thereby promote the pathogenesis
of DCM or HCM (Ohtsuki and Morimoto, 2008). A general
consensus has been achieved in that myofibril Ca2+ sensitivity is
decreased by DCM mutations and increased by HCM mutations
(Ohtsuki and Morimoto, 2008; Kobirumaki-Shimozawa et al.,
2014). Because an increase in temperature enables sarcomeric
contraction in a Ca2+-independent manner (Oyama et al., 2012),
local heating, such as via infrared laser irradiation, may have
a potential to augment contractility in patients with DCM
without causing the intracellular Ca2+overload that can cause
fatal arrhythmias. In order to avoid hyperthermal negative
inotropy, local heating targeting myofibrils, but not global
heating, is essential to augment contractility of myocardium

in the heart. For instance, Marino et al. (2017) demonstrated
gold nanoshell-mediated remote activation of myotubes via near-
infrared laser irradiation, which does not cause a change in
[Ca2+]i. Likewise, heating of nanoparticles by the magnetic field
may be useful to increase temperature of the myocardium in
various layers from the epicardium to the endocardium of the
heart in vivo (as demonstrated by Chen et al., 2015 for deep
brain stimulation).

It is worthwhile noting that in previous studies discussed,
thus far, different mammals were used that have different body
temperatures (cf. Table 1), thus, future studies using human
samples need to be conducted under various experimental
conditions to systematically investigate how alteration of
temperature affects the function of the heart in humans.

CONCLUSION

In striated muscle, sarcolemmal depolarization causes an increase
in [Ca2+]i. The Ca2+-dependent structural changes of thin
filaments allow for myosin binding to actin and thereby facilitate
active force production. Cooling increases the contractility of
striated muscle via Ca2+-dependent activation: first, a rapid
decrease in temperature triggers a release of Ca2+ from the
SR, and second, long-term cooling increases the amplitude as
well as the period of intracellular Ca2+ transients. Contrary
to these cooling effects, heating increases myofibrillar active
force (and ATPase activity) and Ca2+ sensitivity; the latter is
coupled with an increase in the affinity of TnC for Ca2+.
Moreover, heating induces structural changes of thin filaments
(i.e., partial dissociation of the Tn–Tm complex from F-actin),
thereby shifting the “on–off ” equilibrium of the thin filament
state toward the “on” state at a given [Ca2+]i (Ca2+-independent
activation). The characteristics of heating-induced, Ca2+-
independent activation may be useful to augment the heart’s
contractility in patients with DCM in future clinical settings.
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