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Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder, predisposing to
malignant ventricular arrhythmias leading to sudden cardiac death, particularly in young
and athletic patients. Pathological features include a progressive loss of myocardium
with fibrous or fibro-fatty substitution. During the last few decades, different clinical
aspects of ACM have been well investigated but still little is known about the molecular
mechanisms that underlie ACM pathogenesis, leading to these phenotypes. In about
50% of ACM patients, a genetic mutation, predominantly in genes that encode
for desmosomal proteins, has been identified. However, the mutation-associated
mechanisms, causing the observed cardiac phenotype are not always clear. Until now,
the attention has been principally focused on the study of molecular mechanisms that
lead to a prominent myocardium adipose substitution, an uncommon marker for a
cardiac disease, thus often recognized as hallmark of ACM. Nonetheless, based on
Task Force Criteria for the diagnosis of ACM, cardiomyocytes death associated with
fibrous replacement of the ventricular free wall must be considered the main tissue
feature in ACM patients. For this reason, it urges to investigate ACM cardiac fibrosis.
In this review, we give an overview on the cellular effectors, possible triggers, and
molecular mechanisms that could be responsible for the ventricular fibrotic remodeling
in ACM patients.

Keywords: arrhythmogenic cardiomyopathy, cardiac fibrosis, cardiac extracellular matrix, scar formation, cellular
effectors

INTRODUCTION

Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease, with an incidence
estimated in 1:5000 (Corrado et al., 2017), which affects predominantly the right ventricle (RV),
although left or biventricular forms have been also described. In about 50% of ACM patients,
a genetic mutation can be identified, mostly in genes coding for cardiac desmosomes. Non-
desmosomal forms of ACM also exist. The mode of inheritance is generally autosomic dominant,
even if recessive syndromic forms are also described (Stadiotti et al., 2019). However, these different
genetic determinants lead to a similar disease phenotype. All forms of ACM are characterized by
incomplete penetrance and variable expressivity even in carriers of the same causative mutation.
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This characteristic likely means that different factors, such as
genetic background, or environmental determinants, contribute
to define the clinical phenotype. From an anatomo-pathological
point of view, ACM hearts show a progressive loss of
myocardium, inflammatory infiltrates, and fibrous or fibro-
fatty replacement. Such tissue heterogeneity predisposes to re-
entrant electrical activity that is known to support ventricular
arrhythmias, cause, in the worst-case scenario, of sudden cardiac
death. Specifically, cardiac fibrosis is originally a protective
mechanism against injury, but its uncontrolled progression
may lead to excessive collagen deposition and myocardial scar
formation. The fibrotic molecular mechanisms are known for
cardiac diseases but those specific for ACM still need to be
investigated in order to uncover therapeutic targets to improve
ACM clinical management.

CLINICAL ASPECTS OF FIBROSIS IN
ACM PATIENTS

Arrhythmogenic cardiomyopathy is a rare cardiac pathology
characterized by cardiomyocytes (CM) death and replacement
of myocardium with fibrotic or fibro-fatty tissue. The fibrotic
and fibro-fatty substitution, regardless of the ventricular
district, progresses from epicardium to endocardium provoking
structural and functional myocardial alterations (Lin et al., 2018).
Generally, segmental or irregular fibro-fatty tissue distribution
can be observed among patches of CM (Hoorntje et al., 2017).
In most cases, the region of the heart typically interested by
pathological changes is the RV where abnormal myocardium
remodeling is localized in the so-called “triangle of dysplasia,”
composed by RV inflow tract, RV outflow tract, and RV apex.
In particular, during the first stages of the disease, the basal
inferior RV region is usually compromised, while RV apex
involvement occurs in advanced phases of ACM progression (Te
Riele et al., 2013). Fibrosis in the ventricular septum is rare
(Hoorntje et al., 2017).

Although ACM has long been defined as a pathology of the
RV, left ventricle (LV) involvement has also been reported either
in advanced stages of the RV disease or in peculiar LV-dominant
forms. Particularly, in the LV, myocardial remodeling mainly
affects the posterolateral area and the original concept of “triangle
of dysplasia,” has evolved to a new scenery of a “quadrangle of
ACM” (Te Riele et al., 2013). It has been shown that the LV
involvement is different based on the genetic defect. Specifically,
more fibrosis is located in the LV free wall of the ACM hearts
mutated for phospholamban (PLN) than those mutated in
desmosomes (Sepehrkhouy et al., 2017). Among desmosomal
gene mutations, desmoplakin (DSP) or desmoglein 2 (DSG2) are
often associated with LV-forms (Norman et al., 2005; Pilichou
et al., 2006; Sen-Chowdhry et al., 2008). Mechanisms of regional-
differences are still to be investigated.

The presence of fibro-fatty substitution in ACM hearts
could be evidenced through different diagnostic tools.
Echocardiography is the standard imaging technique used
to evaluate structural and functional abnormalities of the RV
chamber, although it provides limited information on the

presence and extent of fibrotic replacement. For these reasons,
magnetic resonance imaging (MRI) is currently increasingly
recommended for a definitive diagnosis (de Boer et al., 2019).
MRI allows to asses ventricular volumes, systolic function, and
regional wall motion that are included in diagnostic criteria
(Marcus et al., 1982, 2010). Moreover, MRI can detect adipose
tissue, and, thanks to gadolinium delayed contrast enhancement
acquisition, MRI is the gold-standard exam to characterize
myocardial tissue in terms of fibrosis, fatty infiltration, and
fibrofatty scar (Kim et al., 1999, 2000; Tandri et al., 2002, 2005).

Invasive tissue characterization to confirm ACM diagnosis can
be obtained by an endomyocardial biopsy (EMB). In this setting,
an extensive application of EMB has been limited by the low
sensitivity of biopsies usually obtained from the interventricular
septum, not frequently involved by the disease. In the last few
years, EMB is performed after a complete and detailed 3D
electroanatomic mapping (EAM) of the ventricular chamber.
EAM is used to detect bipolar and/or unipolar low potential
areas, which, in ACM, mostly correspond to fibrotic or fibro-
adipogenic scar tissue (Santangeli et al., 2012; Casella et al., 2015).
Thus, a preliminary EAM allows to directly identify fibrotic
substitution areas and perform EMB in the portion of RV wall
in the immediate adjacency of the scar (Casella et al., 2017).
However, EAM and EAM-guided EMB are not yet recognized in
task force guidelines (Santangeli et al., 2011).

PRO-FIBROTIC TRIGGERS

The compromised heart of ACM patients undergoes a functional
worsening when subject to intense physical exercise. The
practice of physical activity at a competitive level represents
one of the major triggers for life-threatening arrhythmias
and sudden death in the ACM setting and therefore it
is highly discouraged for ACM patients (Cerrone, 2018).
Endurance athletes become symptomatic at an earlier age,
more likely develop an overt phenotype, and show more
frequently ventricular arrhythmias and heart failure (James
et al., 2013). Therefore, an athletic lifestyle affects disease
penetrance. Furthermore, it is associated with the activation of
the sympathetic nervous system, mechanical and oxidative stress,
which may prime ACM pathogenesis.

It has been reported that sympathetic dysinnervation
characterize both the left (Wichter et al., 1994; Paul et al., 2011)
and the RVs (Todica et al., 2018) of ACM patients: the areas
affected by myocardial replacement show reduced reuptake of
norepinephrine leading to chronic stimulation of adrenergic
receptors, which in turn has been related to cardiac fibrosis. The
norepinephrine treatment induces cardiac fibrosis promoting a
series of events, such as CM death and collagen and transforming
growth factor beta 1 (TGFβ1) gene expression in rats’ ventricular
endocardium (Bhambi and Eghbali, 1991; Castaldi et al., 2014).
TGFβ1 overexpression, in turn, could promote an increase of
β-adrenergic expression, further enhancing interstitial fibrosis
(Iizuka et al., 1994; Mak et al., 2000; Rosenkranz et al., 2002).

Moreover, the β-adrenergic system could regulate the
extracellular matrix (ECM) protein turnover: norepinephrine
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could increase the expression of metalloproteinase-2
(MMP-2) and decrease the expression of tissue inhibitors
of metalloproteinases 1 and 2 (TIMP-1/2) during cardiac
remodeling (Briest et al., 2001; Meier et al., 2007).

High-level sport activity also implies an excessive effort of
the heart muscle.

Excessive heart stimulation can cause mechanical stretch
of fibers. It has been reported that athletes with a history
of endurance sport have increased levels of plasmatic TGFβ1
and develop myocardial fibrosis in contrast to novice athletes
(Heinemeier et al., 2003; Czarkowska-Paczek et al., 2006). While
the physiological adaptation to strength training causes a pressure
load and resulting eccentric hypertrophy, endurance exercise
causes a volume load and ventricular dilation mostly affecting
the RV (Morganroth et al., 1975; Wilson et al., 1985; La
Gerche et al., 2012). Interestingly, a positive loop promoting
fibrosis is described: changes in ECM composition during cardiac
fibrosis alter the mechanical tissue properties increasing its
rigidity. Tissue stiffness further promotes the differentiation
of myofibroblasts that produce and release collagen. Collagen
deposition, in turn, increases stiffness of the tissue (Hinz, 2009).
Independently of ACM, exercise training is a known source of
fibrotic cardiac remodeling. A rat model of intensive training
is characterized by increased cardiac mass, diffuse interstitial
collagen deposition, and increased levels of TGFβ1, fibronectin-
1, and MMP-2. Intriguingly, detraining can revert the cardiac
remodeling observed to control levels (Benito et al., 2011).

In ACM patients, due to (Wang et al., 2018) the genetically
determined fragility of desmosomes, the mechanical stretch
of CM during endurance exercise may favor cell injury
and accentuate the development of the disease. Moreover,
a mechanotransduction mechanism (the Hippo pathway),
translating mechanical stimuli into activation of fibro-adipogenic
signals, is known to participate in ACM pathogenesis (Dupont
et al., 2011; Chen et al., 2014). Cardiac overload reduction
therapies have been proposed based on ACM animal model
findings (Fabritz et al., 2011). Detraining has only a limited effect
on arrhythmias reduction (Wang et al., 2018).

Excessive training is also associated with oxidative stress
increase (Fabritz et al., 2011; Wang et al., 2018). Uncontrolled
reactive oxygen species (ROS) balance causes cell necrosis and
apoptosis due to ROS oxidizing effects on proteins, lipids, and
DNA, and prompting of pathway modifications (Moris et al.,
2017). ROS are involved in the development and progression
of cardiovascular diseases, such as cardiac hypertrophy, heart
failure, and hypertension (Rani et al., 2016; Siasos et al., 2018).
Moreover, oxidative stress is linked to cardiac fibrotic remodeling
by regulating fibroblast function and ECM composition. TGFβ1
and ROS positively affect each other during myofibroblast
differentiation. Particularly, TGFβ increases oxidative stress by
inducing ROS production by mitochondria and decreasing the
activity of antioxidant enzymes (Purnomo et al., 2013; Liu and
Desai, 2015). In particular, TGFβ1 acts: (1) on mitochondrial ROS
production by inducing the expression of NAD(P)H Oxidases4;
(2) reducing the concentration of glutathione. Both these events
typically occur in fibrotic disease (Cucoranu et al., 2005; Liu
and Gaston Pravia, 2010). On the other hand, ROS promote

the generation of active TGFβ and regulate ECM protein
expression and degradation acting on synthesis and activity
of MMPs (Barcellos-Hoff and Dix, 1996; Siwik et al., 2001;
Jacob-Ferreira and Schulz, 2013).

Although numerous pieces of evidence concur to a role
of oxidative stress in fibrosis, its implication in ACM fibrotic
remodeling still to be investigated. Indeed, only one report
described increased ROS levels in an ACM cell model
(Kim et al., 2013).

An important independent fibrosis cofactor in ACM hearts is
inflammation. ACM hearts are characterized by progressive CM
death that is replaced by non-contractile fibrotic tissue according
to a reparative mechanism against myocardial loss (Valente et al.,
1998; Rusciano et al., 2019).

Cardiac fibroblasts and CM are in contact through soluble
factors and cell–cell interactions. CM death may represent
the initial phase in the remodeling process, by initiating
an inflammatory response, myofibroblast activation, and
myocardial scar formation (Frangogiannis, 2008; Kakkar and
Lee, 2010; Suthahar et al., 2017). Moreover, during inflammation,
inflammatory cytokines IL-6, TNFα, and IL-1β are upregulated
and involved in promoting cardiac fibroblast proliferation and
activation (Plenz et al., 1998; Ferrari, 1999; Turner et al., 2007;
Bujak and Frangogiannis, 2009).

Transgenic mice with cardiac restricted overexpression of
TNFα exhibit increased collagen synthesis and deposition, MMP-
2 and MMP-9 activity and TGFβ expression (Sivasubramanian
et al., 2001). Furthermore, it has been demonstrated that
the suppression of the IL-1 signaling ameliorates the adverse
fibrotic remodeling in association with a reduced inflammation
(Bujak et al., 2008). The presence of inflammatory cell patches,
mostly macrophages, neutrophils, and T-lymphocytes, in the
ventricular wall affected by CM death, has been reported in
ACM heart along with a high plasmatic level of pro-inflammatory
cytokines (Campian et al., 2010; Asimaki et al., 2011; Campuzano
et al., 2012). It has been observed that NFκB signaling is
activated in ACM mouse and cell models characterized by
different causative desmosomal gene variants. The inhibition
of NFκB signaling is able to rescue, in vitro, different
ACM phenotypic features as distribution of plakoglobin (PG),
Cx43, and GSK3β, apoptotic rate, and inflammatory cytokines
production. In vivo, the pharmacological inhibition of NFκB
signaling improves contractile function, reduces the amount of
ventricular myocardial necrosis and fibrosis and the number of
apoptotic cells, and normalizes the ECG abnormalities (Chelko
et al., 2019). This evidence hints to a primary role of inflammation
in ACM. In a translational prospect, targeting inflammation
could improve different aspects of ACM pathogenesis.

Arrhythmogenic cardiomyopathy most frequently occurs
in men, with more severe clinical complications compared
to women (Bauce et al., 2008). ACM affected women are
characterized by low serum levels of estradiol and raised
cardiovascular events underling the cardioprotective role of this
hormone. In contrast, a high level of testosterone has been found
in the ACM male serum, in line with previous data describing the
involvement of testosterone in arrhythmia induction (Ayaz and
Howlett, 2015; Akdis et al., 2017; Stadiotti et al., 2019).
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Interestingly, the development of cardiac fibrosis has
also been linked to gender-associated differences. During
cardiac fibrosis collagen type I and III deposition is
higher in men compared to women (Kararigas et al., 2014;
Regitz-Zagrosek and Kararigas, 2017).

The molecular mechanisms underlying the cardioprotective
role of estrogens have not been fully clarified (Piro et al., 2010).
It is known that female hormones inhibit cardiac fibroblast
proliferation and their capability to synthesize and deposit
collagen (Dubey et al., 1998).

Notably, the estradiol differentially acts on collagen expression
in cardiac fibroblasts in a gender-dependent manner. Indeed,
an estradiol treatment decreases collagen I and III expression
in female derived cardiac fibroblasts via estradiol receptor α,
while in men cardiac fibroblasts, the activation of estradiol
receptor β induces the upregulation of collagen synthesis
(Mahmoodzadeh et al., 2010).

Moreover, the estradiol could regulate ECM turnover by
affecting the expression of MMP-2, which in turn is associated
with altered ventricular remodeling in different cardiovascular
pathologies (Dworatzek et al., 2019).

The anti-fibrotic effects of estradiol have also been reported
in a mouse model of heart failure where the treatment reduces
the expression of TGFβ1 and profibrotic genes, like collagen
I, and therefore suppresses cardiac fibrosis (Iorga et al., 2016).
One report demonstrated the role of sex hormones on different
ACM phenotypes in an ACM CM model (Akdis et al., 2017).
Nevertheless, further investigations are needed in order to link
the sex hormones involvement to ACM associated fibrosis.

CARDIAC EXTRACELLULAR MATRIX
REGULATION

The excessive deposition of fibrous connective tissue leads
to the formation of a myocardial scar which contributes to
the dysregulation of cardiac electrical properties and thus to
arrhythmic events.

Cardiac ECM is a well-organized network composed of
support proteins that create a solid substrate in which myocytes
and non-contractile cells such as fibroblasts, leukocytes, and
endothelial cells are placed (Aggeli et al., 2012).

The cardiac ECM supporting fibers are predominantly
composed of collagen type I (which forms thick fibers
that ensure tensile strength), collagen type III (which forms
thin fibers that ensure elasticity) and in a minor fraction
by collagen type IV, V, and VI. Moreover, cardiac ECM
contains glycosaminoglycans, glycoproteins, and proteoglycans
(Frangogiannis, 2012). The ECM also plays a non-structural
function supplying growth factors, cytokines, and proteases
necessary for cardiac function, cardiac cell destiny, and
homeostatic regulation (Rienks et al., 2014).

Extracellular matrix deposition is mostly associated with
fibroblasts activation. Different proteinases such as matrix MMPs
and TIMPs overall act to a fine regulated homeostatic balance
between synthesis and degradation (Kassiri and Khokha, 2005;
Spinale et al., 2016).

Following cardiac injury, ECM degradation occurs and
promotes inflammatory cell infiltration and fibroblast
proliferation. The following fibroblasts to myofibroblasts
differentiation represents the event responsible for consistent
novel ECM deposition during scar formation.

Alterations in ECM composition and turnover are involved
in different cardiac diseases characterized by adverse remodeling
with loss of myocardium integrity (Swynghedauw, 1999; Aggeli
et al., 2012; Santulli et al., 2012; Cipolletta et al., 2015). Patients
affected by idiopathic dilated cardiomyopathy are characterized
by an excessive deposition of collagen type III fibers that
are poorly cross-linked and lead to cell slippage, ventricular
dilatation, and altered diastolic compliance (Gunja-Smith et al.,
1996). Furthermore, altered expression of TIMP and MMP
levels have been found in the explanted hearts of these patients
while increased plasma concentrations have been associated
with systolic dysfunction during hypertrophic cardiomyopathy
(Brilla et al., 1994; Tyagi et al., 1996; Thomas et al., 1998;
Noji et al., 2004).

The molecular basis of ECM organization and remodeling in
ACM is still under-investigated. Recently few papers identified a
signature of ACM cardiac cell microRNAs, known to be involved
in ECM turnover and mechanosensing (Rainer et al., 2018;
Puzzi et al., 2019).

CELLULAR EFFECTORS

Cardiac injury represents a trigger for the activation of
immune cells that in turn stimulate fibroblasts proliferation and
differentiation in myofibroblasts. During physiological cardiac
repair, after the wound closure, myofibroblasts apoptosis occurs
with consequent resolution of the process. On the contrary,
during pathological conditions, myofibroblast secretory activity
results extended, inducing the switch from reparative process to
fibrotic scar formation (Tomasek et al., 2002; Santiago et al., 2010;
Stempien-Otero et al., 2016; Murtha et al., 2017).

To date, the cellular source of myofibroblasts is still not fully
defined. The most reliable hypothesis is that resident cardiac
fibroblasts are activated during damage, as following pressure
overload, with consequent differentiation into myofibroblasts.
Notably, it has been reported that ventricular resident Tcf21
positive fibroblasts are a source of myofibroblasts involved in
cardiac fibrosis after myocardial infarction (Moore-Morris et al.,
2014; Furtado et al., 2016; Kanisicak et al., 2016).

In this context, it is known that epicardial cells undergo
epithelial-to-mesenchymal transition (EMT) to generated
fibroblasts that could populate the cardiac injury area promoting
fibrotic remodeling (Russell et al., 2011; Ruiz-Villalba et al.,
2013). Notably, typical pro-fibrotic factors such as TGFβ can
induce the EMT of the epicardial cells after cardiac injury
(Zeisberg et al., 2007).

Recently, a subset of resident adult cardiac stem cells
characterized by the expression of PW1 has been identified as
responsible for fibrosis after myocardial infarction. The amount
of PW1 positive cells is increased in the ischemic damaged
area. PW1 cells are characterized by the high expression of
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profibrotic genes and the ability to differentiate into fibroblasts
(Yaniz-Galende et al., 2017).

However, other studies indicate that cardiac fibroblasts could
derive from resident cardiac mesenchymal cells (C-MSC). In the
injured mouse heart, as during myocardial infarction, C-MSC
resident population (not recruited from the bone marrow)
express stem cell and fibroblast markers like collagen type I and
DDR2, suggesting their involvement in scar formation (Carlson
et al., 2011). C-MSC have been involved as major player of ACM
adipogenesis (Sommariva et al., 2016; Pilato et al., 2018). A C-
MSC population isolated based on PDGFRα and Sca1 could be
responsible for fibrofatty scar formation in ACM patients. In
human and mouse hearts, the fibro-adipogenic progenitors (FAP)
population have been implicated in the fibro-fatty substitution
in ACM. Indeed, they were characterized as bi-potential cells,
most with fibrous commitment, and a small percentage with fat
genes expression. In particular, the cardiac FAP limited deletion
of DSP leads to an increase interstitial fibrosis with a high TGFβ1
level in mice ventricular myocardium (Lombardi et al., 2016;
Sommariva et al., 2017).

Moreover, the possible origin of cardiac fibroblasts from
non-cardiac departments is still a matter of debate. It has
been reported that bone marrow-derived cells could generate
fibroblasts that are in turn involved in cardiac scar formation
after myocardial infarction (van Amerongen et al., 2008).
Indeed, EGFP positive cells, that are able to produce collagen I

contributing to scar formation, have been found in the infarcted
cardiac area of EGFP bone marrow chimeric mice. Bone marrow
cells may represent the fibroblast population in the initial phase
of the remodeling process but are not involved in the persistent
fibrotic deposition (van Amerongen et al., 2008).

In addition, fibrocytes could be a further circulating
source of cardiac fibroblasts as CD34/CD45 positive cells that
expressed fibroblast markers and have been identified in a
model of fibrotic ischemia/reperfusion cardiomyopathy (Abe
et al., 2001; Haudek et al., 2006; Mollmann et al., 2006;
Krenning et al., 2010).

MOLECULAR MECHANISMS

The most well-known pro-fibrotic cytokine involved in cardiac
fibrosis is TGFβ (Lloyd-Jones et al., 2009; Borthwick et al.,
2013). It participates to tissue remodeling by: (1) promoting
fibroblasts expansion and conversion into myofibroblasts; (2)
inducing the production and deposition of ECM; and (3)
preventing matrix degradation by increasing the expression of
TIMP (Bujak and Frangogiannis, 2007).

Specifically, binding of TGFβ to its receptors is the starting
point for the activation of downstream signaling cascade that
involves different mediators of the canonical (SMADs proteins)
or non-canonical (ERK, JNK, and p38 MAPK) pathways.

FIGURE 1 | Schematic figure highlighting the hypothesized pro-fibrotic process in ACM. The presence of different triggers (sympathetic nervous system activity,
extracellular matrix ECM component, reactive oxygen species ROS, inflammatory cytokines, and sex hormones) and the activation of molecular pathways (Hippo,
Wnt/β-catenin, and TGFβ) lead to transcriptional rearrangement for excessive proliferation and myofibroblasts differentiation of fibroblast progenitors. These changes
ultimately result in ventricular myocardium progressive substitution by non-contractile, electrically insulating, fibrotic tissue. In blue, what is known about pro-fibrotic
mechanisms in general and hypothesized in ACM, in red what is reported for ACM pathogenesis. ACM: arrhythmogenic cardiomyopathy; A2AR: adenosine 2A
receptor; ECM: extracellular matrix; ROS: reactive oxygen species; TGFβ: transforming growth factor β.
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Although ACM is commonly defined as a “desmosomal
disease” being the majority of the patients mutated in
desmosomal genes, additional mutations have been identified
in genes that encode for non-desmosomal proteins (Moccia
et al., 2019). One of those in TGFB3, responsible for the
ARVD1 form (Beffagna et al., 2005). In ACM patients, mutations
in TGFB3 are linked both to an increase in cardiac fibrotic
remodeling and to the regulation of desmosomal gene expression
(Beffagna et al., 2005; Tamargo, 2012). Interestingly, also
the existence of a possible desmosomal protein-dependent
TGFβ expression has been reported. Particularly, it has been
demonstrated that plakophilin 2 (PKP2) and DSP control
the activity of TGFβ1/p38 MAPK pathway both in vitro and
in vivo. Indeed, in CM with a loss of PKP2, an increase in
TGFβ1 signaling is observed with consequent fibrotic genes
expression, like collagen and fibronectin (Li et al., 2011).
Moreover, DSP expression is lost following PKP2 knockdown.
Since the restoration of DSP expression rescues the activation
of TGFβ1/p38 signaling, DSP acts upstream TGFβ1/p38 and
downstream PKP2 (Dubash et al., 2016).

Conversely, TGFβ1 treatment induces both an increase of
DSP I and II expression and a reduction of DSP degradation in
bronchial epithelia (Yoshida et al., 1992).

Overall, these observations demonstrate that TGFβ could
modulate the expression of junctional proteins leading to the
modification of cellular phenotype and promoting the formation
of fibroblasts. In this context, it is important to underline that
TGFβ promotes EMT, which is a process characterized by cell–
cell contact changes (Zeisberg et al., 2007).

It has been hypothesized that, in ACM, desmosome mutations
cause PG translocation from intercalated discs to the nucleus
where it competes with β-catenin for the binding to TCF/LEF
transcription factors based on the high structural homology
(Garcia-Gras et al., 2006; Miravet et al., 2016). The abnormal
PG translocation causes the altered canonical activation of
Wnt/β-catenin signaling pathway promoting the pathological
fibro-adipose myocardial tissue substitution (Garcia-Gras et al.,
2006; Moccia et al., 2019).

Intriguingly, it has been reported that TGFβ influences
Wnt/β-catenin signaling in a positive manner (Dzialo et al.,
2018). TGFβ acts on canonical Wnt pathway in cardiac fibroblasts
by: (1) inducing Wnt proteins release; (2) decreasing the
expression of Wnt pathway inhibitors; and (3) inhibiting GSK-
3β leading to the translocation of active β-catenin from the
cytosol to the nucleus (Akhmetshina et al., 2012; Lal et al., 2014;
Blyszczuk et al., 2017).

On the other hand, the action of Wnt1 ligand, overexpressed
in ventricular epicardium after cardiac damage, causes the
activation of Wnt pathway, with consequent differentiation
of epicardial fibroblasts into myofibroblasts with collagen
synthesis (Duan et al., 2012). The presence of Wnt
ligands, in combination with decreased expression of
Wnt pathway inhibitors, contributes to nuclear β-catenin
localization in human fibroblasts during the fibrotic
process while loss of β-catenin in cardiac fibroblasts
reduced ECM gene expression and collagen deposition
(Xiang et al., 2017).

It is important to emphasize that adipogenesis and
fibrogenesis are differentiation programs well regulated
by independent pathways. TGFβ1 induces myofibroblast
differentiation reducing in parallel the expression of PPARγ,
the mast regulator of adipogenic differentiation (Vallee et al.,
2017). On the contrary, PPARγ acts preventing myofibroblasts
differentiation and collagen deposition.

One further molecular mechanism involved in ACM
pathogenesis as well as in myofibroblast differentiation is
the Hippo pathway that acts by regulating YAP/TAZ shuttling
between nucleus and cytoplasm. Specifically, in the ACM context,
the altered PG distribution induces the retention of YAP into the
cytoplasm with activation of Hippo pathway and suppression
of canonical Wnt-related gene expression (Wada et al., 2011;
Zhou and Zhao, 2018). Furthermore, during myofibroblasts
differentiation, the YAP/TAZ nuclear localization is associated
with Wnt activation and TGFβ1 increase level with consequent
SMAD phosphorylation in fibrotic tissues (Liu et al., 2015, 2018;
Piersma et al., 2015).

Recently, the activation of the adenosine 2A receptor (A2AR)
has been reported to contribute to the progression of fibrosis
in an ACM animal model (Cerrone et al., 2018). The binding
of adenosine to A2AR stimulates expression of TGFβ, CTGF,
and matrix production (Shaikh et al., 2016). Moreover, A2AR
activation interacts with the Wnt pathway (Shaikh et al., 2016;
Zhang et al., 2017).

CONCLUSION

The ACM specific cardiac remodeling is characterized by the
progressive substitution of ventricular myocardium of patients
by non-contractile fibrotic or adipose tissue. While adipogenesis
has been extensively studied in this pathological context, fibrosis,
a cardiac phenotype common to most cardiac diseases, remains
under-investigated.

Myocardial fibrosis is a clinical feature shared by several
heart diseases such as ischemic cardiomyopathy, dilated
cardiomyopathy, hypertrophic cardiomyopathy, hypertensive
heart disease, and heart failure. Ventricular fibrosis may
develop different modality depending on disease progression
and typically result in the formation of substrate vulnerable
to arrhythmic events. The cardiac fibroblast activation and
differentiation into myofibroblasts and the resulting scar
formation commonly occur following a cardiac injury. This
event represents a reparative process but during a pathological
cardiac condition, it becomes a persistent status that leads to
altered myocardial structure and function. As described in
other cardiac diseases, the presence of fibroblasts and fibroblast
progenitors, the excessive collagen deposition, and the following
modification of mechanical stiffness may improve the tissue
discontinuity occurring in the ACM hearts. Therefore, most of
what is known about fibrotic processes and is summarized in
this review is iterated from studies in other settings. However,
it is expected that triggering agents, cellular effectors, and
mechanisms are comparable to what previously described.
Responsible cells are likely cardiac fibroblasts, either from
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FAP progenitors or C-MSC. ACM key pathogenic mechanisms
such as Wnt and Hippo are playing direct roles, with
the support of TGFβ-mediated mechanisms, which prompts
fibrosis as an alternative to adipogenesis. The whole process is
possibly triggered by genetically driven myocardial damage, and
inflammation, oxidative stress, mechanical and neuro-hormonal
signaling are magnifying factors (Figure 1), thus representing
possible targets for therapies.

Nevertheless, ACM specific fibrosis remains a scientific
gap of knowledge to be filled with further studies, in
order to clarify specific pathways as target for novel specific
therapeutic actions.
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