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In our digitized society, advanced information and communication technology and highly

interactive work environments impose high demands on cognitive capacity. Optimal

workload conditions are important for assuring employee’s health and safety of other

persons. This is particularly relevant in safety-critical occupations, such as air traffic

control. For measuring mental workload using the EEG, we have developed the method

of Dual Frequency Head Maps (DFHM). The method was tested and validated already

under laboratory conditions. However, validation of the method regarding reliability and

reproducibility of results under realistic settings and real world scenarios was still required.

In our study, we examined 21 air traffic controllers during arrival management tasks.

Mental workload variations were achieved by simulation scenarios with different number

of aircraft and the occurrence of a priority-flight request as an exceptional event. The

workload was assessed using the EEG-based DFHM-workload index and instantaneous

self-assessment questionnaire. The DFHM-workload index gave stable results with

highly significant correlations between scenarios with similar traffic-load conditions (r

between 0.671 and 0.809, p ≤ 0.001). For subjects reporting that they experienced

workload variation between the different scenarios, the DFHM-workload index yielded

significant differences between traffic-load levels and priority-flight request conditions.

For subjects who did not report to experience workload variations between the scenarios,

the DFHM-workload index did not yield any significant differences for any of the factors.

We currently conclude that the DFHM-workload index reveals potential for applications

outside the laboratory and yields stable results without retraining of the classifiers neither

regarding new subjects nor new tasks.

Keywords: mental workload, psychophysiology, air traffic controllers, electroencephalography, biomedical signal

processing, pattern recognition, state monitoring

1. INTRODUCTION

In our digitized society, advanced information and communication technology and highly
interactive work environments impose high demands on cognitive capacity and on the ability to
cope with increased task load (Kompier and Kristensen, 2001; Niosh, 2002; Landsbergis et al., 2003;
Lohmann-Haislah, 2012). According to several authors mental workload can be conceived as the
amount of cognitive demands required in order to solve a task related to the cognitive resources
available (Kahneman, 1973; Eggemeier et al., 1991; Xie and Salvendy, 2000; Wickens, 2002).
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Optimal workload conditions are important for the health
of the single individual and in order to assure the safety of
other persons. Latter is particularly relevant in safety-critical
occupations with high cognitive demands and responsibility,
such as air traffic control. A valid and reliable method for
measuring mental workload would offer a way for achieving
such conditions in human-machine systems by capturing the
instantaneous workload continuously over time (Byrne and
Parasuraman, 1996; Scerbo et al., 2001; Arico et al., 2017). It
is important that the registration method does not interact
with the task or alter subject’s mental state by imposing
additional demands as it is the case during subjective assessment
of workload by means of questionnaires. Furthermore, the
workload should not only be detectable in retrospect or after
the occurrence of errors as it is the case when performance
measures are used for workload detection. Thus, questionnaires
and performance evaluation are only of limited relevance for
real-time analysis of workload conditions in the range of seconds.

Over the past 50 years, various physiological parameters
(e.g., heart rate and derived parameters, electrodermal activity,
body temperature, etc.) have been evaluated for their validity
regarding continuous mental workload registration. Since the
discovery of the electroencephalogram (EEG) by Berger (1929),
relations between bioelectric brain activity and cognitive states
have been studied. Improvements of the amplifier technology
and computerized evaluation of biosignals made systematic
investigations possible. In last century’s 90s, the state-of-the
art regarding EEG’s evaluation and validity was summarized
in reviews that served as a starting point for the use of the
EEG in applied research, e.g., in human-factors. In a review
article, Borghini et al. (2014) provided a detailed overview
of the measurement of neurophysiological signals for the
determination of mental workload and confirmed essentially
the known relations. The authors further concluded that no
convincing algorithms were available for a reliable online
workload detection.

The spectral power of oscillations in different frequency bands
were used as parameters for describing the spontaneous brain
activity. For the alpha-frequency (8–12 Hz) and theta-frequency
(4–8 Hz) bands, spectral-power comparisons in all relevant
investigations described systematic relations to cognitive and
memory performance (Sterman and Mann, 1995; Pfurtscheller,
1997; Gevins et al., 1998; Klimesch, 1999; Gevins and Smith,
2000). These EEG bands were also linked to different levels
of workload by means of analysis of variance (e.g., Mecklinger
et al., 1992; McEvoy et al., 2001; Lei and Roetting, 2011;
Brouwer et al., 2012; Capilla et al., 2012; Aricò et al., 2018) and
demonstrated a decrease of the alpha-frequency band power and
an increase of the theta-frequency band power with increasing
mental workload.

In recent years, however, classifiers were increasingly used
for the separation of workload levels. The feature vectors—
derived from the EEG—revealed varying complexity and extent,
and frequency bands were taken differently into account. The
used EEG parameters were, for example, the amplitude of the
EEG signal, spectral power of different frequency bands, and
different EEG channels (Wilson and Russell, 2003b; Lin et al.,

2006; Kohlmorgen et al., 2007; Baldwin and Penaranda, 2012;
Penaranda and Baldwin, 2012; Ke et al., 2014). The focus
was on frontal, parietal and occipital EEG channels according
to previous findings. Independent component analysis (ICA)
was used to determine specific reactions of spatio-temporal
different sources (Gardony et al., 2017) and allowed the successful
detection and elimination of artifacts (Mognon et al., 2011;
Radüntz et al., 2017; Puma et al., 2018).

Initially, studies that dealt with the determination of
workload were conducted in the laboratory using different task
batteries (Gevins et al., 1998; Gevins and Smith, 2000; McEvoy
et al., 2001; Berka et al., 2007; Grimes et al., 2008; Baldwin and
Penaranda, 2012; Brouwer et al., 2012, 2014; Christensen and
Estepp, 2013;Weiland et al., 2013; Gerjets et al., 2014; Hogervorst
et al., 2014; Ke et al., 2014; Hou et al., 2016; Gardony et al.,
2017; Rosen and Reiner, 2017; Puma et al., 2018). Meanwhile,
investigations of cognitive workload with more realistic tasks
becamemore popular (Kohlmorgen et al., 2007; Lei and Roetting,
2011; Aricò et al., 2018; Dehais et al., 2018). Air traffic controllers
(ATCOs) pose a special challenge due to the complex task-
load situations with changing activities and strategies for air
traffic management (ATM). The requirements can change very
fast, a clear and direct objective graduation of task-load proves
to be difficult, and the transitions are often unpredictable
and fast. Experiments with ATM simulations and a task-load
grading proved to be advantageous although the majority of
simulated ATM examinations were limited to two task-load levels
(easy and difficult). Relevant studies on workload determination
methods for simulated or real air traffic control were conducted
by Brookings et al. (1996), Wilson and Russell (2003b, 2007),
Shou et al. (2012), Abbass et al. (2014b,c), Borghini et al. (2014,
2017), Aricò et al. (2015, 2016), Aricò et al. (2018), Di Flumeri
et al. (2015), Dasari et al. (2017), and Dehais et al. (2018).

Wilson and Russell (2003a) investigated the classification of
the mental state of seven air traffic controllers in simulated
air traffic monitoring. In seven different task-load conditions
a 19-channel EEG, heart rate, blink rate, and respiratory rate
were recorded. The spectral power of five frequency bands was
calculated for each EEG channel from 1-s windows and used per
subject as input for the artificial neuronal networks (ANN) and
stepwise linear discriminant analysis (SWLDA). Discrimination
only between two conditions yielded the best result with an
accuracy of 97.5% (ANN) and 91% (SWLDA). Thereby only 22
relevant features were included in the evaluation. The authors
drew attention to the following open questions of day-to-day
variability of psychophysiological measures and long training
duration for ANN. They stated that a one-size-fits-all solution
would be beneficial.

Abbass et al. (2014c) dealt with questions about visual and
auditory information processing in relation to mental workload
of air traffic controllers. In addition, the authors examined
the question of whether a narrow-band frequency resolution
of the EEG was better suited for the assessment of workload.
They found that there were no quantitative advantages over the
usual frequency bands. Further, they suggested to focus on the
separation of high and low workload and neglect the middle
range (Abbass et al., 2014a).
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The question of reliability of EEG-based workload
determination in ATM tasks was examined in Arico et al.
(2015). According to the authors the reason for the decreasing
classification accuracy over days, as reported by Christensen and
Estepp (2013), could be overfitting, i.e., a too high specificity
of the training data. It was hypothesized that a simple classifier
based on fewer spectral properties guaranteed a high selectivity
over days. Twelve ATCO interns completed the simulated ATM
task on 2 consecutive days and after 9 days. The EEG was
registered by 13-channels and 2 s windows were used to compute
relevant EEG spectral features. For each subject, cross-validation
of the classifier between the days was calculated using 5, 50, and
100% of relevant EEG features. The results showed that the use
of only 5% of the relevant features contributed to an over-day
stable workload measurement.

Basically, changes in the alpha-frequency and theta-frequency
band powers related to mental workload have been confirmed
many times and proved to be meaningful in accordance
with the findings of the last 50 years. The majority of
workload studies dealt with the analysis of the EEG during
cognitive tasks related to working memory and executive
control. While some authors investigated whether a brain-
state monitoring was possible on the basis of universal and
general activation signs in the EEG (Bashivan et al., 2014,
2015; Ke et al., 2014), others tested the possibilities and
limitations of over task requirements (cross-task training) and
inter-individually (cross-subject training) transferable classifiers.
Discrimination accuracy of the classifiers between high and
low workload was often not sufficient in cross-task training
and remained below the significance threshold. Cross-subject
training of the classifier was also less favorable than intra-subject
classification. In the driving simulator study by Kohlmorgen
et al. (2007), the authors concluded that a highly adaptive
approach was needed to account for the neurophysiological
variations. According to the authors, a universally applicable
“workload detector” with fixed parameters did not seem to be
realistic at the moment. The selection of appropriate data for
classifier’s training needs more elucidation. This is especially
important as frequent allegations were made concerning the
time interval between training and test of the classifier
that proved to be particular relevant for the classification
accuracy (Penaranda and Baldwin, 2012). In order to avoid
overfitting and increase the stability of the classifier performance
over time a smaller number of features could be beneficial (Arico
et al., 2015).

It has to be stated that different cognitive strategies in
task solving, both intra- and inter-individually, can influence
the classification results. In this context, Puma et al. (2018)
suggested to cluster the subjects according to their performance,
age (McEvoy et al., 2001), and individual experiences. These
should be considered if workload registration methods are to
be validated.

Based on the possibility that machine learning algorithms
provide the ability of workload registration in the range of
seconds, the question arises whether they provide reliable and
reproducible results over time, in particular without the need
for re-training of the classifier regarding subjects and tasks. For

their practical application at the workplace, it is also important
that their applicability is examined not only in the laboratory but
also under more realistic conditions. This becomes particularly
important when considering the technological advancements
regarding mobile EEG technology that have simplified signal
registration outside of shielded rooms (Mihajlovic et al., 2015;
Aricò et al., 2018; Radüntz, 2018; Baek et al., 2019; Radüntz and
Meffert, 2019).

In our prior work we developed a mental-workload classifier
that does not need retraining, neither for new subjects
nor for new tasks (Radüntz, 2017). In a laboratory study
conducted with 54 subjects and during execution of well-
established cognitive tasks, we developed the so-called Dual
Frequency Head Maps (DFHM). These head maps consist
of personalized spectral features and their spatial occurrence
(i.e., frontal theta-band and parietal alpha-band powers).
Support vector machines are used for classification in three
classes: low, moderate, or high workload. Under laboratory
conditions, we successfully proved the DFHM method as
universally applicable with fixed parameters for mental-workload
indexing. For proofing the reliability and reproducibility of
our DFHM method’s results under realistic conditions, we
conducted a study in cooperation with the German Aerospace
Center and focused on air traffic controllers. The following
four research hypotheses were formulated for the DFHM-
validation study:

1. The DFHM method yields stable results under similar task-
load conditions independently of the time of measurement.

2. The DFHMmethod is able to assess workload differences that
arise from different traffic-volumes conditions.

3. The DFHMmethod is able to assess workload differences that
arise from an exceptional-event condition.

4. The objectively measured workload assessed by the
DFHM method is related to controller’s subjectively
experienced workload.

2. MATERIALS AND METHODS

2.1. Research Design
Our study took place at the Air Traffic Management and
Operations Simulator (ATMOS) of the German Aerospace
Center (DLR) in Braunschweig. Thereby, air traffic controllers
focused on simulated arrival management procedures presented
on the monitor and interacted along the experimental task
with pseudo pilots who simulated the cockpit crews. The
implemented simulation scenarios differed regarding two factors
that were responsible for mental workload variations of air
traffic controllers as suggested by Averty et al. (2004). The
first one was the traffic load. In our case, we had four levels
corresponding to four different numbers of aircraft per hour
(ac/h). The second factor was an exceptional event that could
occur or not. This event was a pilot’s request for a flight
prioritization because of a sick passenger on board. The priority-
flight request could occur around the 11th min of the 20–25 min
lasting scenario. Both factors led to the eight scenarios presented
in Table 1.
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TABLE 1 | Independent variables and simulation scenarios.

Number of aircraft per hour

Low (25 ac/h) Medium (35 ac/h) High (45 ac/h) Very high (55 ac/h)

Exceptional event No Scenario 1 Scenario 3 Scenario 5 Scenario 7

Yes Scenario 2 Scenario 4 Scenario 6 Scenario 8

TABLE 2 | Experimental procedure.

Duration (min) Procedure

Day 1: ca. 12.30–17.30 Day 2: ca. 9.30–12.30

120 Briefing, training

65 Two simulation scenarios Two simulation scenarios

15 Break Break

65 Two simulation scenarios Two simulation scenarios

2.2. Procedure and Subjects
We asked subjects to participate in a 2-days experiment where
they had to complete the above-mentioned eight traffic scenarios
in randomized order. The experimental procedure is outlined
in Table 2. The investigation consisted of an introductory
session and the main experiment. During the introductory
session participants completed demographic questionnaires,
were briefed regarding the research goals and experimental
procedure of the following 2 days, and had a training session at
the simulator in order to get familiarized with the environment.
During the main experiment the subjects completed four of the
simulation scenarios while the remaining four were conducted
on the second day.

In our study, we examined 21 subjects in the age between 22
and 64 years (2 females, 19 males, mean age 38 ± 11). Subjects
were from different airports, had different work experience,
revealed different work positions (i.e., 13 approach controllers,
three tower controllers, and five employees of the DLR), and had
experienced different work demands. However, all of them had
adequate expertise to handle the arrival management simulation.

All of the investigations acquired were approved by the local
review board of our institution and complied with the tenets of
the Declaration of Helsinki. All procedures were carried out with
the adequate understanding and written consent of the subjects.

2.3. Subjective Ratings
In order to register the subjectively experienced workload, we
used the instantaneous self-assessment (ISA) questionnaire. This
was developed for the assessment of air traffic controller’s mental
workload (Brennan, 1992; Jordan, 1992; Kirwan et al., 1997) and
consisted of a one-dimensional scale. Thus, it was quickly and
easily conducted in an interval of 5 min during all eight scenarios.
According to their feeling during the previous 5 min, subjects
indicated their workload using a touch screen. Thereby, they
selected one of the following five values: (1) under-utilized, (2)
relaxed, (3) comfortable, (4) high, and (5) excessive.

Analysis of the ISA questionnaire results was particularly
relevant for our fourth hypothesis related to controller’s
subjectively experienced workload. Based on these we developed
a so-called workload-sensitivity index that considered the
individual range of experienced workload during different task-
load conditions.

Subject’s normalized workload-sensitivity index sa was based
on a linear model for the dependence of subjectively experienced
workload as assessed by the ISA questionnaire and traffic load.
In Fürstenau et al. (2020), we showed that the linear model was
able to predict the ISA value with a high confidence for means
across the subjects and provided reasonable linear correlation
coefficients for the individuals. Independence from the arbitrary
ISA values was achieved via normalization by scales’ means, i.e.,
(traffic loadmax + traffic loadmin) / 2 for the traffic volume and
(ISAmax + ISAmin) / 2 for the subjective workload, resulting in
anticorrelated (normalized) sensitivity and intercept sb= 1− sa.
ISA-scale means were conducted individually for each subject
based on the ISA-extreme values from their regression lines.

Our workload-sensitivity index ranged between 0.32 and 1.23,
and was used for subject clustering. The aim of this clustering was
an improved investigation of the cognitive phenomena only of
those subjects that actually experienced different workload levels.
Subjects with an index below the median of 0.8 were clustered
as not sensitive, while subjects with an index equal or above
the median as workload sensitive. Generally speaking, workload-
sensitive subjects experienced more workload variation during
the different simulation scenarios whereas the not-sensitive
subjects rated the subjectively experienced workload with
less variation.

2.4. EEG and DFHM-Workload Index
Biosignal processing and all calculations were done
with MATLAB.

For EEG registration we used g.tec’s g.LADYbird/g.Nautilus
system with 25 active electrodes placed at positions according to
the 10–20-system (Figure 1). Registration was carried out with
a sample rate of 500 Hz and with reference to electrode Cz. For
signal recording we used g.tec’s Matlab interface.

After recording, the EEG was filtered with a bandpass
filter (order 100) between 0.5 and 40 Hz for enhancing
the separation accuracy of the following analysis for artifact
rejection (Fernandez, 2009; Omatu et al., 2010; Pignat et al., 2013;
Winkler et al., 2015). Independent component analysis [ICA,
Infomax algorithm (Makeig et al., 1996)] for artifact rejection
was applied to the signal. Components to reject were manually
selected (i.e., on average 16 out of 25 per subject). In order to
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FIGURE 1 | EEG layout used.

TABLE 3 | Mean and standard deviation (in parenthesis) of the α and θ frequency

band powers exemplary for two electrodes averaged over the subjects for each

simulation scenario.

Number of aircraft per hour 25 ac/h 35 ac/h 45 ac/h 55 ac/h

Without an exceptional event

θ frequency band power (Fz electrode) 16.5 (4.0) 17.5 (4.3) 17.4 (3.7) 18.2 (3.8)

α frequency band power (Pz electrode) 26.1 (6.1) 25.2 (5.4) 25.4 (5.7) 25.1 (5.2)

With an exceptional event

θ frequency band power (Fz electrode) 16.7 (3.7) 17.4 (4.1) 17.3 (3.7) 17.8 (3.9)

α frequency band power (Pz electrode) 26.0 (6.0) 25.5 (5.6) 25.0 (5.2) 24.9 (4.4)

increase topographical localization, we applied a simple Hjorth-
style surface laplacian filter using eight neighbors (Hjorth, 1975).
This spatial high-pass filter was aimed to attenuate large-scale
scalp signals and amplify localized signals.

The artifact-free EEG was transformed to average reference
and cut into segments of 1 s length, overlapping by 0.5 s. By
means of Fast Fourier Transformation (FFT) we computed the
workload relevant frequency bands (theta: 4–8 Hz, alpha: 8–
12Hz) over the segments.Table 3 shows the general tendencies of
both frequency bands exemplary for two electrodes. Involvement
of all electrodes, the combination of both frequency bands, and
the personalization of the band-power values aim at enhancing
workload classification and constitute the DFHM that were
generated as outlined in Radüntz (2017). In brief, we applied a
theta-bandpass filter to the signals of the frontal electrodes and
an alpha-bandpass filter to the signals of the parietal electrodes
and calculated for each participant, each electrode, and each
segment the z-scores of theta and alpha band power. The

individual mean and standard deviation for z-score calculation
were obtained from subject’s segments of the first minute of
each scenario. This compilation of the z-scores of the theta
band power from the frontal electrodes and alpha band power
from the parietal electrodes constituted the DFHM for each
EEG segment. Next, each DFHM from the simulation scenarios’
segments was classified using the already trained SVM classifier
from the laboratory study. Retraining of the DFHM classifier was
not necessary neither for the new subjects nor for the new tasks.
The general characteristic of these maps and thus, the classifier
is universally applicable because of the z-score calculation. For
more information about the DFHM and classifier development,
we refer the interested reader to our method article (Radüntz,
2017).

We obtained every 0.5 s a value of 1 (low workload), 2
(moderate workload), or 3 (high workload). We applied a
moving-average time window of 30 s as suggested by Abbass
et al. (2014a) and adjusted the result in order to gain a DFHM-
workload index between 0 and 100 (Equation 1; with t: workload
index at time t, DFHM (i): classification value of DFHM from
segment i).

WKLindex(t) = (
t∑

i=t−59

DFHM(i)− 60)/120 ∗ 100 (1)

In particular, for each moving-average time window of 30 s
we firstly calculated the sum of the 60 values resulting from
the DFHM every 0.5 s. In order to have a baseline of 0, we
subtracted the minimum-possible sum of 60 for the case where
all DFHM of the window indicated a low workload of 1. Thus,
the maximum-possible sum for the case where all DFHM of the
window indicated a high workload was 120. Dividing by the latter
and multiplying by 100 provided the percentage amount of high-
workload segments in a time-window of 30 s. This constituted the
DFHM-workload index between 0 and 100 computed every 0.5 s.

2.5. Statistical Analysis
For evaluating our first hypothesis and proof the reliability of
the DFHM index, we calculated the DFHM-index average over
the first 5 min of each simulation and correlated the means of
scenarios with same traffic load.

For investigating the ability of the DFHM method to assess
mental workload arising from the traffic volume (hypothesis 2)
and the occurrence of an exceptional event (hypothesis 3), we
looked at the time slots immediately after the time of a possible
priority-flight request. This was triggered in the data using
g.tec’s g.TRIGbox. For scenarios with a priority-flight request
we considered a DFHM-index segment of 2.5 min starting
from the request time point. For scenarios without a priority-
flight request we used the same time slots. We carried out
an analysis of variance (ANOVA) with the slots’ mean DFHM
index as dependent variable. We utilized a repeated-measures
design with two within-subject factors (two levels for the priority-
flight request factor and four levels for the traffic-volume factor).
General differences between the levels were examined and tested
with a post-hoc test (Bonferroni corrected).
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TABLE 4 | Correlation analysis of DFHM-index means over the time slot 0–5 min

during scenarios with equal traffic-load volume (N = 21, ***p ≤ 0.001).

Traffic load

25 ac/h 35 ac/h 45 ac/h 55 ac/h

Pearson’s correlation coefficient 0.671*** 0.809*** 0.798*** 0.746***

Finally, we addressed the issue of DFHM-index workload
registration in relation to subjects’ subjectively experienced
workload (hypothesis 4). We clustered our subjects in two groups
using the median of our workload-sensitivity index that was
calculated from the ISA ratings. This yielded nine subjects that
subjectively did not experience workload variations between
the scenarios and 12 workload-sensitive subjects. We carried
out a mixed ANOVA with cluster affiliation as between-subject
factor followed by a two-factorial ANOVA for each cluster
separately for determining the simple main effects of our factors.
The dependent variable, within-subject factors, and levels were
identical with those mentioned above. Similarly, we utilized a
repeated-measures design and examined the differences with
post-hoc tests (Bonferroni).

Statistical calculations were conducted using SPSS and the
significance threshold was set at 5%.

3. RESULTS

3.1. DFHM Index Under Similar Conditions
Our first hypothesis was concerned with the ability of the DFHM
method to yield stable results under similar task-load conditions.
Scenarios with and without priority-flight request were identical
regarding their traffic volumes until the 10th min where the
request could occur. Thus, we decided to use only the first 5
min of each simulation for assuring similar task load conditions
between both values to be correlated. By taking a larger slot, the
scenarios would increasingly differ the more time passed away as
consequence of the interactive communication of the ATC with
the pseudo pilots.

Correlation analyses between the mean DFHM index of
the first 5 min of simulation scenarios with same traffic load
showed significant positive correlations. These were particularly
high for the traffic-load conditions of 35 and 45 ac/h and
less pronounced for the lowest traffic load of 25 ac/h. Person’s
correlation coefficients are presented in Table 4.

3.2. DFHM Index Related to Traffic Load
and Priority-Flight Request
In order to evaluate the ability of the DFHM method to assess
workload differences arising from different traffic-volume and
exceptional-event conditions, we considered the results of the
ANOVA. They were calculated with the two within-subject
factors traffic-load and priority-flight request. The results are
summarized in Table 5.

Related to our second hypothesis the traffic load had a
significant main effect on the workload as assessed by the DFHM
index. Bonferroni corrected post-hoc tests showed significant
differences between all levels except between the 35 and 45 ac/h

TABLE 5 | Analysis of DFHM index across simulation conditions over all subjects

and subjects’ clusters, respectively.

F p η
2

Traffic load All 22.953a 0.001 0.534

Workload-sensitive subjects 36.815 0.001 0.769

Not-sensitive subjects 2.762 0.064 0.257

Priority-flight request All 1.349 0.259 0.063

Workload-sensitive subjects 15.636 0.002 0.587

Not-sensitive subjects 1.311 0.285 0.141

Traffic load and All 0.214 0.886 0.011

priority-flight request Workload-sensitive subjects 0.936 0.434 0.078

Not-sensitive subjects 0.440 0.726 0.052

Values of 0.001 are actually p ≤ 0.001.
a Indicates Mauchly’s test of sphericity was significant (p < 0.05) and a Greenhouse-

Geisser correction was made to degrees of freedom.

conditions. The DFHM-workload index increased with increased
traffic. Figure 2 shows the results. The impact of the priority-
flight request as related to our third hypothesis did not became
significant. No interaction effect could be obtained between
traffic load and priority-flight request.

For assuring that air traffic controllers indeed prioritized the
aircraft, we evaluated the route distances of the same aircraft
with and without priority-flight request. In both cases the route
distance taken was the length of trajectory between the initial
contact time point and landing. A shorter route distance for the
requesting aircraft indicated that air traffic controllers complied
with the priority-request condition (Figure 3). Wilcoxon signed-
ranks tests (with Bonferroni correction) indicated that the route
distance was significantly shorter during scenarios with priority-
flight request compared to scenarios with same traffic volume but
without priority-flight request (Table 6).

3.3. DFHM Index Related to Subjectively
Experienced Workload Variations
For our last hypothesis, results from the mixed ANOVA
showed statistically significant interaction effects between
cluster affiliation and traffic load [F(3, 57)= 7.215, p< 0.001,
η2= 0.275] as well as between cluster affiliation and priority-
flight request [F(1, 19)= 9.517, p= 0.006, η2= 0.334]. No
significant interaction effect could be obtained between all three
factors cluster affiliation, traffic load, and priority-flight request
[F(3, 57)= 1.195, p= 0.319, η2= 0.059].

In the following, we analyzed the DFHM index for
the workload-sensitive cluster and the not-sensitive cluster
separately. For the workload-sensitive cluster the ANOVA
yielded a significant main effect for the traffic load and priority-
flight request. Bonferroni corrected post-hoc tests showed
significant differences between all traffic-load levels except
between the highest traffic load volumes with 45 and 55 ac/h.
The DFHM-workload index increased with increased traffic load
and was higher during scenarios with priority-flight request. No
interaction effect could be obtained between both factors.
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FIGURE 2 | Mean DFHM index over 21 participants measured during the 2.5 min slots after a possible priority-flight request across simulation conditions with (red)

and without (blue) priority-flight request at different traffic loads (Bonferroni corrected post-hoc tests: ***p ≤ 0.001; **0.001 < p ≤ 0.01; *0.01 < p ≤ 0.05; error bars

indicate 95% confidence interval).

For the not-sensitive cluster no significant differences could be
obtained for none of the factors. The results are summarized in
Table 5 and shown in Figure 4.

3.4. Performance Related to Subjectively
Experienced Workload Variations
In addition to the DFHM index we evaluated the performance
of the air traffic controllers for the workload-sensitive and not-
sensitive clusters. As measure of performance we employed
the route distances and loss of separation. Evaluation of
route distance between aircraft with priority-flight request and
without was conducted separately for each cluster. The results
are presented in Table 6 and Figure 5 and revealed similar
tendencies for both clusters, i.e., the route distance of the
requesting aircraft was significantly shorter during 35 and 45 ac/h
traffic load. During the 55 ac/h condition this held true only for
the not-sensitive cluster. No significant difference could be found
for none of the clusters during the 25 ac/h condition.

Evaluation of loss of separation between aircraft was
conducted according to the minimum separation standards
specified by the authorities and based on the standards of
the International Civil Aviation Organization (2011). The
separation minima were breached when lateral distance between
two aircraft was smaller than the required vake vortex separation,
i.e., 3 NM (nautical miles) for two medium type aircraft
and 5 NM for a medium aircraft following a heavy aircraft,
and simultaneously vertical distance between these aircraft was
smaller than 1,000 ft. In general, the number of loss of separation
was low (i.e., around zero) and thus not appropriate for statistical
evaluation. For the sake of completeness, Figure 6 illustrates the
results for each cluster separately.

FIGURE 3 | Comparison of prioritized aircraft’s route distance during

scenarios with priority-flight request (orange) and during scenarios with same

traffic volume but without prioritization (blue) for all 21 subjects (Wilcoxon

signed-ranks tests with Bonferroni correction: ***p ≤ 0.001; **0.001 < p ≤

0.01; *0.01 < p ≤ 0.05).

4. DISCUSSION

In our study, we aimed in validating our method for mental
workload registration by means of DFHM. The method was
already proofed in a laboratory setting but further evaluation
was needed. Our current validation study was conducted under
realistic conditions, with real tasks, and new subjects, i.e., in an
air traffic control simulator, with arrival-management tasks, and
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TABLE 6 | Wilcoxon signed-ranks tests (with Bonferroni correction) for comparison of prioritized aircraft’s route distance during scenarios with priority-flight request and

aircraft’s route distance during scenarios with same traffic volume but without priority-flight request.

Median (range) route distance [NM] Z p r

Without priority-flight request With priority-flight request

All subjects (N = 21)

25 ac/h 40.44 (5.92) 39.05 (1.66) −2.52 0.047 −0.55

35 ac/h 44.21 (10.24) 39.58 (7.79) −4.02 0.001 −0.88

45 ac/h 48.25 (7.88) 39.59 (14.33) −3.84 0.001 −0.84

55 ac/h 47.94 (1.93) 40.20 (17.19) −3.46 0.002 −0.76

Workload-sensitive subjects (N = 12)

25 ac/h 40.37 (4.83) 38.95 (1.10) −1.49 0.544 −0.43

35 ac/h 44.18 (9.93) 39.36 (1.14) −3.06 0.009 −0.88

45 ac/h 48.03 (7.04) 39.61 (14.33) −2.67 0.031 −0.77

55 ac/h 47.61 (1.93) 40.42 (17.19) −2.35 0.074 −0.68

Not-sensitive subjects (N = 9)

25 ac/h 40.45 (4.68) 39.52 (1.64) −1.96 0.203 −0.65

35 ac/h 44.64 (7.17) 39.59 (7.74) −2.67 0.031 −0.89

45 ac/h 48.74 (2.07) 39.58 (1.85) −2.67 0.031 −0.89

55 ac/h 48.13 (1.16) 39.91 (3.97) −2.67 0.031 −0.89

Values of 0.001 are actually p ≤ 0.001.

air traffic controllers. Our sample set consisted of 21 subjects
that completed eight simulation scenarios in randomized order.
The simulation scenarios differed regarding their traffic load that
consisted of four levels and a priority-flight request that could
occur around the 11th min of simulation or not. We registered
the EEG during the simulations and computed the DFHM-
workload index for each subject and scenario. We did not retrain
the classifiers neither for the new tasks nor for the new subjects.
The gained results were promising.

The DFHM index gave stable results with highly significant
correlations between scenarios with similar traffic-load
conditions as stated by hypothesis 1. We observed that
these correlations were particularly pronounced during the
medium and high traffic volumes and less strong for the
low-traffic volume. During the latter, requirements were very
low and allowed air traffic controllers to have task-unrelated
thoughts in order to cope with boredom (Cummings et al.,
2015). Boredom proneness, coping strategy as well as the kind
of task-unrelated thoughts could have mitigated the correlation
between the two 25 ac/h scenarios. One could argue that there
might be also other factors that might influence results stability
across scenarios, e.g., effects of learning and fatigue in the
course of time, the interaction with the pseudo pilots, or the
initial excitement during the presentation of the first scenario.
However, our sample was very specialized. Air traffic controllers
are highly trained and it seemed unlikely that they gained
knowledge in the course of the experiment. The initial training
phase prior to our experiment was aimed to familiarize the
subjects with the environmental conditions and eliminate issues
related to these. For minimizing fatigue effects, we followed
the regulations of working-time organization for air traffic
controllers that prescribe a break after 120 min of work. Each

scenario had a maximal duration of 25 min, a break took place
after two scenarios (i.e., after 50 min), and the daily session
consisted of four simulation scenarios. Effective daily-work
time was 100 min the most. Hence, fatigue effects should be
minimal. Presentation order of the scenarios was randomized
and should compensate the initial excitement across subjects.
Finally, air traffic controllers should be used to the interaction
with different pilots from their daily work experience. Hence,
we concluded that workload differences should result from the
experimental conditions and the DFHM-workload index should
be comparable during the first minutes of simulations with
equal traffic load. Nevertheless, we have to draw attention on the
increased requirement on our DFHM-workload index because
of our 2-days experiment with randomized presentation order of
the scenarios. Keeping this in mind, results from the correlation
analysis appear encouraging.

While the first hypothesis was concerned with test-retest
reliability, the second and third hypotheses addressed the issue of
validity of the DFHM method as workload indexing technique.
The DFHM index was able to assess significant differences
between the different levels of air traffic volume as stated by
hypothesis 2. Problematic were the neighboring levels with 35
and 45 ac/h that could not be significantly discriminated by the
DFHM-workload index when considered over all subjects. The
same held true regarding the priority-flight request although
evaluation of the route distance of the requesting aircraft
indicated that air traffic controllers complied with the task. At
this stage hypothesis 3 had to be rejected when considered over
all subjects.

More insight regarding intra-individual differences linked to
the DFHM-workload index was gained from subject clustering
by means of the subjectively experienced workload differences
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FIGURE 4 | Mean DFHM index during scenarios with (red) and without (blue)

priority-flight request at different traffic loads for workload-sensitive (top row)

and not-sensitive (bottom row) subjects (Bonferroni corrected post-hoc tests:

***p ≤ 0.001; **0.001 < p ≤ 0.01; *0.01 < p ≤ 0.05; error bars indicate 95%

confidence interval).

during the scenarios. Thus, our fourth hypothesis dealt not only
with issues of validity but also of consistency between subjective
and objective measuring methods. We were able to obtain highly
significant interaction effects between subjective workload-
cluster affiliation and traffic load as well as priority-flight
request. For subjects reporting that they experienced workload
variation between the different scenarios, the DFHM-workload
index yielded significant differences between traffic-load levels
and priority-flight request conditions. Interestingly, for these
subjects the DFHM index was able to differentiate between the
neighboring levels with 35 and 45 ac/h but not between the 45 and
55 ac/h conditions. Descriptive evaluation of Figure 4 indicates
that for the workload-sensitive subjects there was a ceiling
effect regarding traffic volume. This occurred for traffic-volumes
>45 ac/h and seemed reasonable when taken into account that a
traffic volume of 55 ac/h was a condition that is highly improbable
in reality for single-runway operations. Latter was constructed for

FIGURE 5 | Comparison of prioritized aircraft’s route distance during

scenarios with priority-flight request (orange) and during scenarios with same

traffic volume but without prioritization (blue) for workload-sensitive (top row)

and not-sensitive (bottom row) subjects (Wilcoxon signed-ranks tests with

Bonferroni correction: **0.001 < p ≤ 0.01; *0.01 < p ≤ 0.05).

the simulation in order to create an extreme situation that would
definitely challenge the operators and increase their workload.
Nevertheless, air traffic controllers are trained to adjust their
work strategies in order to assure safety. This strategy change
could be a reason for the ceiling effect during the very high
traffic-load condition. However, the occurrence of a priority-
flight request during the very high traffic-load condition led to
a further increase of the DFHM-workload index. Unfortunately,
our small sample size and the even smaller amount of subjects
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FIGURE 6 | Total sum of loss of separation computed over all

workload-sensitive (top row) and not-sensitive (bottom row) subjects during

scenarios with (orange) and without (green) priority-flight request at different

traffic loads.

in the clusters did not allow for elaborated statistics regarding
interaction effects.

In contrast to the significant differences obtained for the
workload-sensitive cluster, the DFHM-workload index behaved
differently for the not-sensitive cluster and did not yield any
significant differences for any of the factors. In our opinion,
this fit well to our fourth hypothesis and indicated that the
objectively measured workload assessed by the DFHM method
corresponded to controller’s subjectively experienced workload.
To sum up, hypothesis 2 and 3 proofed true only for subjects
that experienced workload differences also subjectively during
the scenarios. The workload insensitivity of subjects might
appear odd when considering the high variability of our
experimental design. An explanation might be traced back to
the different cognitive strategies in task solving, both intra-

and inter-individually, that might influence the experienced
workload. Each controller had a different way to handle the
traffic. This was possibly related to the different individual
experience level from daily-work life as linked to the size of the
airport he was working, the different ages, but also personality
traits. Unfortunately, we were not able to identify personal
characteristics for each cluster that might be responsible for the
different perceptions of workload. More research is needed in
order to understand which individual factors contribute to these
interpersonal differences.

Analyses of performance data emphasized these findings.
Results revealed a tendency to more loss of separation and
lower prioritization during the extreme traffic load condition for
workload-sensitive subjects that was less pronounced for the not-
sensitive subjects. These might be an additional indicator that
subjects from the workload-sensitive cluster experienced more
workload compared to the others as evident by the DFHM-
workload index. As a side note, readers might wonder that route-
distance difference was low between the 25 ac/h scenarios with
and without priority-flight request. This was reasonable because
of the low-traffic volume that allowed air traffic controllers
to instruct pilots to fly direct routes to the final approach
even without a priority-flight request by the pilot. Conversely,
a weaker significance level for the route-distance difference
between both 55 ac/h scenarios could be linked to a smaller ability
to prioritize the aircraft due to increased demands resulting from
the high-traffic load.

A limitation of our study was the realization of the exceptional
event as recurring priority-flight request. The surprising effect
of the unexpected event might have diminished after the first
occurrence of the request. Thereafter, air traffic controllers might
have adjusted their strategy and behavior in order to be prepared
to appropriately react to a recurring event. Studies that aim to
understand the effect of an unexpected event onworkload, should
pay more attention on this issue. Finally, a larger sample size
would be beneficial.

5. CONCLUSIONS

With the development and availability of low-cost and easy-to-
use EEG sensors, amplifiers, and signal-processing algorithms
over the last 20 years (Lopez-Gordo et al., 2014; Radüntz,
2018; Flumeri et al., 2019; Radüntz and Meffert, 2019), certain
frequency bands of the EEG have proven to be particularly
informative and were therefore being used more and more
frequently for mental-workload detection. The numerous studies
published after the year 2000 were fairly different, depending on
the specific question, purpose, and expertise of the authors (Lin
et al., 2006; Berka et al., 2007; Kohlmorgen et al., 2007; Borghini
et al., 2014; Ke et al., 2014; Bashivan et al., 2015; Aricò et al., 2016).
Initially, the spectral power in the alpha and theta frequency
bands were identified as particular relevant, analyzed, and tested
variance-analytically related to mental workload. In the last
few years classifiers that relied on large property vectors of
EEG activity were increasingly developed. Thereby, the derived
parameters let barely identify the concrete psycho-physiological
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meaning of the EEG activity. We aimed to avoid this issue by
making use of well-established parameters that should be valid
for different subjects and tasks.

In our article, we particularly addressed questions of
functionality outside the laboratory, stability of results, and the
generalization properties of the DFHM-workload index, inter-
individually and cross-task. In conclusion, it can be stated
that a reliable determination of mental workload in a realistic
setting and with real-world scenarios was possible. Continuous
determination under real conditions, however, requires further
systematic investigations. Although the temporal resolution
of the EEG permits a workload determination in the range
of seconds, the states to be detected originate from long-
running procedures and therefore require further research about
an informative time frame for averaging classifier’s output.
Future promising applications of the DFHM-workload index
include research about effects of human-computer interaction,
human factors, ergonomic designs of the cognitive state as an
objective method for development and testing new interfaces,
determination of the effectiveness of training and simulation
programs, or even the characterization of group dynamics when
collecting synchronous EEG data from multiple subjects. The
recently increasing attempts of a real-time application of EEG
parameters to determine vigilance, emotion, workload, and stress
are accompanied by the effort of catchy visualization of the
results. With an easy accessibility of such systems, however,
there is also an increasing risk of uncritical assessment and
interpretation of the measured values by laymen.
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