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Parkinson’s disease (PD) represents one of the most common multifactorial
neurodegenerative disorders affecting the elderly population. It is associated with
the aggregation of α-synuclein protein and the loss of dopaminergic neurons in the
substantia nigra pars compacta of the brain. The disease is mainly represented by motor
symptoms, such as resting tremors, postural instability, rigidity, and bradykinesia, that
develop slowly over time. Parkinson’s disease can also manifest as disturbances in non-
motor functions. Although the pathology of PD has not yet been fully understood, it has
been suggested that the disruption of the cellular redox status may contribute to cellular
oxidative stress and, thus, to cell death. The generation of reactive oxygen species and
reactive nitrogen intermediates, as well as the dysfunction of dopamine metabolism,
play important roles in the degeneration of dopaminergic neurons. In this context, the
transient receptor potential channel canonical (TRPC) sub-family plays an important role
in neuronal degeneration. Additionally, PD gene products, including DJ-1, SNCA, UCH-
L1, PINK-1, and Parkin, also interfere with mitochondrial function leading to reactive
oxygen species production and dopaminergic neuronal vulnerability to oxidative stress.
Herein, we discuss the interplay between these various biochemical and molecular
events that ultimately lead to dopaminergic signaling disruption, highlighting the recently
identified roles of TRPC in PD.

Keywords: TRPC channels, Parkinson’s disease, oxidative stress, dopamine release, neuronal apoptosis

INTRODUCTION

Neurological disorders continue to increase in tandem with longer lifespans in populations, with
aging remaining the biggest risk factor for developing neurodegenerative diseases. Parkinson’s
disease (PD) is one of the most common multifactorial neurodegenerative disorders. Indeed, it
affects approximately 2% of the elderly population and 4% of individuals aged over 80 years
(Berman and Nichols, 2019).

Disease onset usually occurs at the age of 65–70 years (Marino et al., 2019). However, its
pathological changes can be observed as early as 20 years prior to the appearance of motor
symptoms and include unspecific signs such as fatigue, hyposmia, and constipation (Hawkes
et al., 2010). Motor symptoms develop slowly over time and are the main clinical characteristics
of PD. These include dysfunctions of the somatomotor system such as resting tremors, rigidity,
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bradykinesia, and postural instability (Schapira et al., 2017). In
turn, there is a progressive physical limitation, in addition to
impairments in non-motor functions such as neuropsychiatric
(sleep disorders, depression, and dementia) and autonomic
symptoms (bladder and gastrointestinal alterations) (Sakakibara
et al., 2012; Fasano et al., 2015).

The pathogenesis of PD is not completely understood.
However, different studies have contributed to the dissection
and determination of some of the mechanisms involved
in its establishment and progression. Classically, the
progressive neurodegeneration in PD is associated with the
aggregation of α-synuclein, a small lipid-binding protein, into
structures called Lewy bodies in the substantia nigra pars
compacta (SNpc).

Accumulation of dopamine (DA) and DA products has also
been pointed as a potential mechanism involved in neuronal
death (Mullin and Schapira, 2015). Indeed, the neurotoxic
effects of the endogenous DA derivative N-methyl-(R)-salsolinol
(NMSAL) (Naoia et al., 2002) was shown to induce oxidative
stress and decrease the levels of reduced glutathione (GSH)
in dopaminergic SH-SY5Y cells (Wanpen et al., 2004). The
progressive loss of DA neurons leads to a subsequent reduction
of DA levels. All these alterations contribute to an abnormal
neuronal functioning, and thus, to motor deficiency and
worsening of the quality of life of patients at advanced stages of
PD (Magrinelli et al., 2016).

For instance, many studies have provided substantial evidence
of the role of neuroinflammation (Tansey and Goldberg,
2010), mitochondrial dysfunction (Park et al., 2018, 2019),
and oxidative and nitrosative stresses in PD (Puspita et al.,
2017). In this context, disruption of neuronal calcium ion
(Ca2+) homeostasis in the central nervous system plays a
critical role in the cascade of events that culminates in the
degeneration of dopaminergic neurons (Zaichick et al., 2017).
Also, a correlation between reactive oxygen species (ROS)
production and Ca2+ channel activation has already been
explored (Görlach et al., 2015).

Recent studies have focused in the identification of a
link between Ca2+-mediated signaling and neuroinflammation
(Sama and Norris, 2013). It observed an association between
neurodegeneration, mitochondrial dysfunction, and, oxidative
and nitrosative stresses (Celsia et al., 2009). This evidence points
to a role for transient receptor potential channels (TRP) in PD
(Takahashi and Mori, 2011).

First discovered in Drosophila melanogaster as key molecules
in phototransduction, the TRP channels comprise a family
of non-selective cation channels that are widely expressed
on mammalian cells, including neurons and different types
of non-neuronal cells. They are distributed in six different
subfamilies: ankyrin (TRPA1), canonical (TRPC1-7), melastatin
(TRPM1-8), mucolipin (TRPML1-3), polycystin (TRPP1-3),
and vanilloid (TRPV1-6). Their broad tissue expression
confers them the ability to influence different pathologies
and physiological states. In this context, it is now known
that these channels participate in the development and
maintenance of inflammation and pain, are important sensors
of molecules such as lipids and ROS, and are involved in

thermoregulation, tissue remodeling, and neuronal plasticity,
among other responses.

OXIDATIVE AND NITROSATIVE
STRESSES IN PARKINSON’S DISEASE

Reactive oxygen species and reactive nitrogen intermediates
(RNIs) are natural byproducts necessary for cellular homeostasis
(Liguori et al., 2018) (Figure 1). ROS are formed during
metabolic redox reactions and include hydrogen peroxide
(H2O2), singlet oxygen (1O2), hydroxyl (•OH), and superoxide
(O2•−) radicals (Sies et al., 2017). RNIs are produced in neuronal
cells from arginine by the neuronal nitric oxide synthase (nNOS)
and include nitric oxide (NO•), nitrite (NO2), and S-nitrosothiols
and peroxynitrite (OONO−) (Adams et al., 2015).

Excessive ROS and RNI formation during oxidative and
nitrosative stresses results in a variety of detrimental effects
in the cell, thus, contributing to organelle and membrane
structural damages and cellular apoptosis (Guo et al., 2018).
This cytotoxic environment has been recognized as a common
underlying phenomenon in the dopaminergic neurodegenerative
process (Dias et al., 2013). Indeed, an irregular oxidation of
macromolecules, such as lipids, proteins, and nucleic acids,
was observed in the brain tissues of PD patients (Bosco
et al., 2006; Nakabeppu et al., 2007). Also, higher levels of
the oxidative stress markers 8-OhdG (8-Oxo-2′-deoxyguanosine)
and malondialdehyde, in addition to NO2, were detected in the
peripheral blood of PD patients in comparison with healthy
individuals (Wei et al., 2018). The same patients presented
systemic down-regulation of the antioxidant proteins glutathione
and catalase (CAT).

In addition, major genetic insights indicate that specific
mutations in a series of primary genes that are responsible for
PD-related synucleopathy and the regulation of mitochondrial
and ROS equilibrium can disrupt cellular homeostasis
(Cacabelos, 2017). For instance, an elevated expression of
the wα-synuclein protein and oxidative stress genes [HSPB1,
Heat Shock Protein Family B (Small) Member 1; NOX1, NADPH
oxidase 1; and MAOB, Monoamine oxidase B] was observed
in induced pluripotent stem cell (iPSC)-derived dopaminergic
neurons (Nguyen et al., 2011). Similarly, iPSC midbrain
dopaminergic neurons from patients with PTEN-induced
putative kinase 1 (PINK1) or Parkin mutations presented
abnormal mitochondria (Chung et al., 2016) (Figure 1).

Accordingly, evidence suggests that in PD, the mitochondrion
represents the primary source of ROS, contributing to
intracellular oxidative stress and therefore, to the vulnerability
of dopaminergic neurons to apoptosis (Beal, 2005). Moreover,
knockout mice for Dynamin-1-like protein (Drp1), a guanosine
triphosphate (GTP)ase that regulates mitochondrial fission,
exhibited degeneration of nigrostriatal dopaminergic neurons
(Berthet et al., 2014). This response was associated with a
reduced mitochondrial mass in axons, which was associated
with impaired mitochondrial dynamics denoted by the loss of
coordination of mitochondrial movements.
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FIGURE 1 | Parkinson’s disease (PD) suggested pathways. (A,B) PD has been associated with the aggregation of α-synuclein into Lewy bodies in dopaminergic
neurons of the substantia nigra pars compacta. Other factors such as gene mutations (DJ-1, SNCA, UCH-L1, PINK-1, and Parkin) may contribute to mitochondrial
dysfunction and neuronal death in PD. The accumulation of dopamine (DA) and its products in DA neurons may also be a causative factor of neuronal death. This
may lead to mitochondrial dysfunction, changes in protein degradation [by impairing the ubiquitin-proteasome system (UPS) function], and increased generation of
reactive oxygen species (ROS) and reactive nitrogen intermediates (RNIs). (C) Members of the transient receptor potential canonical (TRPC) subfamily of
non-selective Ca2+ channels are able to recognize ROS and RNIs and have been implicated in neuronal survival; in fact, different oxidative/nitrosative stress
products can directly activate TRPC complexes.

Additionally, disruption of respiratory chain complexes,
especially the mitochondrial complex I (NADH-quinone
oxidoreductase), was implicated in the enhanced production
of ROS in PD (Ryan et al., 2015). Human studies also
indicated that the dysfunction of this specific complex
occurs in the SNpc of PD patients (Schapira et al., 1990).
Of note, mitochondrial integrity in SNpc neurons was found
to be dependent on Parkin expression (Park et al., 2006;
Stichel et al., 2007).

In regard to RNIs, the excessive or inappropriate generation
of NO and O2•−-derived reactive species, plays a critical role
in mediating the neurotoxicity associated with mitochondrial
damage (Kaludercic and Giorgio, 2016). The reaction between
NO and O2•− represents an important source of OONO−,
a highly reactive molecule for a broad range of chemical
targets that potently inhibits mitochondrial proteins. OONO−
overproduction was found to enhance the levels of oxidized

lipids and DNA in the dopaminergic neurons of PD patients
(Ebadi and Sharma, 2003). Depletion of antioxidant defenses,
including GSH, was also observed in the same samples (Franco
and Cidlowski, 2009). Interestingly, nNOS- and inducible NO
synthase (iNOS)-dependent NO levels were increased in the
SNpc of PD patients (Hancock et al., 2008). Also, high levels
of NO and OONO− correlated with a worse prognosis in
PD (Kouti et al., 2013), corroborating the hypothesis that
both RNI and ROS generation may strongly contribute to
neurodegeneration in PD.

Antioxidant proteins such as superoxide dismutase (SOD),
CAT, glutathione peroxidase (GPx), and GSH counteract
excessive ROS production. Therefore, reductions in their
activities and/or expression may favor lipid peroxidation
or promote neuronal excitotoxicity with subsequent protein
modifications and eventual neuronal death (Deponte, 2013;
Patlevič et al., 2016). Interestingly, evident differences were
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found in the levels of GSH of post-mortem brain samples
of PD patients in comparison with other brain regions
(Perry et al., 1982; Sian et al., 1994). Also, animal studies
revealed that down-regulation of GSH synthesis results in a
progressive degeneration of nigrostriatal dopaminergic neurons
(Garrido et al., 2011).

By using agonists and antagonists, knockout mice and cells,
and a diverse range of molecular biology techniques, several
roles have been suggested for the TRPC subfamily. These
include their importance as sensors of molecules involved
in oxidative and nitrosative stresses (Figure 1) known to
influence neuronal survival and function (Chen et al., 2009;
Delgado-Camprubi et al., 2017).

TRANSIENT RECEPTOR POTENTIAL
CHANNELS AND THE CANONICAL
SUBFAMILY

In humans, the TRPC subfamily is formed by six channels
(TRPC1 and TRPC3-7), which are considered the mammalian
TRPs most closely related to those of D. melanogaster. TRPC
channels are formed by four subunits and each subunit has six
transmembrane domains and a pore region between the fifth and
the sixth transmembrane domain (Feng, 2017).

TRPCs assemble into tetramers to form functional channels.
Each monomer consists of a transmembrane domain and
a cytosolic domain (Li et al., 2019). The cytosolic domain
contains the N- and C-terminal subdomains. The N-terminal
is composed of four ankyrin repeats and linker helices, whilst
the C-terminal is formed by a connecting helix and a coiled-
coil domain (Li et al., 2019). All TRPC channels contain
the calmodulin and inositol trisphosphate (IP3) receptor-
binding motif, which is able to interact with phosphoinositides,
inositol polyphosphates, Gαi/o proteins, and SEC14 domain
and spectrin repeat-containing protein 1 (SESTD1), a Ca2+-
dependent phospholipid/cytoskeleton-binding protein (Wang
et al., 2020). These different interacting pathways may
influence TRPC functions.

Distributed in two subgroups, diacylglycerol (DAG)-activated
(TRPC3/6/7) and non-DAG-activated receptors (TRPC1/4/5),
TRPC channels can form homo- and heterotetramers (Strübing
et al., 2001; Zagranichnaya et al., 2005; Poteser et al., 2006; Woo
et al., 2014; Myeong et al., 2016; Bröker-Lai et al., 2017; Sunggip
et al., 2018; Ko et al., 2019). Their assembly in these complexes
may vary with their expression sites and functions. Additionally,
members of the TRPC subfamily, such as TRPC1, can also
form heterotetramers with channels of other TRP subfamilies,
including TRPV4 and TRPP2 (Kobori et al., 2009; Greenberg
et al., 2017). Despite the advances in elucidating the structure
and assembly of TRPCs, the definite functions of their homo-
and heterotetramers remain unclear and represent a whole new
avenue of knowledge to be pursued.

So far, different roles have been identified for TRPC channels
including in cardiovascular, lung, kidney and neurological
diseases, inflammation, and cancer, among others. Of importance
to our review, TRPCs are involved in neurotransmission, neural

development, excitotoxicity, and neurodegeneration (Wang et al.,
2020). Interestingly, TRPC channels, especially TRPC1, have
topped the list of molecules involved in store-operated Ca2+

entry. However, it is now well-established that their importance
goes beyond the endoplasmic reticulum Ca2+ store (Wang et al.,
2020). Herein, we will focus on the importance of TRPC channels
as oxidative and nitrosative sensors in PD.

In regard to oxidative stress, TRPC5 is perhaps the most
well investigated member of the TRPC subfamily. It can be
activated by both oxidant and antioxidant molecules such as
H2O2 and reduced thioredoxin, respectively (Yoshida et al.,
2006; Xu et al., 2008; Naylor et al., 2011). TRPC5 can be also
activated by NO and reactive disulfides (Yoshida et al., 2006;
Maddox et al., 2018). However, TRPC5 sensitivity to NO has
been argued by other studies (Xu et al., 2008; Wong et al., 2010),
indicating this response may vary with cell type, generated NO
concentrations, and other experimental conditions. Interestingly,
TRPC5/TRPC4 complexes were found to be involved in the
regulation of Ca2+-dependent production of NO by endothelial
cells (Yoshida et al., 2006). TRPC5-dependent NO generation
via endothelial NOS (eNOS) activation was later confirmed
(Sunggip et al., 2018).

Another interesting finding is the ability of oxidant
products such as OONO− to up-regulate both the mRNA
and protein expressions of TRPC6 and TRPC3 in monocytes.
Of note, OONO−-induced Ca2+ influx in these cells is
reversed by the TRPC channel blocker 2-APB (Wuensch
et al., 2010). Additionally, TRPC3/TRPC4 assembly forms
redox-sensitive complexes on endothelial cells (Poteser et al.,
2006). Adding another layer of complexity to TRPC roles in
oxidative/nitrosative stresses, it is important to highlight that
these channels do not only form complexes but are also able to
down-regulate each other’s’ responses. Indeed, TRPC3/TRPC6-
mediated Ca2+ influx can be down-regulated by activation of the
TRPC5-NO axis (Sunggip et al., 2018).

Evidence also indicates that TRPC1 negatively regulates
TRPC5-mediated Ca2+ influx in striatal neurons undergoing
oxidative stress (Hong et al., 2015). Interestingly, TRPC1/TRPC5
complexes have been shown to mediate the protective effects of
reduced thioredoxin in inflammation, therefore acting as a target
for this antioxidant molecule (Xu et al., 2008).

Importantly, TRPCs are highly expressed in various regions
of the brain in which they play different roles (Table 1). Thus,
due to their ability to sense and modulate oxidative/nitrosative
stress responses, they should be considered as potential mediators
of neuroinflammation. Therefore, the importance of TRPC
channels in PD will now be discussed.

TRPC CANONICAL CHANNELS IN
PARKINSON’S DISEASE

Reports of the contribution of TRPC channels in PD are relatively
new and we have not yet uncovered their definite roles in disease
progression and maintenance. Also, few studies have attempted
to link their expression and/or activation with the ongoing
oxidative and nitrosative stresses that occur in PD.
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TABLE 1 | Neuronal expression and functions of TRPC channels.

Receptor Animal
species/strains/cell lines

Expression site Possible roles/effects following activation References

TRPC1 Sprague-Dawley rats Telencephalon Renewal of neural stem cells Fiorio Pla et al., 2005;

Wistar rats cerebellum, and midbrain cortical pyramidal and
SNpc neurons

Modulation of neuronal firing somato-dendritic release of dopamine
following activation of mGluR and synaptic plasticity

Martorana et al., 2006; Valero et al.,
2015; Martinez-Galan et al., 2018

C57BL/6J mice Hippocampal neural progenitor cells and neurons Mediation of store-operated Ca2+ entry and neuronal cell differentiation
and mediation of glutamate-induced cell death

Narayanan et al., 2008; Li et al.,
2012

SH-SY5Y cells and TRPC1
wild type and knockout mice
(C57BL/6J background)

Neuroblastoma cells and mouse DA neurons
from SNpc

Increased cell survival Selvaraj et al., 2012

Human Brain cortical lesions from epilepsy patients and
healthy tissues,

Mediation of astrocyte-induced epilepsy Zang et al., 2015

Cell line D54 human glioma cells, H19-7 hippocampal
neurons, PC12 cells

Store-operated Ca2+ entry and activation of Cl− channels,
differentiation of hippocampal neuronal cells, stimulation of neurite
outgrowth and down-regulation of TRPC5-mediated responses

Wu et al., 2004; Heo et al., 2012;
Cuddapah et al., 2013

TRPC3 Sprague-Dawley rats Cerebellum, striatal cholinergic interneurons, striatal
cholinergic interneurons, cortical neurons

Increased neuronal survival, modulation of the tonic activity of striatal
cholinergic interneurons following activation of mGluR1/5, neuronal
depolarization via interaction with dopamine receptors, mediation of low
calcium and magnesium-induced depolarization, epileptiform activity,
and redox-signaling

Berg et al., 2007; Jia et al., 2007;
Roedding et al., 2013; Xie and
Zhou, 2014; Zhou and Roper, 2014

Wistar rats Hippocampus Integrity of the neuronal morphology, synaptic plasticity and cognition Qin et al., 2015

Balb/c Prefrontal cortex Depression-like behavior Buran et al., 2017

Wild type and Mwk mice Cerebellum Regulation of Purkinje cell development and survival, and synaptic
plasticity

Becker et al., 2009; Dulneva et al.,
2015

C57Bl6J/SJL, and TRPC3
wild type and knockout
(Sv129 background)

Hippocampus Decrease in neuronal excitability, and early-onset memory deficits Neuner et al., 2015

Human Cerebellar Purkinje neurons Downstream signaling to mGluR activation; contribution of the TRPC3c
isoform to focal ischaemic brain injury

Cederholm et al., 2019

Cell line H19-7 hippocampal neurons Differentiation of hippocampal neuronal cells via store-operated calcium
entry

Wu et al., 2004

TRPC4 TRPC4 wild type and
knockout rats

Dopamine neurons Dopaminergic activity and cocaine addition Klipec et al., 2016

C57BL/6 mice Hippocampus, cortex, olfactory bulb, lateral
septum, coronal brain slices, and prefrontal cortex

Neuronal development, anxiety, and depression Zechel et al., 2007; Yang et al.,
2015; Just et al., 2018

(Continued)
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TABLE 1 | Continued

Receptor Animal
species/strains/cell lines

Expression site Possible roles/effects following activation References

Gonadotropin-releasing
hormone (GnRH) transgenic
mice

GnRH neurons from the pre-optic area Sustained excitation of GnRH neurons and gonadotropin release Zhang et al., 2013

TRPC4 wild type and
knockout mice (mixed
background)

Amygdala, hippocampus, lateral septum, and
hippocampus

Innate fear responses, downstream signaling to mGluR activation,
seizure-induced excitotoxicity and neurodegeneration

Phelan et al., 2012;
Riccio et al., 2014

BL/6 P0 mice Hippocampal neurons Inhibition of neurite outgrowth Jeon et al., 2013

Human Brain cortical lesions from epilepsy patients and
healthy tissues

Seizure events Wang et al., 2017

Cell line PC12 cells Exocytosis in neuroendocrine cells Obukhov and Nowycky, 2002

TRPC5 Sprague-Dawley rats Pyramidal and hippocampal neurons Seizure events, inhibition of dendritic development Tai et al., 2011; He et al., 2012

C57BL/6 mice Coronal brain slices, cerebellar granular neurons,
hippocampus, prefrontal cortex and retinal ganglion
cells

Anxiety and depression, neuronal regeneration, retinal ganglion cell
death

Yang et al., 2015; Wu et al., 2016;
Just et al., 2018; Oda et al., 2019

TRPC5 wild type and
knockout mice (129/SvImJ
background)

Cortical neurons Oxidative stress-induced neuronal cell death Park et al., 2019

YAC128 mutant Huntington’s
disease transgenic mice

Striatal cells Oxidative stress-induced neuronal damage Hong et al., 2015

TRPC5 wild type and
knockout mice (C57BL/6 and
129/SvImJ mixed
background)

Hippocampus and amygdala Fear-related responses Riccio et al., 2009

Human Brain cortical lesions from epilepsy patients and
healthy tissues

Seizure events Xu et al., 2015

Cell line E18 hippocampal neurons, PC12 cells, NG108-15
neuroblastoma/glioma hybrid cells

Axon formation, neuronal development and plasticity, growth cone
morphology and motility, neuronal regeneration

Greka et al., 2003; Wu et al., 2007;
Davare et al., 2009; Wu et al., 2016

TRPC6 Sprague-Dawley rats Cerebellum and substantia nigra Neuronal survival, downstream signaling to mGluR activation Giampà et al., 2007; Jia et al., 2007

C57BL/6J mice
TRPC6 wild type and
over-expressing mice
Cell line

Hippocampus
E18 hippocampal neurons

Neuronal survival
Synaptic and behavioral plasticity
Dendritic growth

Kunert-Keil et al., 2006; Tai et al.,
2008; Zhou et al., 2008; Boisseau
et al., 2009; Du et al., 2010; Lin
et al., 2013; Yao et al., 2013

TRPC7 Sprague-Dawley rats Cholinergic interneurons, substantia nigra,
subthalamic nucleus neurons

Downstream signaling to striatal mGluR1/5 receptors and
NMDA-induced depolarization-activated inward current and firing

Zhu et al., 2005; Berg et al., 2007
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TRPC1 is the most well investigated member of the
canonical subfamily in PD. A study in SH-SY5Y cells
demonstrated that TRPC1 protein expression becomes down-
regulated in these cells following incubation with salsolinol
(Bollimuntha et al., 2006), a neurotoxin endogenously found
in the nigrostriatal cells and cerebrospinal fluid samples
of patients with PD (Moser et al., 1995; Maruyama et al.,
1996). Despite its low expression on the cell membrane, the
TRPC1 protein was detected in the cytosol (Bollimuntha
et al., 2006). This result suggests that salsolinol may cause
TRPC1 translocation from the neuronal cell membrane
to the cytoplasm.

Interestingly, the endogenous salsolinol derivative NMSAL
was detected in the nigrostriatum and intraventricular fluid
samples of patients with PD (Maruyama et al., 1996). NMSAL
induces neuronal apoptosis via mitochondrial and caspase-
3-dependent pathways (Akao et al., 1999; Maruyama et al.,
2001; Arshad et al., 2014) and it is considered to be far
more toxic to neurons than salsolinol (Maruyama et al.,
1996). NMSAL exhibited similar effects to those of salsolinol
in neuronal TRPC1 expression and localization (Arshad
et al., 2014). All this evidence indicates a protective role
for TRPC1 in PD.

Ca2+-induced ROS generation in cultured rat DA neurons
treated with the neurotoxin 1-methyl-4-phenylpyridinium ion
(MPP+) was also linked to TRPC1 (Chen et al., 2013).
Another study by Selvaraj et al. (2009) showed that 1-methyl-
4-phenyl-1, 2,3,6-tetrahyrdro-pyridine (MPTP), a compound
known to cause PD in mice by inducing mitochondrial
dysfunction and neuronal apoptosis, reduces the expression of
TRPC1 in the SNpc. A similar result was observed in PC12
cells incubated with MPP+. The same study also found that
TRPC1 over-expression increases the survival of PC12 cells
incubated with MPP+ by preserving mitochondrial membrane
potential and regulating the expression of the anti-apoptotic
genes Bcl2 and Bcl-xl (Selvaraj et al., 2009). Of note, the
authors highlighted in their study that TRPC1 over-expression
only partly restores mitochondrial membrane potential and
neuronal survival.

The contribution of other TRPCs to PD has also been
investigated. Analysis of TRPC3 expression patterns revealed
that the TRPC3 protein is increased in the SNpc following
exposure to MPTP (Selvaraj et al., 2009). On the other
hand, no alterations in TRPC3 levels were noted in DA
neurons from PD patients (Sun et al., 2017). Of note, these
controversial data on TRPC3 expression have been obtained
in different experimental settings. Therefore, TRPC3’s role in
PD cannot be overruled. Also, it is possible that other TRPC
channels and their complexes may contribute to changes in
neuronal survival in PD.

In this context, it is important to highlight the complexes
formed by TRPC1 with TRPC5. Although no studies have yet
investigated these complexes in PD, they have been pointed
as mediators of other neurodegenerative diseases such as
Huntington’s. In a recent report, it was demonstrated that
intracellular oxidized glutathione activates TRPC5 in striatal cells

of Huntington’s disease (Q111 cells). The same study showed
that upon oxidative stress, TRPC5-mediated Ca2+ influx leads
to increased cytosolic Ca2+ levels and activation of the calpain-
caspase pathway, leading to apoptosis of striatal neurons (Hong
et al., 2015). In parallel, as observed for PD, TRPC1 protein and
mRNA expression is down-regulated in Huntington’s striatal cells
favoring the formation of TRPC5 heterotetramers in these cells
(Hong et al., 2015). These results reinforce the protective role
of TRPC1 in neurodegenerative diseases and shed light on the
deleterious importance of TRPC5 in neuronal survival.

From the best of our knowledge, no studies have yet
investigated the association between TRPC channels and RNI
in PD, highlighting the need for further studies to fill this
gap of information.

FUTURE PERSPECTIVES

Herein, we presented evidence and discussed the importance of
TRPC channels in the recognition and regulation of oxidative
and nitrosative stress responses, as well as their contributions
to PD. The recent advances in the field of TRPC channels,
in particular the protective functions of TRPC1 and the
deleterious role of TRPC5 in PD, highlight their importance as
pharmacological targets in treating neurodegenerative diseases.
Considering the ability of TRPC channels to assemble as homo-
and heterotetramers with channels of the same subfamily and
also as members of other subfamilies of TRPs, and the lack of
antagonists and agonists capable of selectively differentiating the
individual actions of each one of these channels, their targeting
of PD may become a difficult task. Therefore, efforts need
to be made in order to develop effective and more selective
pharmacological tools to investigate TRPC channels. This will
be an essential step to achieve a broader knowledge of the
pathophysiological roles of their different assembly modes and
establish their definite importance in PD.
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