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Fractal analysis of stride interval time series is a useful tool in human gait research which

could be used as a marker for gait adaptability, gait disorder, and fall risk among patients

with movement disorders. This study is designed to systematically and comprehensively

investigate two practical aspects of fractal analysis which significantly affect the outcome:

the series length and the parameters used in the algorithm. The Hurst exponent, scaling

exponent, and/or fractal dimension are computed from both simulated and experimental

data using three fractal methods, namely detrended fluctuation analysis, box-counting

dimension, and Higuchi’s fractal dimension. The advantages and drawbacks of each

method are discussed, in terms of biases and variability. The results demonstrate that a

careful selection of fractal analysis methods and their parameters is required, which is

dependent on the aim of study (either analyzing differences between experimental groups

or estimating an accurate determination of fractal features). A set of guidelines for the

selection of the fractal methods and the length of stride interval time series is provided,

along with the optimal parameters for a robust implementation for each method.

Keywords: box-counting dimension, detrended fluctuation analysis, gait analysis, gait variability, Higuchi’s fractal

dimension, hurst exponent, nonlinear dynamics, stride interval time series

1. INTRODUCTION

Gait analysis has been generally studied using traditional linear analysis methods, adopting
biomechanical models in which variability was not of interest (e.g., comparing the means
of spatio-temporal gait parameters between groups). However, steady-state walking could be
characterized by the presence of subtle variations observed in stride intervals (the time period
between consecutive initial contacts of the same foot). In other words, the variability of stride
intervals (or gait variability) could be treated as a meaningful and interpretable metric of gait. More
advanced, nonlinear analysis methods, derived from chaos theory, have therefore been proposed to
analyze the temporal organization of gait variability (Chau, 2001).

While many methods of fractal analysis exist to explore long-range autocorrelations in stride
interval time series, detrended fluctuation analysis (DFA) has been the most commonly used.
This may be because DFA was used by the pioneering works of Hausdorff et al. (1996) and
provides reasonably accurate results for short time series as compared to other classical methods
for estimating the Hurst exponent (Delignieres et al., 2006). Specifically, scaling exponent-like
quantities, including the DFA’s scaling exponent and the Hurst exponent, show normal human
walking produces persistent stride time fluctuations and a drift toward randomness is observed
with aging and neurological disorders (Hausdorff et al., 1997, 2000). As a result, these measures
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could be used as a marker for gait adaptability, gait disorder,
and fall risk among patients with movement disorders, such as
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and Huntington’s disease (HD).

Although DFA has become the de facto standard for analyzing
statistical persistence in gait data, it too is sensitive to the length
of the time series, which remains a significant limitation. Previous
studies using simulated and/or experimental signals have shown
that estimation accuracy is directly related to the series length,
and lengths of around 500–600 data points or less, corresponding
to the number of stride intervals from approximately 10–12
min of self-paced walking, yield questionable results due to the
high bias and variance in the estimation of the scaling exponent
(Damouras et al., 2010; Marmelat and Meidinger, 2019). Some
studies have even suggested that DFA cannot give reliable results
with time series shorter than 4,096 data points (Eke et al., 2002).
Such relatively long recordings, however, are difficult to collect
from older adults or clinical populations, and thus the vast
majority of previous studies have collected stride interval time
series in these populations for only 2–5 min (i.e., between 100
and 250 strides) (Moon et al., 2016). The results from such studies
should therefore be interpreted with caution.

Besides the length of time series under consideration, another
practical aspect of DFA that significantly affects the analysis
outcome is the set of parameters used in the algorithm: the
box size range, the box size increment, and the order of
polynomial fits for a detrending operation. Unfortunately, the
implementation of DFA to stride interval time series is not yet
standardized and varies considerably between studies, in which
decisions are usually made on an ad hoc or subjective basis.
Some previous studies have investigated these practical aspects,
but have typically studied them in isolation (e.g., only impact of
series length, or only one of the DFA parameters such as box size
range). In addition, Warlop et al. (2017) found that using more
robust methods (such as evenly-spaced box size increments)
could provide reliable results for shorter time series (256 instead
of 512 data points). To the best of our knowledge, however,
a systematic and comprehensive investigation of the length of
stride interval time series and all the DFA parameters has never
been completed. Thus, a better understanding of interactions
between the two practical aspects of DFA that affect the analysis
outcome, is warranted.

As the DFA’s scaling exponent and the Hurst exponent have
been found to be unreliable for very short time series (< 250
strides), another approach to explore fractal dynamics of gait
has recently been proposed. Dierick et al. (2017) deployed a
box-counting dimension (BC) algorithm to compute fractal
dimension and used it as an indicator of complexity during
walking. The results showed that walking forward exhibited
maximal complexity whereas non-standard, but not pathological,
walking (such as walking backward or individuals with galvanic
vestibular stimulation) had lower complexities. Interestingly,
no linear relationship between fractal dimension and scaling
exponent was found, which is in contrast with previous studies
which have implicitly considered the fractal dimension and the
scaling exponent to be directly related. This may be due to
the limitations of the methods or the parameters used (e.g.,

an under/overestimation bias). Chakraborty et al. (2015) used
a Higuchi’s fractal dimension (HG) algorithm to explore the
difference between normal walking and dual tasking (performing
a secondary task while walking) for healthy controls and PD
subjects. Unfortunately, an appropriate value of the interval
time parameter was not determined, and thus no hypothesized
differences were found. Similar to classical Hurst exponent
methods, including DFA, the choice of parameters used has a
significant impact on the value of fractal dimension, and the
subsequent conclusions. Therefore, it is necessary to identify an
appropriate value of these parameters. Unlike Hurst exponent
methods, fractal dimension methods can be calculated for a wide
range of motions, not only fractional Brownian motions, and
their accuracy is less influenced by the length of the time series
(Sánchez-Granero et al., 2012).

Therefore, the first purpose of this study was to identify a
robust implementation of these fractal methods for short time
series. A systematic and comprehensive investigation of all the
parameters was performed for DFA, BC, and HG using simulated
exact fractal series. Based on these robust implementations, the
second purpose of this study was to compare the estimation
accuracies of the three fractal methods in terms of biases and
variability as well as to provide guidelines for the selection of the
length of stride interval time series. The third purpose of this
study was to provide guidelines for the selection of the fractal
methods to obtain an accurate determination of the exponent
that characterizes the system under study and to analyze
differences between experimental groups. It was hypothesized
that (1) the optimal implementation of the fractal methods could
reduce bias and variance in the estimation of Hurst exponent
and fractal dimension, and could thus provide acceptable results
for shorter time series; (2) fractal dimension methods (i.e., BC
and HG) could provide more accurate results than the Hurst
exponent method (i.e., DFA), especially for short time series,
and thus could be used as a more efficient solution to study
human gait alterations with aging and disease; and (3) normal
human walking produces persistent stride time fluctuations and a
drift toward randomness is observed with aging and neurological
disorders. We also speculate that both indexes (DFA’s scaling
exponent/Hurst exponent and fractal dimension) are related
under the robust implementations.

2. METHODS

2.1. Simulated and Experimental Data
To investigate the effect of series length (N) on the Hurst
exponent (H), 100 simulated fractional Brownian motion (fBm)
time series were generated for each of seven values of N (N being
a power of 2; 2p) ranging from 16 (p = 4) to 1,024 (p = 10) as well
as each of nine values ofH ranging from 0.1 to 0.9 by steps of 0.1.
Two fBm generators were used following the previously validated
algorithms proposed by Abry and Sellan (1996) and Kroese and
Botev (2015) to ensure the results were not dependent on the fBm
algorithm. It is important to note that the use of 100 simulated
series per condition was sufficient to show contrast between
means (biases) and standard deviation (variability) (Hausdorff
et al., 1997; Delignieres et al., 2006), and the purpose of this study
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was not to accurately determine the mathematical relationships
between true H and estimated Ĥ.

For the experimental data, two databases, contributed
by Hausdorff et al. (2000), were investigated: (1) gait in
neurodegenerative disease database; and (2) gait in aging and
disease database. The first dataset consists of stride interval time
series from 15 patients with PD, 13 ALS, 20 HD, and 16 healthy
control subjects. The second dataset includes stride interval time
series from 5 healthy young adults, aged between 23 and 29
years old, 5 healthy older adults, aged between 71 and 77 years
old, and 5 older adults, aged between 60 and 77 years old,
with PD. The protocols for both datasets are similar. Briefly,
subjects were asked to walk continuously at their normal pace
on level ground either along a long hallway for 5–6 min for the
patients and healthy controls or in a roughly circular path for 15
min for healthy subjects. The raw force signals were measured
using force-sensitive insoles with a sampling rate of 300 Hz,
and subsequently used to compute the stride interval time series
(Hausdorff et al., 1995). A median filter was applied to remove
outliers (during the walking turns) which were considered to be
three standard deviations from the median value.

2.2. Detrended Fluctuation Analysis (DFA)
The Hurst exponent H is calculated from the rescaled range
(R/S) analysis, using range R of the integrated fluctuations and
rescaling by the standard deviation S, as the effect of window size
is inspected. In a similar way, DFA inspects the root mean square
(RMS) of the detrended and integrated fluctuations as a function
of window size, where a detrending operation is performed to
enable correct H estimation in the presence of extrinsic non-
stationaries (Peng et al., 1995). The DFA algorithm consists of
a pipeline of six stages:

1. A time series x(t) of total length N is first integrated. This
integration process converts the time series into a random
walk. The integrated series y(j), also called a cumulative sum
or profile, is defined by:

y(j) =

j
∑

t=1

[x(t)− x̄], j = 1, . . . ,N, (1)

where x̄ represents the mean value of the time series.
2. The integrated time series y(j) is divided into L non-

overlapping time windows or boxes of length n.
3. Within each box, a least-squares fit (or a polynomial fit of

order k) is applied to the series y(j). The coefficient of y
coordinate is denoted by yn(j). Each least-squares line presents
the semi-local trend in that box.

4. The RMS fluctuation of the detrended and integrated time
series is calculated by:

F(n) =

√

√

√

√

1

N

N
∑

j=1

[y(j)− yn(j)]2. (2)

5. This computation (stages 2–4) is repeated over a range of
different box sizes n.

6. The DFA’s scaling exponent α is then computed as the slope
of a straight line fit to the log-log graph of F(n) and n, and
is simply an estimate of the Hurst exponent H. It should be
noted that while α for fractional Gaussian noise (fGn) is equal
to H, for fBm α is equal to H + 1.

The scaling exponent α can explain the behavior of the time series
as follows:

• 0 < α < 0.5 indicates anti-persistent long-term correlations,
meaning that a large value is more likely to be followed by a
small value and vice versa.

• α = 0.5 indicates the absence of long-term correlations (white
noise).

• 0.5 < α < 1.0 indicates persistent long-term correlations,
meaning that a large value (compared to the mean) is more
likely to be followed by a large value and vice versa.

• α ≃ 1.0 indicates 1/f noise (pink noise).
• α ≃ 1.5 indicates Brownian noise.

2.3. Box-Counting Dimension (BC)
While the Hurst exponent H is used as a measure of long-
term autocorrelation of time series, the fractal dimension D—
another index for characterizing fractal patterns—is used as a
measure of complexity of the time series. One of themost popular
fractal dimension methods is the BC algorithm, and consists of a
pipeline of five stages:

1. A time series x(t) of total length N is divided into L non-
overlapping time windows, or intervals, of length n.

2. Within each time window, the number of square boxes of size
n required to cover the points is computed by:

bn(j) =

⌈

h

n

⌉

=

⌈

max(xn)−min(xn)

n

⌉

, (3)

where h represents the signal amplitude change (or the height)
and xn represents the time series within each time window j.

3. The total number of boxes required to cover the total curve at
the resolution n is calculated by:

B(n) =

L
∑

j=1

bn(j). (4)

4. These computations (stage 1–3) are then repeated over a range
of different box sizes n.

5. The BC dimension DBC is computed as the slope of a straight
line fit to the log-log graph of B(n) and 1/n. It should be noted
that for fBm, D is directly related to H where D = 2− H. For
time series, D typically lies between 1 (a differentiable curve)
and 2 (a surface with a differentiable boundary).

2.4. Higuchi’s Fractal Dimension (HG)
In addition to standard algorithms such as the BC, more effective
methods have been developed, such as the methods by Higuchi
(1988), Katz (1988), Petrosian (1995). The principle of the HG
algorithm is to sum the change in amplitude h normalized to the
time interval n, and is comparable to the BC algorithm, except
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with “boxes” of “non-integer” height. The scheme of the HG
algorithm consists of a pipeline of four stages:

1. A time series x(t) of total length N is first used to construct a
new time series Xm

n , which is defined by:

Xm
n =

{

x(m), x(m+ n), x(m+ 2n), . . . , x
(

m+

⌊

N −m

n

⌋

n

)}

, m = 1, . . . , n, (5)

where m represents the initial time and n indicates the
time interval.

2. The length of the curve Xm
n is calculated by:

Lm(n) =
1

n

















⌊

N−m
n

⌋

∑

j=1

|X(m+ jn)− X(m+ (j− 1)n)|







N − 1
⌊

N−m
n

⌋

n

}

. (6)

3. These computations (stage 1–2) are repeated over a range of
different interval lengths n.

4. The fractal dimension DHG is then computed as the slope of a
straight line fit to the log-log graph of Lm(n) and n.

The fractal dimension D measures the degree to which the
curve fills out the plane, where a simple curve has dimension
equal 1 and a plane has dimension equal 2. In other words, the
fractal dimension indicates the amount of information required
to describe the time series. The fractal dimensionD alsomeasures
the complexity of the signal. The term “complexity” is associated
with the temporal structure of the signal, which usually lies in
an intermediate state between two non-physiological situations:
absence of variability (e.g., pink noise, D ≃ 1.8; Brown noise,
D ≃ 1.5) and unstructured randomness (e.g., white noise, D ≃

2.0) (Gomolka et al., 2018).

2.5. Parameter Optimization
For DFA, five parameters were evaluated: (1) the minimum box
size, nmin, (2) the maximum box size, nmax, (3) the increment
method, (4) the increment factor, d, and (5) the polynomial order,
k. The literature suggests several values for the box size range.
For example, nmin can be 3, 4, or 10, and the nmax should be
less than one-tenth (N/10), a quarter (N/4), or a half (N/2) of
the series length (Hu et al., 2001; Ma et al., 2005; Abásolo et al.,
2008; Phinyomark et al., 2011; Wallot et al., 2013). There are
two different methods of incrementing between box sizes: (1) an
arithmetic progression (AP), i.e., the increment of the box size is
fixed to be equal to the increment factor (d) throughout the total
length (ni = nmin + (i − 1)d; i = 1, . . . , L); and (2) a geometric
progression (GP), i.e., the box size is increased based on a power
of two (ni = nmin × 2(i−1); i = 1, . . . , L). In addition to typical
linear detrending (k = 1), second and third order polynomial
fitting were also used to remove trends of higher order. Like
DFA, the minimum and maximum box sizes and the method of
incrementing between box sizes must be determined for the BC
algorithm. For HG, only the maximum interval length nmax are

TABLE 1 | A summary of parameter options studied for the three fractal methods:

DFA, BC, and HG.

Method Parameter Option

DFA

Minimum box size (nmin) 2, 4, 6, 8, 10

Maximum box size (nmax ) N/10, N/9, N/5, N/4, N/2

Increment method AP, GP

Increment factor (d) 2, 4, 6

Polynomial order (k) 1, 2, 3

BC

Minimum box size (nmin) 2, 4, 6, 8, 10

Maximum box size (nmax ) N/10, N/9, N/5, N/4, N/2

Increment method AP, GP

Increment factor (d) 2, 4, 6

HG Maximum interval length (nmax ) 2, 4, 8, 16, 32, 64

optimized in this study, where nmin = 1 and the AP method
of incrementing between interval lengths was used with d = 1.
To summarize, all parameter options that were examined in this
study are shown in Table 1. It should be noted that parameter
names and their abbreviations were chosen to be as concise as
possible while still translating across the fractal methods.

2.6. Statistical Analysis
Two main characteristics: (1) bias and (2) variability were
examined using simulated fBm time series with a range of
identical true H exponents. To assess bias (the deviation of the
estimated Ĥ from the theoretical H), several indicators were
employed including the plot of mean Ĥ vs. H, the mean error
(Ĥ − H), and the mean absolute error (|Ĥ − H|). To assess
variability of estimations obtained from series of exact theoretical
H, standard deviation of Ĥ was computed.

A box plot of experimental data was used to show
the summary of scaling exponents and fractal dimensions
including the minimum, first quartile, median, third quartile,
and maximum. The mean and standard deviation were also
reported. For statistical differences between multiple groups, the
Kruskal–Wallis test—a nonparametric version of classical one-
way analysis of variance (ANOVA)—was used. The Wilcoxon
rank sum test—a non-parametric test for two independent
populations—was used to compare between two groups at a
time (post-hoc comparisons). Group differences were considered
statistically different if p ≤ 0.05. Further, associations between
fractal variables were evaluated by using Spearman’s correlation
coefficient ρ.

3. RESULTS

The optimal values of all fractal parameters for each series
length were determined, in which the minimum estimation
errors were found, and are shown in Table 2. It is important
to note that the results for both fBm generators were
the same. The optimization of parameters is important as
illustrated in Figure 1 by comparing mean errors in the
estimation of H using the optimal parameters (Table 2) and
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TABLE 2 | A summary of optimal values of all the parameters for three fractal methods: DFA, BC, and HG for each length of the time series.

Method Parameter
Option for each series length (N)

16 32 64 128 256 512 1024

DFA

Minimum box size (nmin) 4 4 4 4 4 4 4

Maximum box size (nmax ) N/2 N/2 N/2 N/2 N/5 N/9 N/10

Increment method AP AP GP GP AP AP AP

Increment factor (d) 2 4 n/a n/a 6 6 4

Polynomial order (k) 1 2 2 2 2 2 1

BC

Minimum box size (nmin) 4 6 4 8 4 4 4

Maximum box size (nmax ) N/2 N/2 N/2 N/2 N/2 N/2 N/4

Increment method AP AP AP AP GP GP AP

Increment factor (d) 2 2 6 6 n/a n/a 2

HG Maximum interval length (nmax ) 4 4 4 8 4 4 4

FIGURE 1 | Plots of theoretical H and mean estimated Ĥ using the optimal parameters (upper panels) and the worst-case parameters (lower panels) for three fractal

methods: (A,D) DFA, (B,E) BC, and (C,F) HG.

the worst-case parameters (out of all the options in Table 1;
see Table S1).

To compare the estimation accuracies of the three
fractal methods, the mean errors, and standard deviations
of the estimated Ĥ were computed based on the
robust implementation determined, and are shown in

Figure 2. Since both HG and BC algorithms extracted
fractal dimension, and HG could provide more accurate
estimation than BC, DHG was thus used to compare
with αDFA. The effect of series length on bias and
variability in estimation of H using DFA and HG is shown
in Figure 3.
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FIGURE 2 | Mean errors (upper panels) and standard deviations (lower panels) of estimated Ĥ for three fractal methods: (A,D) DFA, (B,E) BC, and (C,F) HG.

The scaling exponent αDFA and fractal dimension DHG

extracted from both experimental datasets are shown as box plots
in Figure 4. For the first dataset, the αDFA were 0.98 ± 0.12,
0.89 ± 0.17, 0.76 ± 0.17, and 0.86 ± 0.19, and the DHG were
1.85± 0.05, 1.89± 0.08, 1.94± 0.09, and 1.91± 0.10 for the CO,
ALS, HD, and PD subjects, respectively. Significant differences
among the four groups were found for both αDFA and DHG

(p < 0.05). For the second dataset, the αDFA were 0.95 ± 0.11,
0.75 ± 0.04, and 0.75 ± 0.12, and the DHG were 1.87 ± 0.12,
1.96±0.04, and 1.95±0.06 for the young, elderly, and PD subjects,
respectively. Significant differences among the three groups were
also found for both αDFA and DHG (p < 0.05). Mean errors
and standard deviations of αDFA estimated using the current
study’s optimal parameters (Table 2) and the parameters used in
the original works of the datasets (10 ≤ n ≤ 20) (Hausdorff
et al., 1997, 2000) were computed as shown in Figure 5. Further,
correlation coefficients ρ between αDFA and DHG computed over
the simulated, the first, and the second experimental datasets
are equal to −0.95, −0.81, and −0.84 (p < 0.05) as shown
in Figure 6.

4. DISCUSSION

4.1. Robust Implementation
The first purpose of this study was to identify a robust
implementation of three fractal methods: DFA, BC, and HG,

using short simulated time series with known H ranging from
0.1 to 0.9. Our recommendation for each fractal method and
time series length is shown in Table 2. Although there is some
variability in the optimal parameters from one series length to
another, some common values were determined. For DFA, the
minimum box size should be four, which is in agreement with
recommendations for several data types including stride interval
(e.g., Ma et al., 2005; Phinyomark et al., 2011; Wallot et al., 2013;
Wiltshire et al., 2017; Ducharme et al., 2019). The maximum box
size is equal to a half of the series length for very short time series
(N ≤ 128) while an inverse relationship between the maximum
box size and the series length was found for less short time series
(256 ≤ N ≤ 1, 024). The results of the present investigation
are in partial support of Damouras et al. (2010) who suggested
that the maximum box size of DFA should be set to N/9 based
on an evaluation of stride interval time series with a minimum
length of 256. In the present study, this maximum box size is an
optimal value for the series length of 512 data points. Using the
optimal box size increment, the number of box sizes ranges from
3 (N = 16) to 25 (N = 1, 024). For consistency and simplicity,
the use of half of the series length for the maximum box size and a
geometric progression for the incrementmethod is suggested (see
Table S2 for the global optimal parameters across tested short
time series lengths). Also, both linear and quadratic detrending
methods for DFA were able to yield reasonably accurate results.
For the fractal dimension estimation methods, the common
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FIGURE 3 | Mean absolute errors of estimated Ĥ vs. theoretical H for (A) DFA and (B) HG; and (C) mean absolute errors and (D) standard deviations of estimated Ĥ

over a possible range (0.1–0.9) vs. sample length (16–1,024 data points).

values of the BC parameters were nmin = 4, nmax = N/2,
using the arithmetic progression method with d = 2, while
for HG, the common optimal maximum interval length was
found to be four. This optimal nmax of the HG algorithm is
consistent with several studies investigating short time series.
For example, a clear discrimination between DHG extracted from
heart rate variability time series between healthy and diabetic
subjects was found when nmax was in a range of between 4 and
6 (Gomolka et al., 2018).

In support of our hypothesis, the optimal implementation
of the fractal methods could reduce bias and variance in
the estimation of scaling exponent-like quantities and fractal
dimension, and thus could provide acceptable results for shorter
time series. The optimization of parameters is very important
as clearly shown in Figure 1, where huge biases were found
when using the worst-case parameters. For DFA and BC, these
errors could be caused by an insufficient number of box sizes,
an unbalanced density of points along the x-coordinate, or
deviations from linearity occurred for smaller and larger box sizes
(Peng et al., 1995; Hu et al., 2001; Damouras et al., 2010; Warlop
et al., 2017). However, even when the optimal parameters were
implemented, some biases were seen from the plots of theoretical
H and mean estimated Ĥ for DFA and BC (Figure 1). It should
be noted that the perfectH estimation should yield a straight line

of slope equal to one. For HG, larger biases were observed when
the maximum interval length nmax increased (closer to a half of
the series length) (see Table S1).

4.2. Bias, Variability, and Series Length
The second purpose of this study was to compare the estimation
accuracies of three fractal methods: DFA, BC, and HG, in
terms of biases and variability. The results clearly showed that
the HG algorithm is the most accurate of the three, with
no apparent bias and relatively low variability (Figure 2). A
systematic underestimation of Ĥ occurred when using DFA (for
H < 0.6), while a systematic overestimation of Ĥ, conversely,
occurred for BC (for H < 0.6). A slight overestimation and
underestimation were, respectively found for DFA and BC for
H > 0.6. The series length tended to have an influence on the
magnitude and standard deviations of these biases, particularly
for the shortest lengths (N < 128). The opposite directions and
different magnitudes of the biases for DFA and BC may shed
some light onto the finding of Dierick et al. (2017) which found
no correlation between αDFA and DBC (ρ = −0.03, p = 0.72)
and concluded that α and D can be considered as independent
parameters for stride interval time series. Specifically, the fact
that no linear relationship has been found between these two
parameters, even though stride interval time series has been
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FIGURE 4 | Box plots of (A,D) scaling exponents αDFA and (B,E) fractal dimensions DHG; and (C,F) scatter plots between scaling exponents αDFA and fractal

dimensions DHG for the first dataset (upper panels) and the second dataset (lower panels). The notation (−/*/**, −/*/**) denotes statistically significant difference at

*p < 0.05, **p < 0.001, or no (−) in the (αDFA,DHG)-plane.

shown to exhibit self-similarity, may be due to the estimation
accuracies of the implemented methods and their parameters
used, rather than the walking conditions themselves. In this
study, no, or weak, correlations were found between αDFA and
DBC using both the first dataset (ρ = 0.08) and the second dataset
(ρ = −0.37), whereas very strong correlations were found
between αDFA and DHG (see section 4.3 for further discussion).

The second purpose of this study also included establishing
guidelines for the selection of the length of the time series. As can
be seen for all the methods, both biases and variability increased
as series length decreased, whatever the H values (Figures 2,
3A,B). This increase was dramatic for the shortest series (N <

128). Based on the literature, one should expect differences in α

(or D) of more than 0.1 between healthy and pathological gait
(Hausdorff et al., 2000), therefore a mean absolute error and a
standard deviation of <0.05 is a prerequisite for estimating α (or
D) with 0.1 error (Delignieres et al., 2006; Damouras et al., 2010).
Previous studies usually considered only standard deviation, as
the focus of the studies was to identify differences between groups
of interest (i.e., a small standard deviation is essential while a
limited and systematic bias could remain acceptable). Using the
robust implementation outlined here, one could thus consider
sample lengths of N = 128 as an acceptable level for DFA,
N = 64 for BC, and N = 32 for HG (Figure 3D). However,

when the aim is also to interpret the α (or D) values, bias should
be limited as possible. If an acceptable level is 0.05, the sample
length ofmore than 1,024 is necessary for both DFA and BCwhile
the mean absolute value reached unacceptable levels for sample
lengths less than 128 points for HG (Figure 3C). This finding
suggests that DHG could be calculated in a short time series
containing as few as approximately 100–200 data points. This
result is in support of previous studies investigating the utility
of the HG algorithms for other types of data (e.g., Higuchi, 1988;
Klonowski, 2007). In support of our hypothesis, more effective
fractal dimension methods like HG could provide more accurate
results (i.e., lower bias and variability) than Hurst exponent
methods such as DFA, particularly for short time series, and could
be considered as a more efficient solution to study short stride
interval time series for older adults and clinical populations.
In fact, even subjects are capable of walking continuously for
prolonged periods of time, the properties of the long stride
interval time series and the walking conditions under study may
be altered because of fatigue (prolonged walking). Moreover, it is
often difficult to find very long hallways for experiments and thus
subjects may have to walk back and forth many times. As a result,
many outliers corresponding to the turning points could be
introduced. Hence, care must be taken when selecting the sample
length (walking duration) in the investigation of gait variability.
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FIGURE 5 | Mean errors (upper panels) and standard deviations (lower panels) of estimated Ĥ using (A,C) optimal parameters and (B,D) Hausdorff’s parameters.

FIGURE 6 | Correlation coefficients ρ between estimated αDFA and DHG at the series length of 128 data points for (A) the simulated fBm dataset, (B) the first

experimental dataset, and (C) the second experimental dataset.

4.3. Scaling Exponent and Fractal
Dimension
The third purpose of this study was to provide guidelines for
the selection of the fractal methods for analyzing stride interval
time series. In the present investigation, a re-examination of

two popular stride interval time series datasets was performed
(Figure 4). While significant differences among multiple groups

were found for both fractal methods and datasets, significant

differences between pairs of groups (post hoc comparisons) were
slightly different. Specifically, for both αDFA and DHG, significant
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differences were found between controls and subjects with PD as
well as between controls and subjects with HD. While significant
differences were found between subjects with ALS and HD for
αDFA, this was not found for DHG. Similarly, while significant
differences were found between younger and older subjects as
well as between young subjects and subjects with PD, these
differences were not found for DHG. The better discrimination
performance of DFA over HG in some cases might be explained
by two reasons. One is a systematic bias of DFA (as observed
in Figures 1A, 2A). That is, an overestimation (over 0.7)
emphasizes higher exponents while an underestimation (under
0.7) emphasizes lower exponents, which presumably contributes
to discriminating normal gait and alternations. The other reason
is the detrending operation implemented for DFA. A quadratic
detrending method was applied for these analyses and could
remove constant and linear trends (non-stationarities) in the
time series. Any research that focuses only on discriminating
fractal features between experimental groups could therefore
consider the use of DFA. Conversely, if the aim of the study
is to obtain an accurate estimation of the fractal features that
characterize the system under study, HG is recommended. It is
important to note, however, that these analyses of experimental
data were based on series lengths of 128 stride intervals (around
2–3 min walk). For an analysis of even shorter time series, HG
is suggested for both mean comparison and precise estimation,
as DFA could not provide the same mean values across different
short series lengths (see Figure S1) and very high biases and
variance were introduced for very short time series (Figure 3).

A very strong (negative) linear relationships between αDFA

and DHG (ρ > 0.8) was found using both simulated and
experimental data using the proposed robust implementation
(Figure 6). The same degree of association between αDFA

and DHG has been found in other types of data such as
electroencephalogram (EEG) time series (França et al., 2018).
These findings lead to the conclusion that for stride interval
time series, the scaling exponent is directly related to the fractal
dimension. Scaling exponent and fractal dimension quantify
global and local fractal characteristics, respectively. For stride
interval time series, therefore, the local properties are reflected
in the global properties. Based on the associations observed in
Figure 6 and the literature (Gomolka et al., 2018), a random
motion (white noise) was found when αDFA ≃ 0.5 and DHG ≃

2.0 and a more predictable, strongly auto-correlated, time series
when 0.5 < αDFA ≤ 1.0 and 1.8 ≤ DHG < 2.0. However,
it is worth mentioning that either αDFA or DHG might be
restricted to specific walking conditions (Dierick et al., 2017), and
evaluating the properties of both fractal analysis methods may
provide additional information (Figures 4C,D) (Dierick et al.,
2017; Croce et al., 2018).

In support of our hypotheses, and consistent with previous
literature (Hausdorff et al., 1997, 2000; Kobsar et al., 2014),
scaling exponents and fractal dimension showed that normal
human walking (CO and Young groups in Figure 4) produced
persistent stride time fluctuations and a drift toward randomness
was observed with aging and neurological disorders (ALS, HD,
PD, and Old groups in Figure 4). As the parameter values used

for DFA in the present investigation and the original works
of Hausdorff et al. (1997, 2000) are different, there are some
differences between the results of both studies. For example, no
significant difference between subjects with ALS and HD was
found in the original work of Hausdorff et al. (2000), but a
statistical significance was found in the present study. However,
mean absolute errors and standard deviations using the current
study’s optimal parameters were lower than those of Hausdorff ’s
parameters (Figure 5). These results suggest that variability
observed in fractal dynamics of gait in the literature could be the
result of different parameters used, and care must be taken when
selecting values of parameters for fractal analysis methods. Future
studies should also consider reporting the parameters used and
their estimation accuracies to gain a greater understanding of
human gait alterations with aging and disease.

4.4. Limitations and Future Studies
Limitations to the current research study are acknowledged.
First, we chose to focus our attention on the most commonly
used method in the field, DFA, and two other fractal dimension
methods, BC and HG, that have been previously proposed for
the study of short time series. There are other Hurst exponent
and fractal dimension methods that provide accurate and low
variability of exponent estimation, but for which the effect of the
short time series length has not yet been investigated, such as the
autoregressive fractionally integrated moving average (ARFIMA)
model (Roume et al., 2019). Future studies should investigate the
utility of such fractal methods for shorter time series and compare
their performance with HG.

Second, simulated time series from H = 0.1 to H = 0.9
were employed as this range of values has been commonly
used in most previous related studies (Delignieres et al., 2006;
Roume et al., 2019). However, future research should consider
incorporating a range of H values around the 1/f boundary
(between 0.9 and 1.1) to gain a greater understanding of issues
related to fGn/fBm classification and continuity around the
boundary (Roume et al., 2019).

Third, to ensure meaningful estimates, it is necessary to
identify a time series as either being fBm or fGn before selecting a
relevant fractal analysis method (Eke et al., 2002). Unfortunately,
it is difficult to discriminate between fBm and fGn series when
values are around the 1/f boundary. An important distinction
is that fBm processes are non-stationary, whereas fGn processes
are stationary. Fairley et al. (2010) found that experimental
stride interval time series are often non-stationary, and so
for consistency with the pioneering works of Hausdorff and
colleagues, and to simplify the interpretation, simulated fBm time
series were used in this study. Moreover, the results of our own
preliminary study on simulated fGn time series were in support of
the current recommendations for parameters, series length, and
methods. Nevertheless, future studies involving simulated fGn
time series should be explored.

Finally, it is worth noting that additional techniques may be
able to improve the accuracy and reduce the variability of the
original methods for short stride interval time series, such as
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using overlapping windows or evenly spaced versions of DFA
(Almurad and Delignières, 2016; Warlop et al., 2017).

5. CONCLUSIONS

In conclusion, the present study identified robust
implementations of three fractal methods, namely DFA, BC, and
HG. The importance of parameter optimization was shown, and
suggests that the conflicting results in fractal analysis of stride
interval time series may be due in part to the parameters used and
their estimation accuracies. Using a robust implementation with
optimal parameters, the estimation performance was improved
producing acceptable results for shorter time series. In addition,
more effective fractal dimension methods like HG could provide
more accurate estimation of fractal features as compared to Hurst
exponent methods like DFA. While fractal features extracted
from both methods, scaling exponent and fractal dimension, are
related, DFA is recommended when comparing fractal features
between groups (i.e., a discriminative method) whereas HG is
recommended for estimating fractal features when interpreting
fractal properties (i.e., an accurate method) using series lengths
of at least 128 stride intervals (around 2–3 min walk). If
the aim of studies is to perform both mean comparison and
precise interpretation of fractal features, HG is recommended.
The present study showed the applicability of fractal analysis
methods to study gait variability in older adults and clinical
populations who are capable of walking continuously for
at least 2–3min.
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