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Mouse olfactory receptor 544 (Olfr544) is ectopically expressed in varied extra-nasal
organs with tissue specific functions. Here, we investigated the functionality of Olfr544
in skeletal muscle cells and tissue. The expression of Olfr544 is confirmed by RT-
PCR and qPCR in skeletal muscle cells and mouse skeletal muscle assessed by
RT-PCR and qPCR. Olfr544 activation by its ligand, azelaic acid (AzA, 50 µM),
induced mitochondrial biogenesis and autophagy in cultured skeletal myotubes by
induction of cyclic adenosine monophosphate-response element binding protein
(CREB)-peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α)-extracellular signal-regulated kinase-1/2 (ERK1/2) signaling axis. The silencing
Olfr544 gene expression abrogated these effects of AzA in cultured myotubes. Similarly,
in mice, the acute subcutaneous injection of AzA induced the CREB-PGC-1α-ERK1/2
pathways in mouse skeletal muscle, but these activations were negated in those
of Olfr544 knockout mice. These demonstrate that the induction of mitochondrial
biogenesis in skeletal muscle by AzA is Olfr544-dependent. Oral administration of AzA
to high-fat-diet fed obese mice for 6 weeks increased mitochondrial DNA content in the
skeletal muscle as well. Collectively, these findings demonstrate that Olfr544 activation
by AzA regulates mitochondrial biogenesis in skeletal muscle. Intake of AzA or food
containing AzA may help to improve skeletal muscle function.

Keywords: azelaic acid, olfactory receptor 544, skeletal muscle, mitochondrial biogenesis, myotube

INTRODUCTION

Olfactory receptors (ORs) are G-protein coupled receptors (GPCR), which are mainly expressed in
the cilia of the olfactory epithelium (Buck and Axel, 1991). Binding of a ligand odorant stimulates
signal transduction pathways to transduce odor information to the brain (Firestein, 2001). It has
also been reported that ORs are ectopically expressed in different extra-nasal tissues, including
liver, kidney, adipose, intestine and muscle tissues (Lee et al., 2019). Thus, the functionalities of

Abbreviations: Azelaic acid, AzA; cyclic adenosine monophosphate, cAMP; cAMP-response element binding protein,
CREB; extracellular signal-regulated kinase-1/2, ERK1/2; G-protein coupled receptors, GPCR; high fat diet, HFD;
mitochondrial transcription factor A, TFAM; olfactory receptors, ORs; olfactory receptor 544, Olfr544; protein kinase A,
PKA; peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α; small interfering RNA, siRNA.
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ectopic ORs have been investigated in the last decade. For
instance, MOR23 activation stimulates the cyclic adenosine
monophosphate (cAMP) levels and protein kinase A (PKA)
activity in skeletal muscle tissue. This pathway regulates
the migration and adhesion of skeletal muscle cells, thereby
contributing to wound healing and tissue repair (Griffin et al.,
2009). A few ORs regulate lipid metabolism and obesity. We
previously reported that OR1A1 and its mouse homolog, Olfr43,
regulate lipid metabolism in the liver. OR1A1/Olfr43 stimulated
by (-)-carvone reduced hepatic steatosis through regulating the
PKA-cAMP-response element binding protein (CREB)- hairy
and enhancer of split-1 signaling axis (Wu et al., 2015, 2019).
The results from microarray analysis showed that Olfr544 is
highly expressed in both mouse liver and white adipose tissue,
and activation of Olfr544 stimulates fatty acid oxidation in
hepatocytes, lipolysis and thermogenesis in white and brown
adipose tissues (Wu et al., 2017), respectively. Olfr544 is also
expressed in pancreatic α-cells to stimulate glucagon secretion
(Kang et al., 2015). These results suggest that ectopic ORs
expressed in non-nasal tissues can play a role in functional GPCR
proteins and stimulate unique signal transduction pathways,
resulting in tissue-specific roles by recognizing odorants as
ligand molecules.

Skeletal muscle is a major organ of ATP consumption, which
is critical for sustaining oxidative metabolism and homeostasis of
the ATP pool in healthy individuals (Russell et al., 2014). Under
intensive exercise, nearly 90% of cardiac output is distributed
to skeletal muscle. Regulating the energy metabolism of skeletal
muscle is critical to maintain normal physiology. It has been
shown that energy metabolism of the skeletal muscle is largely
regulated by mitochondrial function and a balance between
mitochondrial biogenesis and the autophagy pathway (Russell
et al., 2014). Enrichment of mitochondria in skeletal muscle
improves oxygen uptake capacity and reduces adipose tissue
mass, thus increasing exercise capacity and lowering the risk of
type 2 diabetes and cardiovascular disease (Little and Cochran,
2011; Duclos et al., 2013; Russell et al., 2014).

Mitochondrial contents in skeletal muscle can be stimulated
by mitochondrial biogenesis (Yan et al., 2012; Perry and
Hawley, 2018), which is regulated by multiple signaling
pathways, including peroxisome proliferator-activated receptor-
γ coactivator 1α (PGC-1α). PGC-1α is stimulated by several
kinases, including CREB and extracellular signal-regulated
protein kinases 1/2 (ERK1/2). PGC-1α is also activated through
deacetylation by the NAD-dependent protein deacetylase sirtuin-
1 (SIRT1) (Gerhart-Hines et al., 2007; Wright et al., 2007;
McConell et al., 2010). PGC-1α activation induces downstream
transcription factors, such as nuclear respiratory factors (NRF1
and NRF2) and mitochondrial transcription factor A (TFAM),
which upregulate genes encoding mitochondrial biogenesis
and electron transport chain proteins (Wu et al., 1999;
Russell et al., 2014). Thus, PGC-1α is well involved in
mitochondrial biogenesis and function (Schmidt and Mandrup,
2011; Scarpulla et al., 2012).

AzA is a C9 α,ω-dicarboxylic acid (nonanedioic acid) that is
found in grain foods, including oatmeal and barley (Gallagher
et al., 2010), and is also endogenously produced by the

peroxisomal ω-oxidation pathway as an end product of linoleic
acid (Litvinov et al., 2010). AzA is a ligand for the mouse
olfactory receptor Olfr544 (Kang et al., 2015; Wu et al., 2017);
thus, oral administration of AzA in mice reduces adiposity,
rewiring fuel preference to fats (Wu et al., 2017). Our microarray
analysis of mouse skeletal muscle tissues identified Olfr544 as
the most highly expressed OR. Therefore, we further investigated
the biological function of AzA on mitochondrial biogenesis
in skeletal muscle cells both in vitro and in vivo. Moreover,
the molecular mechanism of Olfr544-mediated mitochondrial
biogenesis in the muscle was also examined in both wild-type and
Olfr544-deficient mice.

MATERIALS AND METHODS

Cell Culture, Differentiation, and
Compound Treatment
The C2C12 cells (American Type Culture Collection,
United States) were cultured in Dulbecco’s modified Eagle
medium (DMEM, Gibco, MA, United States) containing with
20% fetal bovine serum (FBS, HyClone, IL, United States),
100 units/mL of penicillin and 100 mg/mL streptomycin (PEST,
Sigma-Aldrich, St. Louis, MO, United States) at 37◦C with 5%
CO2 (v/v). The cells were differentiated as previously described
(Thach et al., 2016). Briefly, mouse skeletal muscle C2C12 cells
were switched to DMEM containing 2% horse serum (HyClone).
After a 7-day differentiation, cells were treated with AzA (Sigma)
in serum-free DMEM for 24 h. DMSO (0.1%, Bio Basic Canada
Inc., Canada) was used as a control.

Double-Transfection of Small Interfering
RNA (siRNA)
C2C12 cells were seeded overnight and differentiated for
7 days. Differentiated skeletal myotubes were transfected with
200 pmol of scramble or Olfr544 siRNA duplex (SantaCruz,
CA, United States) with Lipofectamine 2000 reagent (Invitrogen,
CA, United States) as previously described (Wu et al., 2019).
After transfection for 6 h, differentiated skeletal myotubes were
transfected again with the same amount of scramble or Olfr544
siRNA. After 5 h of double transfection, cells were added with
fresh DMEM containing 20% FBS. Subsequently, transfected cells
were treated for 10h with DMSO or AzA before total mRNA or
protein extraction.

Quantitative Real-Time RT-PCR
The reagent of RNAiso Plus (TaKaRa Bio Inc., Otsu, Japan)
was used to extract the total RNA of C2C12 cells and muscle
tissues. Subsequently, Rever Trace RT Master Mix Kit (Toyobo,
Osaka, Japan) was used to synthesize the cDNA according to
the manufacturer’s instructions using the. Quantitative RT-PCR
experiments were then conducted to check the gene expression
levels with cDNA as previously described (Jia et al., 2013;
Kang et al., 2015; Wu et al., 2019). Templates were amplified
by using specific sets of primers listed in Supplementary
Table S1 with the ThunderbirdTM SYBR qPCR Mix reagent
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(Takara Bio Inc., Japan) and analyzed by the iQ5 Cycler System
(Bio-Rad, Hercules, CA, United States). Olfr544 mRNA levels
was quantified in reference to pME18S-Olfr544 plasmid and
normalized to ribosomal protein L32 levels.

Immunoblotting Analysis
Immunoblotting analysis was used to measure the protein
levels of C2C12 and muscle tissues (Jun et al., 2014; Hoang
et al., 2015; Jia et al., 2016). Briefly, lysates of skeletal muscle
cells and tissues were obtained in a radioimmunoprecipitation
assay buffer containing protease and phosphatase inhibitors
(Thermo, Waltham, MA, United States). The protein levels were
checked using protein assay dye reagent (Bio-Rad, Hercules,
CA, United States). Subsequently, SDS-PAGE were used to
separate the denatured proteins. The separated proteins were
then transferred to the nitrocellulose membranes (Daeillab,
Seoul, South Korea). The membranes were incubated overnight
with primary antibodies at 4◦C. Antibodies for CREB (1:250),
p-CREB (Ser133; 1:500), β-actin (1:1000), α-tubulin (1:1000),
ERK1/2 (1:500), p-ERK1/2 (Thr53/54, 1:500), PGC-1α (1:500)
were purchased from Santa Cruz Biotechnology (United States);
anti-LC3B (1:500) from Novus Biologicals (Novus Biologicals,
Littleton, CO, United States). Immunoblotting images were
accessed by a ChemiDocTM touch imaging system, and analyzed
by the Image Lab 5.2 software (Bio-Rad, PA, United States). The
protein levels of α-tubulin or β-actin were used for normalization.

Mitochondrial DNA Content and
Abundance Determination
Mitochondrial DNA content and abundance were determined
as previously described (Thach et al., 2016). Mitotracker Green
probe (Molecular Probes) was used to measure the mitochondrial
density following the manufacturer’s instructions. Briefly, C2C12
cells were stained with Green probes (200 nm) for 30 min
at 37◦C after washing with PBS (pH 7.4). Subsequently, the
green fluorescence intensity was measured using SpectraMAX
(Molecular Devices Co.), at the wavelength of 490 nm
(excitation) and 516 nm (emission), respectively. The images
were obtained by the Zeiss LSM700 confocal microscope, and
then analyzed using the Zeiss LSM700 version 3.2 software (Carl
Zeiss, Germany).

Mouse Care and Experiments
Healthy, male, 8-week-old ICR, and C57BL/6J mice weighing
20–25 g were purchased from Samtako (Gyeonggi-do, South
Korea). Generations of Olfr544 knockout mice were generated
using the CRISPR/Cas9 system to delete exon 2 (161–428 bp)
of the Olfr544 gene, and the method and basic characteristics
of Olfr544 knockout mice (KO) were previously published (Wu
et al., 2017). Animal experiments were handled in accordance
with the protocols approved by the Animal Experiment
Committee of Korea University (Protocol No. KUIACUC-2019-
0031). Animals were kept in the animal room with a 12 h
photoperiod and a relative humidity of 50–60% at 21–25◦C.
Mice were allowed free access to 60% high fat diet (HFD) and
randomly assigned into four groups (n = 7), two groups each

for wild-type and Olfr544 knockout mice. For acute Olfr544
activation, mice were fasted overnight and intraperitoneally
injected with either AzA (100 mg/kg body weight) or PBS
(vehicle group). Skeletal muscle tissues (soleus muscles) were
collected at indicated time as previously described (Jia et al.,
2015). For long-term AzA administration, mice were orally
administered either AzA (50 mg/kg body weight) or ddH2O
under HFD. The body weights of mice were recorded every
week. After oral feeding for 6 weeks, mice were anesthetized
and sacrificed after overnight fasting. Muscle tissues were
collected, immediately cryoprotected, and then stored at –80◦C
for further experiments.

Statistical Analysis
The data are shown as the means ± SEM. To determine
significance between two or multiple groups, Wilcoxon test and
one-way ANOVA followed by Tukey’s HSD test were used,
respectively. Data are statistically significant different denoted by
∗ for P ≤ 0.05, ∗∗ for P ≤ 0.01.

RESULTS

Olfr544 Is Expressed in Cultured C2C12
Derived Myotubes, and Its Activation
Induces the PKA-CREB-PGC-1α

Signaling Axis
In a microarray analysis of mice fed normal CHOW and high-
fat diet (HFD), Olfr544 was the most highly expressed OR
in skeletal muscles. The expression levels of Olfr544 were not
significantly changed by HFD (Supplementary Methods and
Supplementary Figure S1). The expression of Olfr544 was
further confirmed in differentiated C2C12 myotubes and mouse
skeletal muscle tissues using RT-PCR (Supplementary Figure
S2A). Olfr545, which shares 95% sequence homology with
Olfr544, was also expressed at low levels, with approximately
20% of Olfr544 expression (Supplementary Figure S2A). In the
CRE-luciferase reporter gene assay, AzA, a ligand of Olfr544,
weakly activated Olfr545; thus, the EC50 value of AzA for Olfr545
was 12-fold greater than that of Olfr544 (EC50; 19.2 ± 4.8
vs. 237 ± 140 µM for Olfr544 and Olfr545, respectively,
Supplementary Figures S2B,C). Further experiments were
performed with AzA concentrations to selectively stimulate
Olfr544 but not Olfr545.

In cultured C2C12 myotubes, AzA stimulated the PKA-
CREB signaling axis (Supplementary Figure S2B), in line
with the results from the CRE-luciferase assay (Supplementary
Figure S2C). AzA induced pCREB levels by 1.5-fold in
C2C12 myotubes; meanwhile, the induction of pCREB was
abrogated in cells with Olfr544 knockdown (Figures 1A,B).
The expression of Olfr544 in cultured Olfr544 knockdown
myotubes was silenced by 80% with transfection of Olfr544
specific siRNA (Supplementary Figure S3). When differentiated
C2C12 myotubes were stimulated with AzA (0–50 µM), the
mRNA and protein expressions of PGC-1α in myotubes were
induced a dose-dependent manner. AzA (50 µM) significantly
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FIGURE 1 | Activation of Olfr544 induces the PKA-CREB-PGC-1α signaling axis in cultured skeletal muscle cells. (A,B) AzA induced pCREB expression in C2C12
myotubes but not in cells with Olfr544 knockdown. Immunoblotting analysis of pCREB and total CREB proteins (A, n = 3); the ratios of pCREB-to-CREB were
normalized to β-actin (B, n = 3). (C,D) AzA induced the expression of PGC-1α both at the mRNA (C, n = 3) and protein levels (D, n = 3) in a dose-dependent manner
as measured by real-time qPCR and immunoblotting, respectively. (E,F) Olfr544 gene knockdown lessens Pgc-1α gene expression (E, n = 3) and protein expression
(F, n = 3). Data are the mean ± SEM. Data are statistically significant different denoted by * for P ≤ 0.05 using Wilcoxon test and one-way ANOVA followed by
Tukey’s HSD test.

induced the mRNA and protein expression levels of PGC-
1α, by 2- and 3-fold, respectively (Figures 1C,D). However,
these inductions were negated in Olfr544 knockdown cells
(Figures 1E,F). We did not observe the significant difference of
mRNA Pgc-1α expression stimulated by AzA in cells transfected
with scramble or Olfr544 siRNA (P = 0.125). Nonetheless,
we further confirmed that the PGC-1α protein expression was
induced by AzA treatment in the presence of scramble siRNA
and significantly higher the expression level in the presence
of Olfr544 siRNA (Figure 1F). These data demonstrate that

Olfr544 activation stimulates the CREB-PGC-1α signaling axis in
cultured myotubes.

AzA Induces Mitochondrial Biogenesis in
Cultured C2C12 Derived Myotubes
We next investigated whether AzA stimulates mitochondrial
biogenesis in C2C12 derived myotubes since the CREB-PGC-
1α signaling axis has been reported to activate mitochondrial
biogenesis (Herzig et al., 2001; Schmidt and Mandrup, 2011).
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FIGURE 2 | AzA induces mitochondrial biogenesis in skeletal muscle cells. (A) AzA induces mtDNA content in a dose-dependent manner as measured by Qpcr
(n = 4). (B) Mitochondrial contents were probed by green MitoTracker and measured by a spectrophotometer (n = 4). (C) and the levels of mitochondrial content was
confirmed under confocal fluorescence microscopy (n = 3). Blue, nucleus; green, mitochondrion. Scale bar, 50 µm. Data are the mean ± SEM. Data are statistically
significant different denoted by * for P ≤ 0.05 using Wilcoxon test and one-way ANOVA followed by Tukey’s HSD test.

C2C12 cells were differentiated for 7 days and then treated
with AzA for 24 h. Quantitative real-time PCR results
showed that 50 µM AzA significantly increased the mtDNA

content by 3.0-fold (Figure 2A). Similarly, mitochondrial
density was significantly increased by approximately 2.5-fold
(Figure 2B). Subsequently, MitoTracker-probed mitochondrial
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images observed under confocal fluorescence microscopy showed
substantial increases in mitochondrial density (Figure 2C). These
results suggest that AzA induces mitochondrial biogenesis in
skeletal muscle cells.

Olfr544 Gene Knockdown Negates
Mitochondrial Biogenesis Stimulated by
AzA in Cultured C2C12 Derived
Myotubes
We next examined whether AzA regulates mitochondrial
biogenesis via Olfr544 activation. C2C12 cells were transfected
with scramble siRNA or Olfr544 siRNA after differentiation,
and then treated with AzA for 24 h. Olfr544 knockdown
negated the effect of AzA on mitochondrial biogenesis.
The mtDNA content and mitochondria abundance were
unaltered by AzA stimulation in Olfr544 knockdown cells
(Figures 3A,B). In contrast, AzA-treated control C2C12
myotubes showed a significant induction of mtDNA content by
2.0-fold compared with controls. AzA treatment increased
mtDNA content in normal cells by approximately 1.6-
fold compared with Olfr544 knockdown cells (Figure 3A).
Quantification of mitochondrial density showed the enrichment
of mitochondria in cells stimulated with AzA (50 µM) in
C2C12, but not in Olfr544 knockdown C2C12 myotubes
(Figures 3B,C). However, the effects of AzA on mitochondrial
biogenesis were impaired with siRNA transfection, which
was smaller (Figure 3) than the effects in non-transfected
cells (Figure 2). The results collectively demonstrate
that AzA stimulates muscle mitochondrial function via
Olfr544 activation.

Olfr544 Activation Induces ERK1/2
Phosphorylation in Cultured C2C12
Derived Myotubes
PGC-1α gene expression is alternatively induced by ERK1/2;
thus, we next checked the phosphorylation level of ERK1/2
by AzA in differentiated C2C12 myotubes. In immunoblotting
analysis, AzA significantly induced phosphorylations of ERK1/2
on Thr43/44 (pERK1/2) by 2.0-fold, but these effects were
abrogated in Olfr544 knockdown cells (Figures 4A,B). It has
been reported that increased pERK1/2 correlates to autophagy
levels (Martinez-Lopez et al., 2013). Autophagy plays a pivotal
role in skeletal muscle adaption and capacity by interacting
with mitochondrial biogenesis and preventing mitochondrial
damage (He et al., 2012; Lira et al., 2013; Lo Verso et al.,
2014). In cultured C2C12 myotubes, activation of Olfr544
by AzA increased the LC3-II-to-LC3-I ratio, a marker of
autophagosome formation, by 2.5-fold compared to vehicle-
treated controls, while the induction disappeared in Olfr544
knockdown cells (Figures 4C,D). Importantly, AzA-stimulated
cells showed an approximately 3.0-fold increase of the LC3-
II-to-LC3-I ratio compared to the Olfr544 knockdown cells
(Figure 4D). Taken together, Olfr544 activated by AzA
increases ERK1/2 activity and induces autophagy formation in
skeletal muscle cells.

Olfr544 Activation Stimulates the
CREB-PGC-1α Pathway and Autophagy
Formation in Mouse Skeletal Muscle
Tissues
We next investigated the biological activities of AzA in mouse
skeletal muscle tissues in vivo. Mice were intraperitoneal injected
with AzA (100 mg/kg body weight) for 30 or 120 min before
soleus muscles collection for immunoblot analysis. Vehicle group
mice were injected with PBS for 30 or 120 min. The results
demonstrated that AzA stimulated pCREB by 2-fold after a 2 h
injection of AzA (Figures 5A,B). The expression of PGC-1α

upon AzA treatment was also upregulated by approximately
1.5-fold in soleus muscle tissues (Figures 5A,C). However, the
expressions of pCREB and PGC-1α were unaffected in skeletal
muscle tissues of Olfr544-deficient mice (Figures 5B,C). These
results demonstrated that AzA might regulate mitochondrial
biogenesis in skeletal muscle tissues through activation of the
Olfr544-CREB-PGC-1α signaling axis.

Additionally, the levels of pERK and the pERK-to-ERK ratio
were also significantly increased by 3.0-fold in soleus muscle
tissues after 30 min of AzA treatment (Figures 5A,D). The LC3-
II-to-LC3-I protein expression ratio was increased by 1.5-fold
after 30 min of AzA; however, these inductions were negated in
the skeletal muscle of Olfr544 knockout mice (Figures 5A,E).
These suggest that AzA-dependent Olfr544 activation in skeletal
muscle tissues induces mitochondrial biogenesis by activation of
CREB-PGC-1α and stimulates autophagy formation.

Oral Administration of AzA Activates
Mitochondrial Biogenesis in
HFD-Induced Obese Mice
Finally, we investigated metabolic effect of AzA administration
on skeletal muscle tissue in HFD-induced obese mice. Obesity is
inversely associated with mitochondrial replication and skeletal
muscle function, which are caused by cellular oxidative stress,
lipotoxicity, and insulin resistance (Holloway et al., 2009; Yan
et al., 2012). Skeletal muscle in obese mice and humans increases
intramuscular triglyceride concentrations while reducing the rate
of lipid oxidation by impairing mitochondrial enzymes (Gerhart-
Hines et al., 2007; Holloway et al., 2009).

Both wild-type and Olfr544 knockout mice were fed HFD
to induce obesity and were then orally administered AzA
(50 mg/kg body weight/day) for 6 weeks. Body weight and plasma
glucose and triglyceride concentrations were reduced and glucose
tolerance improved by AzA administration in wild-type mice but
not in Olfr544 knockout mice, as reported previously (Wu et al.,
2017). The mRNA expression of PGC-1α was induced by 2.0-fold
in AzA soleus muscles compared with those in control mice. In
contrast, the induction was abrogated in Olfr544 knockout mice
(Figure 6A). Herein, we got the significant difference of PGC-
1α mRNA expression between AzA-administrating WT mice
compared to vehicle mice. We also observed the reduced trend
in AzA-administrating Olfr544 KO mice compared to that of
WT mice (Figure 6A) although p = 0.07. Similarly, expression of
the downstream transcriptional target of PGC-1α, mitochondria
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FIGURE 3 | Olfr544 deficiency negates mitochondrial biogenesis stimulated by AzA in skeletal muscle cells. (A) AzA induced mtDNA content in myotubes but not in
Olfr544 knockdown cells (n = 8). Mitochondrial abundance was analyzed using a spectrophotometer (B, n = 8) and fluorescence imaging (C, n = 3). Scale bar,
50 µm. Data are the mean ± SEM. Data are statistically significant different denoted by * for P ≤ 0.05, ** for P ≤ 0.01 using Wilcoxon test and one-way ANOVA
followed by Tukey’s HSD test.

transcription factor A (Tfam), which indicates mitochondrial
replication and function, was substantially induced by 3.0-fold
in AzA administered wild-type mice, whereas these inductions

were negated in skeletal muscles of Olfr544 knockout mice
(Figure 6B). The mtDNA content of AzA-administered wild-
type skeletal muscle significantly increased by approximately
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FIGURE 4 | AzA-driven Olfr544 activation stimulates ERK1/2 phosphorylation in cultured skeletal muscle cells. AzA induced phosphorylation of ERK1/2 on Thr43/44
(pERK1/2) in myotubes but not in Olfr544 knockdown cells. (A,B) Expression of total ERK1/2 and pERK1/2 was probed by immunoblotting. Ratios of pERK1/2 to
total ERK1/2 were normalized to β-actin (n = 3). (C,D) AzA-stimulated myotubes increased the LC3-II-to-LC3-I ratio, a marker of autophagosome formation, but not
in Olfr544 knockdown cells (n = 3). Data are the mean ± SEM. Data are statistically significant different denoted by * for P ≤ 0.05, ** for P ≤ 0.01 using Wilcoxon test
and one-way ANOVA followed by Tukey’s HSD test.

3.0- and 2.0-fold compared with vehicle-treated wild-type and
AzA-administered Olfr544 knockout skeletal muscle, respectively
(Figure 6C). In contrast, the mtDNA content was not altered
by AzA administration in Olfr544 knockout mice (Figure 6C).
Collectively, these data demonstrate that AzA stimulates
mitochondrial biogenesis and mitochondrial contents in skeletal
muscle tissues via activation of Olfr544 (Figure 6D).

DISCUSSION

Mitochondrial dysfunction has been suggested to be causally
involved in obesity-induced insulin resistance and in the
pathophysiology of type II diabetes (T2D). This raised the
possibility that mitochondria in skeletal muscle cells could be
targets to prevent type 2 diabetes mellitus (Goodpaster, 2013;
Hesselink et al., 2016), and these biological processes can be
regulated by natural substances and food molecules.

AzA s contained in several grain food (oat, barley, etc.) and
can be endogenously synthesized by ω-oxidation process as an
end product of linoleic acid. Thus, we believe that Olfr544 in
extra-nasal tissues such as skeletal muscle can be endogenously
stimulated by AzA derived from diet or endogenous synthesis.
In our previous studies, AzA levels were particularly increased

in fasting state compared with those in fed state (Wu et al.,
2017), thus we suggested that AzA is a redundant fasting signaling
molecule that can activate Olfr544 in multiple tissue. Previously
we reported that Olfr544 activation by AzA induces white
adipose lipolysis, brown adipose thermogenesis, and hepatic
fatty acid oxidation (Wu et al., 2017). In this study, we found
additional function of Olfr5444, the activation of mitochondrial
biogenesis in skeletal muscle. AzA has been detected in humans
(Bondia-Pons et al., 2013) and AzA treated human adipose
cells showed induced lipolysis, suggesting that AzA has similar
functions in humans as well. Biological effects of AzA have
been reported. Toxicity studies of AzA have been reported
in vivo, and the oral LD50 in rats is > 5 g/Kg (Thermo Fisher,
MSDS). Pharmacokinetic studies revealed that, in the case of oral
administration, approximately 60% of the systemically absorbed
AzA is eliminated unchanged through the kidneys. After an
intravenous dose, approximately 80% is excreted in the urine
within 12 h of administration (Gollnick and Layton, 2008; Sieber
and Hegel, 2014). In healthy humans, plasma AzA can reach
up to 75 mg/L after 2 h of oral administration of 0.5–5 g
(Fitton and Goa, 1991).

Several physiological effects of AzA have been reported. AzA
promotes the reduction of lipid peroxides into lipid hydroxides,
preventing cardiovascular diseases (Raghavamenon et al., 2009).
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FIGURE 5 | AzA-driven Olfr544 activation stimulates the CREB-PGC-1α signaling axis and autophagy formation in mouse skeletal muscle tissues. (A) AzA treatment
induced the expression of PGC-1α, pCREB, pERK1/2 and LC3I/II protein in wild-type mouse skeletal muscle tissues but not in those of Olfr544 KO mice.
Immunoblotting analysis of soleus muscles extracts for PGC-1α, pCREB, and CREB, pERK1/2 and total ERK1/2, LC3I/II (n = 3). (B–E) Ratios of pCREB, PGC-1α,
pERK1/2, and LC3-II were normalized to β-actin (n = 3). Data are the mean ± SEM. Data are statistically significant different denoted by * for P ≤ 0.05 using
Wilcoxon test and one-way ANOVA followed by Tukey’s HSD test.

Frontiers in Physiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 329

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00329 April 22, 2020 Time: 14:21 # 10

Thach et al. Olfr544 Regulates Mitochondrial Biogenesis

FIGURE 6 | Oral administration of AzA activates mitochondrial biogenesis in skeletal muscle tissues in HFD-induced obese mice. (A) AzA induced Pgc-1α gene
expression in wild-type mouse skeletal muscle tissues but not in those of Olfr544 KO mice (n = 4). (B,C) Gene expression of the mitochondrial marker Tfam and
mtDNA content were measured by real-time qPCR (n = 4). (D) Schematic illustration proposing the mechanism by which AzA-driven Olfr544 activation induces
mitochondrial biogenesis in skeletal muscle cells by stimulation of CREB-PGC-1α signaling and ERK1/2 activity. Data are the mean ± SEM. Data are statistically
significant different denoted by * for P ≤ 0.05 using Wilcoxon test and one-way ANOVA followed by Tukey’s HSD test.

Animal feeding studies have reported that AzA can reduce
atherosclerosis and diabetes phenotypes with the reduction
of plasma triglycerides and glucose concentrations and the
improvement of glucose tolerance. AzA has been reported to
ameliorate glucose metabolism and cholesterol plaque formation
in the arteries when administered orally (Muthulakshmi and
Saravanan, 2013). AzA administration reduced plasma glucose,
insulin, liver glycogen and key carbohydrate metabolic enzymes
in HFD-induced type 2 diabetic mice (Litvinov et al., 2010;
Muthulakshmi and Saravanan, 2013). These data suggest that
AzA may have preventive and therapeutic potential for the
treatment of obesity-induced T2DM. We have also reported that
activation of Olfr544 by AzA stimulates fatty acid oxidation in
hepatocytes and brown adipose tissue, resulting in the reduction
of adiposity and the rewiring of fuel preferences toward fats

in obese mice (Wu et al., 2017). These findings suggest that
Olfr544 can respond to AzA and stimulate cellular energy
metabolism under physiological pathways in a variety of tissue
types, especially skeletal muscle.

Olfactory receptor signaling pathways and their downstream
molecular effectors may serve as effective pharmacologic targets
for improving both muscle physiology and the efficiency of
cells (Jean-Baptiste et al., 2005; Griffin et al., 2009). In the
present study, we demonstrate that Olfr544-dependent PGC-
1α and ERK1/2 stimulation is involved in skeletal muscle
mitochondria in response to AzA stimulation in vitro and by
oral administration in skeletal muscle tissues. To the best of our
knowledge, this is the first report of ectopic functional expression
of ORs on mitochondrial biogenesis in skeletal muscle. Olfr544
activation by AzA induced both mitochondrial biogenesis
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and autophagy via ERK-LC3II activation. This autophagy can
stimulate mitochondrial biogenesis coupled with the removal of
damaged and unhealthy mitochondria (Lee et al., 2012).

Mitochondrial biogenesis can be induced by exercise training
or exercise mimetics via activation of PGC-1α (Narkar et al., 2008;
Qi and Ding, 2012; Wenz, 2013). Activated PGC-1α regulates
gene expression, encoding proteins related to mitochondrial
biogenesis, oxidative respiration in muscle fibers, and exercise-
induced autophagy (Wu et al., 1999; Handschin and Spiegelman,
2011; Lira et al., 2013). Moreover, PGC-1α expression can induce
gene expression of an insulin-sensitive glucose transporter that
enhances glucose uptake in skeletal muscle cells (Michael et al.,
2001). Meanwhile, autophagy is involved in the turnover of
mitochondria and other cellular organelles (Wang and Klionsky,
2011). Autophagy results in enhanced oxidative metabolism
in muscle and is required for endurance exercise training-
induced skeletal muscle adaption by mitochondrial biogenesis
induction, which improves physical performance (Lira et al.,
2013). Therefore, the enhancement of mitochondrial biogenesis
and autophagy in muscle can increase skeletal and brown fat
mass that consequently increases energy expenditure and reduces
diet-induced obesity.

ERKs regulate both mitochondrial biogenesis and autophagy
(Sivaprasad and Basu, 2008; Echave et al., 2009; Cagnol
and Chambard, 2010; Wang et al., 2014). The localization
of phosphorylated ERK2 to the mitochondria is tightly
correlated with autophagic/mitophagic cell stress (Dagda
et al., 2008).It has been shown that several GPCR proteins
including olfactory receptors stimulate ERK phosphorylation
by β-arrestin-dependent manners (Bourquard et al., 2015;
Eishingdrelo et al., 2015).

Activation of ERK1/2 subsequently triggers phosphorylation
of a number of downstream targets that regulate the autophagy
pathway. ERK1/2 phosphorylation has been shown to enhance
autophagy in Silymarin-treated Beas-2B cells or mediate
phosphorylated Bcl-2 regulated starvation-induced autophagy
(Tang et al., 2010; Li et al., 2016). It has been shown that
MEK-ERK inhibitors, such as U0126, or amino acids can inhibit
autophagy (Pattingre et al., 2003; Tang et al., 2010). Several
recent studies have reported that ERK-mTOR signaling may play
a major role in autophagy regulation. It has been suggested
that transiently or moderately activated ERK1/2 inhibits mTOR
activity, which improves cytoprotective autophagy (Wang et al.,
2009). Recently, Martinez-Lopez et al. (2013), revealed that
ERK1/2 phosphorylation could be used to determine the cellular
availability of autophagic structures because LC3 II-positive
membranes in pre-autophagosomes might promote coordination
of the MEK-ERK1/2 signaling cascade. Here, we observed that
AzA-driven Olfr544 activation increased ERK1/2 activity both
in vitro and in vivo followed by the partial induction of
LC3-II-to-LC3-I conversion, a marker of autophagy. However,
the ratio LC3-II-to-LC3-I were decreased in mice with acute
AzA injection for 120 min, indicating alternative pathways
may be involved in the regulation of AzA on autophagy.
Nonetheless, the detailed mechanism by which AzA-activated
Olfr544 induces autophagy in skeletal muscle is required for
further studies.

In this study, we investigated acute effect of Olfr544 activation
by AzA in both wild-type and Olfr544 KO mice and there was
no HFD group (Figure 5). We also administered AzA orally
in HFD fed wild-type and Olfr544 KO mice and there was
no chow diet group (Figure 6). It should have been better to
include both chow and HFD groups in studies of Figures 5,
6, however, our major interest in experiments in Figures 5, 6
were to examine the effect of Olfr544 activation but not to find
the effect of HFD. However, the comparison between normal
chow and HFD has been investigated by other researchers. It has
been reported that HFD affects expression of genes involved in
mitochondrial function and biogenesis (Lauren et al., 2005; Cory
et al., 2016). ERK levels and the LC3-II/I ratios are induced in
HFD-fed skeletal muscle (Cory et al., 2016). Moreover, a 90 and
40% reduction in mRNA and protein levels, respectively, were
observed for Pgc1α after 3-week HFD (Lauren et al., 2005).

Skeletal muscle mitochondria are required for muscle physical
performance and are beneficial for treating obesity and obesity-
induced T2D owing to their lipid oxidation and glycolytic
energy capacities (Rogge, 2009; Gouspillou and Hepple, 2016;
Hesselink et al., 2016). Our findings demonstrate a novel function
of olfactory receptor Olfr544 in skeletal muscle mitochondrial
homeostasis. Olfr544 activation contributions to mitochondria
biogenesis via PKA-CREB-PGC-1α and ERK-LC3II signaling
(Figure 6D) in skeletal muscle. These data also suggest
that Olfr544 may be a potential target to stimulate skeletal
muscle function.
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