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Aims: To evaluate whether Resolvin D1 attenuates ischemia/reperfusion-induced (IRI)
acute kidney injury (AKI) via affecting Tregs.

Materials and Methods: The IRI-AKI mouse model was established, and RvD1 was
injected into the mouse tail vein. Further, the renal function, histological changes, injury
markers and serum cytokines were detected at 24 and 72 h after IRI. Flow cytometry
was used to categorize regulatory T cells (Tregs) in the spleen and kidney. Treg cells were
stripped with the anti-CD25 antibody blocker PC61 to assess its role in the protective
effect of RvD1 on IRI mice. CD4+ T cells were obtained from spleen monocytes by
magnetic bead sorting and differentiated into induced Treg (iTreg) cells. The effect
of RvD1 on iTreg cell differentiation was observed in vitro. In addition, neutralizing
antibodies against the orphan receptor G-protein-coupled receptor 32 (anti-GPR32) and
LXA4 receptor (anti-ALX/FPR2), both RvD1 receptor blockers, were used to evaluate the
effect of RvD1 on iTreg cell differentiation. Boc-1, an ALX/FPR2 receptor inhibitor, was
administered via the tail vein to observe its effects on the ameliorative efficacy of RvD1
in IRI-AKI mice in vivo.

Results: In vivo, RvD1 increased Treg percentages, alleviated renal tubular injury and
reduced the serum levels of IFN-γ, TNF-α and IL-6 in IRI-AKI mice, while PC61
depleted the number of Tregs and reversed the protective effects of RvD1. In vitro,
RvD1 induced the generation of iTregs. Importantly, preincubation with anti-ALX/FPR2
neutralizing antibodies but not with anti-GPR32 neutralizing antibodies, abrogated the
enhancement activity of RvD1 on iTregs. In addition, in vivo blockade of the receptor
ALX/FPR2 by Boc-1 reversed the beneficial effects of RvD1 on the splenic and kidney
Treg percentages, renal tubular injury and serum IFN-γ, TNF-α, and IL-6 levels.

Conclusion: Our study demonstrates that RvD1 protects against IRI-AKI by increasing
the percentages of Tregs via the ALX/FPR2 pathway.
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INTRODUCTION

Ischemia/reperfusion injury (IRI) is the primary cause of
acute kidney injury (AKI), occurs in major operations (Mehta
et al., 2015). Numerous IRI animal models and human
histopathological studies have shown that the inflammatory
response mediated by innate and adaptive immunity is an
important pathophysiological change in ischemic AKI. Th1, Th2,
and Th17 cells and regulatory T cells (Tregs), which are all
CD4+ T lymphocyte subsets, act as a bridge between innate and
adaptive immunity and participate in the pathological process
of ischemic AKI.

Resolvins are a new family of endogenous lipid mediators
that are derived from docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA) (Serhan et al., 2002). Resolvins
include the D series (RvD) and E series and can alleviate
inflammation (Weylandt et al., 2012). Resolvin D1 (RvD1) is
biosynthesized from ω-3 DHA, and its effect is dependent
on the LXA4 receptor (ALX/FPR2) and orphan receptor
G-protein-coupled receptor 32 (GPR32) (Krishnamoorthy et al.,
2010). RvD1 can promote neutrophil migration and enhance
macrophage phagocytosis in an ALX/FPR2-dependent manner,
which contributes to the resolution of inflammation (Hong et al.,
2003; Sun et al., 2007; Spite et al., 2009). RvD1 improves the
cardiorenal microenvironment to clear myocardial infarction-
induced inflammation by increasing neutrophil and macrophages
numbers and facilitates renoprotective mechanisms to limit
cardiorenal syndrome (Halade et al., 2018).

Recently, RvDs were found to be effective in IRI-AKI
and to function by reducing leukocyte influx and prohibiting
postischemic kidney fibrosis (Duffield et al., 2006). Chen
et al. (2014) also demonstrated that aspirin-triggered RvD1
is a potent anti-inflammatory mediator in lipopolysaccharide-
induced AKI. Furthermore, a recent study reported that RvD1
can also modulate adaptive immunity, including affecting the
balance between pathogenic Th1/Th17 cells and tolerogenic
Tregs (Chiurchiu et al., 2016). Tregs are commonly known to
play critical roles in controlling inflammation and maintaining
immunological tolerance in various immune disease models.
According to three recent studies, Tregs suppress innate
immunity in the kidneys and play protective roles in the repair of
ischemic AKI and in renal ischemic preconditioning (Gandolfo
et al., 2009; Kinsey et al., 2009, 2010). Therefore, we propose that
the beneficial effect of RvD1 on inflammatory regression may
involve not only peripheral inflammatory cells but also Tregs.
In this study, we sought to investigate whether RvD1 attenuates
IRI-AKI via affecting Tregs. This study demonstrates for the first
time that RvD1 alleviates IRI-AKI possibly by increasing Tregs
percentages via the ALX/FPR2 pathway.

MATERIALS AND METHODS

Mice, Procedures and Interventions
Eight-week-old male C57BL/6 mice were purchased from Slake
Laboratory Animal Company, Shanghai, China. All mice were fed
a standard laboratory diet, provided unlimited access to drinking

water, and housed in 50% humidity at room temperature on a
12 h/12 h light/dark cycle. Animal care was performed according
to criteria established by the Animal Care Committee of Qingdao
University. The IRI-AKI model was established by clamping the
mouse bilateral renal pedicle for 60 min. In the sham operation
group, a similar procedure was used except for clamping of the
renal pedicle. RvD1 (Cayman Chemical, 5 µg/kg/d) or vehicle
was administered through the tail vein at 30 min, 24 and 48 h after
reperfusion. The dosage of RvD1 was selected based on previous
reports (Kinsey et al., 2009). In some cases, RvD1 was given
together with Boc-1 (a specific antagonist of ALX, China Peptide
Co., 5 mg/kg/d). Blood, the kidneys, and spleen specimens were
collected at the designated time points for further analysis. PC61
(BioLegend, San Diego, CA, United States, 100 µg), an anti-
CD25 antibody, was used to deplete Tregs in vivo and was
administered to the mice via the tail vein after reperfusion (Pasare
and Medzhitov, 2004; Hu et al., 2013). Animals in the control
group were given rat IgG (BioLegend, CA, United States).

Histology
All mice were sacrificed at selected intervals. The kidneys
were sequentially harvested, fixed with 4% paraformaldehyde,
dehydrated and paraffin embedded. The paraffin tissue was
sliced into 3 mm sections and stained with periodate acid-Schiff
(PAS) for histological analysis. The histological evaluation was
performed by grading tubular necrosis, cast formation, tubular
dilation, and the loss of the brush border in a blinded manner
to determine acute tubular necrosis (ATN) scores. Ten non-
overlapping fields (400×) were randomly selected and scored as
follows: 0 = no injury; 1 = less than 10%; 2 = 11% to 25%; 3 = 26%
to 45%; 4 = 46% to 75%; and 5 = more than 76%.

Biochemical Analysis
Blood samples were collected at 24 and 72 h and analyzed
with a serum creatinine (Scr) kit (BioAssay Systems, Hayward,
CA, United States).

Single-Cell Suspensions From the
Spleen and Kidneys
Single-cell suspensions of splenocytes and kidney cells were
harvested from C57BL/6 mice as described previously (Zhang
et al., 2014). Briefly, the spleen was finely minced with PBS,
sequentially passed through a 200-mesh sieve and lysed with a red
blood cell lysis buffer (BioLegend, San Diego, CA, United States).
Kidney suspensions were additionally incubated with collagenase
I (Sigma-Aldrich, 1.6 mg/ml) and DNase I (Sigma-Aldrich,
200 µg/ml) in RPMI-1640 medium (HyClone, Logan, UT,
United States) at 37◦C for 30 min. Then, cells were successively
filtered through 70 and 40 µm mesh successively, and lysed with
red blood cell lysis buffers.

CD4+ T Cell Isolation and Intervention
Single-cell suspensions of splenocytes were harvested as
described above. According to the manufacturer’s instructions,
CD4+ T cells were purified with an EasySep Mouse CD4+ T
cell enrichment kit (STEMCELL Technologies, Canada), and
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the purity was confirmed to be greater than 90% confirmed by
FACS (Zhang et al., 2014). The purified naïve CD4+ T cells were
cultured in RPMI-1640 medium supplemented with 10% fetal
bovine serum (HyClone) at a density of 1 × 105 in a 5% CO2
humidified incubator at 37◦C. In addition, CD4+ T cells were
induced by incubation with an anti-CD3 antibody (2.5 µg/ml,
Invitrogen), an anti-CD28 antibody (5 µg/ml, Invitrogen), IL-2
(20 U/ml, Miltenyi Biotec) and TGF-β (2 ng/ml, Miltenyi Biotec)
in the presence or absence of 10 nM RvD1 for 5 days (Chiurchiu
et al., 2016). Cultures were supplemented with RvD1 every other
day. After 5 days, cells were collected for FACS and real-time
PCR analyses. In some cases, the purified naïve CD4+ T cells
were preincubated with anti-GPR32 neutralizing antibodies
(2 µg/ml, GeneTex) and/or anti-ALX/FPR2 neutralizing
antibodies (2 µg/ml, Genovac) for 30 min before the incubation
with RvD1 or vehicle and then stimulated with anti-CD3/CD28,
IL-2, and TGF-β.

Flow Cytometry
First, cells were incubated with Cytofix/Cytoperm (BioLegend)
to permeabilize the cell membranes for 20 min at 4◦C. Then, cells
surfaces were stained with FITC-conjugated anti-CD4 and PE-
conjugated anti-Foxp3 antibodies (eBiosciences, CA) according
to the instructions. Finally, cytometry was performed with the
BD FACS Calibur System (BD Bioscience). The plots were
gated for CD4+ lymphocytes, and Tregs were identified as
CD4+Foxp3+ T cells.

Real-Time PCR
Total RNA was extracted with Trizol reagent, and cDNA was
obtained by reverse transcription of 1 µg RNA according to the
manufacturer’s instructions. Foxp3, KIM-1, Nephrin and β-actin
were amplified by real-time fluorescence quantitative PCR kits
(Takara Corporation, Japan) using SYBR Green master mix
(Finnzyme, New England Biolabs). Relative mRNA levels were
calculated by the 2−11Ct method and normalized to those of
β-actin. The sequences of primers used for quantitative reverse
transcription-polymerase chain reaction (RT-PCR) are listed
in Table 1.

Cytokines Enzyme-Linked
Immunosorbent Assay (ELISA)
The concentrations of IFN-γ, IL-10, IL-6, and TNF-α in blood
samples were determined by ELISA kits (eBioscience) according
to the manufacturer’s instructions. The absorbance of the
final reactant was quantified at 450 nm with an ELISA plate
reader (BioTek).

TABLE 1 | The sequences of primers used for RT-PCR.

Gene Sense (5′→3′) Antisense (5′→3′)

Foxp3 GCACAAGTGCTTTGTGCGA GT TGTCTGTGGTTGCAGACGTTGT

KIM-1 ACATATCGTGGAATCACAACGAC ACTGCTCTTCTGATAGGTGACA

Nephrin CAGGGAAGACAGCAACAAACAA CAGGTTTTCAGATAGAGCCCAGA

β-actin CTGAGAGGGAAATCGTGCGT CCACAGGATTCCATACCCAAGA

Statistical Analysis
Values are expressed as the means ± SDs and represented by at
least three independent experiments. A least significant difference
(LSD) t-test or a one-way analysis of variance (ANOVA) was
performed to compare differences among diverse groups using
SPSS 13.0 software. Significance levels were set at P < 0.05 for
all data analyses.

RESULTS

RvD1 Alleviated Renal Injury in IRI-AKI
Duffield et al. (2006) demonstrated that IRI-AKI could result in
the biosynthesis and release of RvD and protectins. To investigate
the efficacy of RvD1 in IRI-AKI, mice were subjected to bilateral
renal ischemia for 60 min. RvD1 was applied to the IRI mice
via tail vein injection after reperfusion. The morphology and
ultrastructure of kidney cells were nearly intact in the sham
group, while IRI of the kidney resulted in protein cast formation,
tubular epithelial cell sloughing, loss of the brush border, tubule
dilation and infiltration of multiple inflammatory cells after 72 h.
However, RvD1 administration significantly protected against
tubule injury induced by IRI (Figure 1A). The semiquantitative
assessment of ATN showed a lower score in the RvD1 group
than in the IRI group (Figure 1B). In addition to the benefits
to structural damage, RvD1 improved renal functions, which
included reduced Scr levels at 24 and 72 h after reperfusion
(Figure 1C). In addition, the mRNA level of kidney injury
molecule-1 (KIM-1), a sensitive and specific biomarker for the
early prediction of renal tubule injury (Vaidya et al., 2010),
was increased at 24 and 72 h after reperfusion. As expected,
RvD1 reduced the KIM-1 mRNA level compared with that
in the IRI group (Figure 1D). Nephrin, a structural protein,
plays an important role in maintaining the glomerular filtration
barrier of the podocyte slit diaphragm (Kawachi et al., 1995;
Ruotsalainen et al., 1999). It serves as an early marker of podocyte
injury, and its reduced levels are largely associated with the
loss of podocyte mass (Aaltonen et al., 2001). In our study,
the nephrin mRNA levels were reduced at 24 and 72 h after
reperfusion compared with those in the sham group; however,
higher nephrin mRNA levels were observed in the RvD1-treated
group (Figure 1E). Moreover, RvD1 administration reduced the
levels of the proinflammatory cytokines IFN-γ, IL-6, and TNF-α
but increased the level of the anti-inflammatory cytokine IL-10
in the serum (Figure 1F). In summary, these results suggested
that RvD1 can alleviate renal lesions and protect renal function
in IRI-AKI.

RvD1 Increased the Percentages of
Tregs in IRI-AKI
Foxp3+ Tregs inhibit innate and adaptive immune responses,
which play important roles in ischemic preconditioning and
ischemic AKI repair (Gandolfo et al., 2009; Kinsey et al.,
2010). Therefore, we tested whether RvD1 administration
could upregulate the proportions of Tregs in IRI-AKI mice.
Single cells isolated from the spleen were detected by FACS
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FIGURE 1 | RvD1 protected against renal injury in IRI-AKI mice. The IRI-AKI model was established by clamping the bilateral renal pedicles for 60 min. RvD1
(5 µg/kg/d) or vehicle was administered to the mice via the tail vein at 30 min, 24 and 48 h after reperfusion. (A) Kidneys were stained by PAS (original magnification,
400×). (B) ATN scores at 72 h after reperfusion. (C) Serum creatinine levels at 24 and 72 h after reperfusion. The relative mRNA expression of KIM-1 (D) and
Nephrin (E) at 72 h after reperfusion. (F) Serum IL-6, TNF-α, IL-10, and IFN-γ levels at 72 h after reperfusion as determined by ELISA. Values are expressed as the
means ± SDs, n = 6–8 per group. ∗P < 0.05 versus sham; #P < 0.05 versus IRI.
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FIGURE 2 | RvD1 increased the percentages of Tregs in IRI-AKI mice. At 72 h after reperfusion, single-cell suspensions were harvested from splenocytes and kidney
cells. (A) Representative flow cytometry analysis of CD4+Foxp3+T cells obtained from the spleen or kidneys in IRI-AKI mice. The plots are gated for
CD4+ lymphocytes. The data are representative of 3 independent experiments. (B) Percentages of CD4+Foxp3+T cells in the spleen and kidneys of IRI-AKI mice.
Values are expressed as the means ± SDs, n = 6–8 per group. *P < 0.05 versus sham; #P < 0.05 versus IRI.

to assess CD4+Foxp3+ T cell percentages. We found that
RvD1 increased Treg percentages in the spleen after 72 h
of continuous administration (Figures 2A,B). Additionally,
the Treg percentages in the kidneys increased after RvD1
administration (Figures 2A,B), although a small number of Tregs
were observed in the kidneys of the IRI-AKI mice. Therefore,
these results indicated that RvD1 enhances the Treg percentages
in both the kidneys and spleen in IRI-AKI mice.

Depletion of Tregs Reversed the
Beneficial Effects of RvD1 on IRI-AKI
To further define the role of Tregs in the beneficial effects of
RvD1 on IRI-AKI, Tregs were depleted in vivo. PC61 (an anti-
CD25 antibody, 100 µg) can reportedly effectively remove Tregs

in vivo without affecting non-Tregs (Pasare and Medzhitov, 2004;
Hu et al., 2013). After PC61 administration, the percentages of
Tregs in the spleen and kidneys were significantly reduced in
IRI-AKI mice (Figures 3A,B), which indicated that the depletion
of Tregs was successful. In the IRI-AKI mice administered
RvD1, PC61 reversed the beneficial effects of RvD1 on IRI-AKI,
which included aggravated tubular injury (Figure 4A), increased
ATN scores (Figure 4B) and renal function deterioration
(Figure 4C). Moreover, higher KIM-1 mRNA levels (Figure 4D)
and lower nephrin mRNA levels (Figure 4E) were observed
in the PC61 group than in the rat IgG group. In addition,
compared with rat IgG, PC61 treatment increased the levels
of the proinflammatory cytokines IFN-γ, IL-6, and TNF-α but
decreased the level of the anti-inflammatory cytokine IL-10
(Figure 4F). These experimental results demonstrate that the
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FIGURE 3 | PC61 administration reduced Treg percentages in the spleen and kidneys of IRI-AKI mice. The IRI-AKI model was established, and PC61 or rat IgG was
administered via the tail vein after RvD1 or vehicle interventions. Single-cell suspensions were generated from the spleen and kidneys at 72 h after reperfusion.
(A) Representative flow cytometry analysis of CD4+Foxp3+ T cells obtained from the spleen or kidneys of IRI-AKI mice treated with or without RvD1, PC61 or rat
IgG. The plots are gated for CD4+ lymphocytes. The data are representative of 3 independent experiments. (B) The percentage of CD4+Foxp3+ T cells in the spleen
or kidneys. Values are expressed as the means ± SDs, n = 6–8 per group. ∗P < 0.05, IRI + PC61 versus IRI; #P < 0.05, IRI + RvD1 + IgG versus IRI; IP < 0.05,
IRI + RvD1 + IgG versus IRI + RvD1 + PC61.

protection of RvD1 in IRI-AKI is related to the increased
percentage of Tregs.

RvD1 Induced the Generation of Induced
Tregs (iTregs) via ALX/FPR2 Receptors
Further, we conducted another study to explore whether RvD1
could affect the generation of iTregs, which develop from
naïve CD4+ T cells under antigen and TGF-β stimulation
(Chiurchiu et al., 2016). To this end, naïve CD4+ T cells
were stimulated with RvD1 or vehicle under Treg-inducing
conditions in vitro (Figure 5A). At 96 h, the percentages of

CD4+Foxp3+ Tregs (Figures 5B,C), Foxp3 mRNA expression
(Figure 5E), and serum IL-10 levels (Figure 5D) were all
increased in the presence of RvD1 compared with the
control vehicle. These results suggest that RvD1 affects
not only the induction of Tregs but also their specific
functional properties.

To verify the potential molecular mechanism of RvD1
in iTreg regulation, we assessed the role of RvD1 receptors
in iTregs. GPR32 and ALX/FPR2 are known receptors of
RvD (Krishnamoorthy et al., 2010; Norling et al., 2012) and
because Chiurchiu et al. demonstrated that iTregs express both
GPR32 and ALX/FPR2 (Chiurchiu et al., 2016), we focused on
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FIGURE 4 | PC61 reversed the beneficial effects of RvD1 on IRI-AKI. (A) Kidneys were stained by PAS (original magnification, 400×). (B) ATN scores at 72 h after
reperfusion. (C) Serum creatinine levels at 72 h after reperfusion. The relative mRNA expression of KIM-1 (D) and Nephrin (E) at 72 h after reperfusion. (F) Serum
IL-6, TNF-α, IL-10 and IFN-γ levels at 72 h after reperfusion as determined by ELISA. Values are expressed as the means ± SDs, n = 6–8 per group. ∗P < 0.05, IRI
versus Sham; #P < 0.05, IRI + RvD1 + IgG versus IRI; HP < 0.05, IRI + PC61 versus IRI + RvD1 + IgG; IP < 0.05, IRI + RvD1 + IgG versus IRI + RvD1 + PC61;
1P < 0.05, IRI + RvD1 + PC61 versus IRI; ◦P < 0.05, IRI + PC61 versus IRI; NS: not significant.

these receptors. Interestingly, preincubation with anti-ALX/FPR2
neutralizing antibodies alone or in combination with anti-GPR32
neutralizing antibodies abrogated the enhancement effect of

RvD1 on iTregs, while anti-GPR32 neutralizing antibodies alone
did not (Figures 5B–E). This result suggests that the receptor
ALX/FPR2 mediates the effects of RvD1 on iTregs in vitro.
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FIGURE 5 | RvD1 induced the generation of iTregs via the receptor ALX/FPR2. (A) The sketch map of iTreg generation. (B) Representative flow cytometry analysis of
iTregs generated with or without RvD1, an anti-GPR32 neutralizing antibody, or an anti-ALX/FPR2 neutralizing antibody at 96 h after incubation under the condition
of iTreg generation. The plots are gated for CD4+ lymphocytes. The data are representative of 3 independent experiments. (C) The percentage of iTregs. (D) IL-10
levels in the supernatants of iTregs as determined by ELISA. (E) The mRNA expression of Foxp3 in iTregs as determined by RT-PCR. Values are expressed as the
means ± SDs, n = 6 per group. ∗P < 0.05, RvD1 versus RvD1 + anti-ALX/FPR2 antibody; #P < 0.05, RvD1 versus RvD1 + anti-ALX/FPR2 antibody + anti-GPR32
antibody; NS: not significant, RvD1 versus RvD1 + anti-GPR32 antibody.
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FIGURE 6 | Boc-1 abrogated the effect of RvD1 on the spleen and kidney cell Treg percentages. The IRI-AKI model was established and Boc-1 was administered
via the tail vein after RvD1 or vehicle interventions. (A) Representative flow cytometry analysis of CD4+Foxp3+ T cells obtained from the spleen or kidneys of IRI-AKI
mice treated with or without RvD1 or Boc-1. The plots are gated for CD4+ lymphocytes. The data are representative of 3 independent experiments. (B) The
percentage of CD4+Foxp3+ T cells in the spleen or kidneys. Values are expressed as the means ± SDs, n = 6–8 per group. ∗P < 0.05, IRI versus IRI + RvD1;
#P < 0.05, IRI + RvD1 versus IRI + RvD1 + Boc-1.

Boc-1 Reversed the Protective Effect of
RvD1 on IRI-AKI
Boc-1 is a selective RvD1-receptor ALX/FPR2 antagonist. To
further verify that RvD1 increases the percentage of Tregs
through the ALX/FPR2 pathway in vivo, Boc-1 was administered
to IRI-AKI mice. We found that Boc-1 reduced the Treg
percentages in the spleen and kidneys of IRI-AKI mice
treated with RvD1 (Figure 6). Additionally, compared with
RvD1 treatment, the administration of Boc-1 in vivo led to
pathological changes (widespread protein cast, tubular necrosis
and inflammatory cell infiltration; Figure 7A), increased in
ATN scores (Figure 7B), renal dysfunction (manifested as high
levels of Scr; Figure 7C) and inflammatory cytokines infiltration
(high serum levels of IFN-γ, IL-6 and TNF-α; Figure 7F).
Moreover, Boc-1 treatment increased the mRNA levels of KIM-1
(Figure 7D) but reduced those of Nephrin (Figure 7E) compared
to those in the RvD1 treatment group. This result demonstrated
that Boc-1 reversed the protective effect of RvD1 on IRI-AKI.

DISCUSSION

RvD1, one of the most extensively studied resolvins, can promote
the resolution of inflammation by inhibiting inflammatory cell
infiltration, downregulating cytokine secretion and promoting
neutrophil apoptosis (Schwab et al., 2007). It is reported to
play protective roles in a variety of disease models, including

acute lung injury, peritonitis, wound infection, insulin resistance
and atherosclerosis models (Bento et al., 2011; Weylandt et al.,
2012). In the field of nephrology, RvD1 can also preserve
renal function and inhibit fibrosis in multiple kidney diseases,
such as obstructive nephropathy (Qu et al., 2012), adriamycin-
induced AKI (Zhang et al., 2013), lipopolysaccharide (LPS)-
induced AKI (Chen et al., 2014), paraquat-induced AKI (Hu
et al., 2019), and IRI-AKI (Duffield et al., 2006). In our research,
RvD1 administration alleviated renal injury and protected renal
function in IRI-AKI, results that were identical to those of
previous studies.

In addition to limiting inflammation, RvD1 also plays an
important role in adaptive immune mediation. Chiurchiu et al.
reported that RvD1 could promote the generation of Foxp3+
Tregs (Chiurchiu et al., 2016). Luo et al. suggested that RvD1
could increase Treg activity and the macrophage phagocytosis
of apoptotic T cells, which was shown to contribute to disease
recovery in rats with experimental autoimmune neuritis (Luo
et al., 2016). Tregs are lymphocytes with immunosuppressive
properties that are commonly identified by their expression of
CD4 and CD25 on the cell surface and upregulated levels of
the transcription factor Foxp3 (Fontenot et al., 2003). With the
development of a tissue digestion and sieving technique followed
by flow cytometry, Tregs were discovered in the normal kidney
(Ascon et al., 2006). Despite less infiltration in the normal kidney
(less than 1% as assessed by FACS) (Gandolfo et al., 2009; Kinsey
et al., 2009), Tregs still play an important role in many kidney
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FIGURE 7 | Boc-1 reversed the improved therapeutic efficacy of RvD1 in IRI-AKI. (A) Kidneys were stained by PAS (original magnification, 400×). (B) ATN scores at
72 h after reperfusion. (C) Serum creatinine levels at 72 h after reperfusion. The relative mRNA expression of KIM-1 (D) and Nephrin (E) at 72 h after reperfusion.
(F) Serum IL-6, TNF-α, IL-10 and IFN-γ levels at 72 h after reperfusion as determined by ELISA. Values are expressed as the means ± SDs, n = 6–8 per group.
∗P < 0.05, IRI versus IRI + RvD1; #P < 0.05, IRI + RvD1 versus IRI + RvD1 + Boc-1.
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diseases, such as AKI and progression to CKD. Tregs suppress
innate immunity and participate in the repair of ischemic AKI
and in renal ischemic preconditioning (Gandolfo et al., 2009;
Kinsey et al., 2009, 2010). Our studies demonstrated that RvD1
administration could increase the Treg percentages in the spleen
and kidneys of IRI-AKI mice. However, whether the increased
percentages of Tregs were important for the protective effect
of RvD1 remained unknown. To better understand the causal
relationship between the induction of Treg activity by RvD1
and its renal protective effect, PC61, an anti-CD25 antibody,
was used to deplete Tregs, which mitigated the effect of RvD1
on ischemic injury. These results suggest that the increased
percentages of Tregs induced by RvD1 treatment may contribute
to the beneficial effects of RvD1 on IRI-AKI.

Treg depletion experiments are complex. The administration
of PC61 to IRI-AKI mice slightly increased the average ATN score
and the inflammatory cytokine levels compared with those in IRI
group, but the differences were not statistically significant. This
result was consistent with those reported by Bai et al. (2018)
and Gandolfo et al. (2009). However, Gandolfo reported that
PC61 administration reduced Scr levels within 1 day, increased
tubular damage in the outer medulla after 3 days and persistently
increased tubular damage after 10 days in IRI-AKI mice, while
Treg transfer was associated with histological changes only at
10 days. These results suggested that Treg depletion and transfer
require some time to become effective, which may be related to
the lower number of Tregs in the kidney. These studies may
further explain our results, and we hypothesized that as the IRI
time extends in mice, the effect of PC61 on renal pathology will
gradually appear. In addition, the treatment of Tregs-depleted
mice with RvD1 had some protective effects in histopathology,
renal function and inflammatory cytokines levels compared with
those in the IRI group. Therefore, we speculate that RvD1
protects IRI-AKI mice by increasing the numbers of not only
Tregs but also other cells, such as TH1 and Th17 cells.

The mechanism of Treg amplification in mice treated with
RvD1 may be associated with the proliferation of preexisting
Tregs or the transformation of naïve CD4+ T cells. Recently,
Chiurchiu et al. reported that RvD1 could enhance the
de novo generation of Foxp3+ Tregs and further confirmed
the conclusion drawn in vivo regarding Elovl2−/− mice, which
are deficient for elongase 2, the key enzyme involved in the
synthesis of DHA (the precursor of RvD) (Chiurchiu et al.,
2016). In vitro, we further evaluated whether RvD1 could
affect the transformation of non-Tregs to Tregs. iTregs develop
from naïve CD4+ T cells under stimulation by antigen and
TGF-β (Yamagiwa et al., 2001). Therefore, purified naïve CD4+
T cells were incubated with RvD1 under the condition of
Treg induction. Our data showed that RvD1 could potentiate

iTreg differentiation, with significantly higher Foxp3 mRNA
expression levels compared to those in the control group.
The GPR32 and ALX/FPR2 are two receptors that have been
shown to transmit RvD1 signals, but only ALX/FPR2 has
been identified in rodents (Recchiuti, 2013). Interestingly, after
the addition of an anti-ALX/FPR2 neutralizing antibody, the
Treg percentage, Foxp3 mRNA level and IL-10 level were
reduced. However, this effect was not observed after the
additional application of an anti-GPR32 neutralizing antibody.
Furthermore, in vivo studies showed that the administration
of Boc-1, a selective RvD1-receptor ALX/FPR2 antagonist,
reduced the percentages of Tregs in the spleen and kidneys of
IRI-AKI mice treated with RvD1 and reversed the beneficial
effects of RvD1 on tubular injury. Therefore, these results
suggest that RvD1 enhances the generation of iTregs and
the protective efficacy of RvD1 against IRI-AKI via the
ALX/FPR2 pathway.

In summary, our studies demonstrated that RvD1
administration improved renal injury in IRI-AKI. This
amelioration efficacy was associated with an increased percentage
of Tregs induced by the ALX/FPR2 pathway.
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