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Purpose: To evaluate relationships of proteomics data, athlete-reported illness, athlete
training distress (TDS), and coaches’ ratings of distress and performance over the
course of the competitive season.

Methods: Thirty-five NCAA Division II swimmers were recruited to the study (male
n = 19, female n = 16; age 19.1 ± 1.6 years). Athletes provided fingerprick dried blood
spot (DBS) samples, illness symptoms, and TDS every Monday for 19 of 25 weeks in
their season. Coaches monitored performance and rated visual signs of distress. DBS
samples were analyzed for a targeted panel of 12 immune-related proteins using liquid
chromatography/mass spectrometry (LC/MS).

Results: Thirty-two swimmers completed the protocol. The data were grouped in 2–
3 weeks segments to facilitate interpretation and analysis of the data. TDS scores
varied between athletes, and were highest during the early fall conditioning ramp up
period (8.9 ± 1.6 at baseline to a peak of 22.6 ± 2.0). The percent of athletes
reporting illness was high throughout the season (50–78%). Analysis of TDS using
Principle Component Analysis (PCA) revealed that 40.5% of the variance (PC1) could
be attributed to illness prevalence, and TDS scores for the athletes reporting illness
and no illness were different across the season (P < 0.001). The coaches’ ratings of
swim performance and swimmer’s distress, sex, and racing distance (sprinters, middle
distance, long distance) were not correlated with PC1. Linear Discriminant Analysis
(LDA) analysis of the data showed a separation of the baseline weeks from exam weeks
with or without competitions, and with competitions alone (p < 0.001). Seven of the 12
proteins monitored over the course of training were upregulated, and the addition of the
protein data to LDA analysis enhanced the separation between these groups of weeks.

Conclusion: TDS and illness were related in this group of 32 collegiate swimmers
throughout the competitive season, and expression of immune proteins improved the
statistical separation of baseline weeks from the most stressful weeks. TDS data
provided by the swimmers did not match their coaches’ ratings of distress and swim
performance. The importance of the immune system in the reaction to internal and
external stress in athletes should be an area of further research.
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INTRODUCTION

The linkage between intensive exercise training and increased
risk for illness has been an active area of research during
the past several decades. Studies indicate that illness risk may
be elevated when an athlete engages in recurring cycles of
unusually intense exercise training coupled with competitive
events (Nieman, 2000; Nieman and Wentz, 2019). In addition,
periods of overreaching for any athlete, although necessary
for further adaptations in performance, come with significant
physiologic changes that may compromise the immune system.
Swimmers are an interesting cohort of athletes that face many
barriers to performance including balancing training with
outside stressors.

High-level university swimmers for example, participate in
10–15 competitions during the fall and winter seasons when
pathogen exposure is high, train 3–5 h daily, experience heavy
travel schedules that disrupt sleep and eating habits, and undergo
high mental stress from educational and personal commitments
(Knab et al., 2013; Hellard et al., 2015; Collette et al., 2018). As a
result, illness risk can be elevated, interfering with the capacity to
train and race (Gleeson et al., 1995, 2000; Fricker et al., 2005).
A 4-year study of 28 elite swimmers showed that the odds for
upper respiratory tract infection (URTI) increased 1.08 and 1.10
times for every 10% increase in resistance and high-load training,
respectively (Hellard et al., 2015).

In response, several athletic organizations including the
International Olympic Committee (IOC) initiated acute illness
surveillance systems to delineate the extent of the problem and
underlying risk factors (Mountjoy et al., 2010, 2015; Schwellnus
et al., 2016; Soligard et al., 2016, 2017; Drew et al., 2017,
2018; Prien et al., 2017). The IOC has focused on inappropriate
management of both internal (e.g., mental stress responses) and
external loads (e.g., exercise training and competition workloads)
(Schwellnus et al., 2016; Soligard et al., 2017). Load management
is a key strategy, according to the IOC, to reduce illness incidence
and associated downturns in exercise performance, interruptions
in training, missed competitive events, and risk of serious
medical complications. The IOC recommends monitoring for
early signs and symptoms of over-reaching, overtraining, and
illness, and to periodically assess psychological stresses using
available instruments.

Multiple studies have established that a mismatch exists
between the exertion stress perceived by athletes and that
intended by coaches (Brink et al., 2014, 2017). For this and
other reasons, there is growing interest in the application of
practical and efficacious blood and urine measures that can be
used to improve the detection of overreaching and overtraining
in athletes. Unfortunately, reliable biomarkers that are sensitive
to the training load and occur prior to the establishment of
overreaching, training distress, and illness have not yet been
identified (Meeusen et al., 2013). Subjective measures (i.e., survey
data, rate perceived exertion, and Training Distress Scale) are
currently regarded as superior to physiological measures such
as plasma hormones and cytokines, energy homeostasis, and
exercise workload monitoring (Jürimäe et al., 2011; Saw et al.,
2016; Joro et al., 2017).

Current advancements in the field of proteomics may provide
a mechanism to identify target biomarkers for overreaching in
athletes. Proteomics involves the large scale measurement of
the structure and function of proteins in a tissue or organism,
and is useful in the identification of candidate biomarkers
for various disease processes and drug treatments (Rodríguez-
Suárez and Whetton, 2013). Even though proteins are the main
components of the metabolic pathways of cells, proteomics, until
recently, has seldom been used in exercise-based, human studies
(Balfoussia et al., 2014). In a prior study from our research group,
endurance athletes served as their own controls and in random,
counterbalanced order either exercised intensely for 2.5 h, 3 days
in a row, or sat in the lab (Nieman et al., 2018). Fingerprick
samples for dried blood spot samples (DBS) were collected from
study participants before and after laboratory-based exercise or
rest sessions, and then during two recovery days. From this pilot
study, thirteen proteins were linked to functional overreaching
(FOR), and most were associated with the acute phase response
and innate immune system activation.

Thus, the purpose of this study was to use the recently
developed targeted panel of proteins in a group of high-
level swimmers over the course of the entire season to track
physiologic changes that may provide biologic markers of
internal and external stress. In order to create a full pictures of
these changes over the course of the competitive swim season,
various other measures were collected and included in the
statistical model: training workload and performance assessment,
quantified feedback from coaches, and perceived training distress
and illness. We hypothesized that the use of blood sample
proteomic data, in combination with the self-reported training
distress and illness data, would enhance the ability to identify
periods of highest risk of inappropriate load management, and
potential overreaching in swimmers.

MATERIALS AND METHODS

Study Participants
Thirty-five swimmers were initially recruited to the study (Sprint
Specialty n = 14; Middle Distance Specialty n = 17; and Distance

TABLE 1 | Characteristics of the n = 32 study participants (mean ± SE).

Variable Male (n = 19) Female (n = 13)

Age (years) 19.9 ± 0.4 20.0 ± 0.3

Height (m) 1.83 ± 0.02 1.69 ± 0.02

Weight (kg) 75.6 ± 3.0 64.8 ± 2.3

% Body fat 12.7 ± 1.2 22.6 ± 1.2

VO2max (ml.kg−1min−1) 55.9 ± 1.4 48.1 ± 1.9

Second formatting option for Table 1:

Age (years) 19.9 ± 0.4 20.0 ± 0.3

Height (m) 1.83 ± 0.02 1.69 ± 0.02

Weight (kg) 75.6 ± 3.0 64.8 ± 2.3

% Body fat 12.7 ± 1.2 22.6 ± 1.2

Total Lean Muscle (Kg) 33.4 ± 3.4 21.6 ± 2.5

VO2max (ml.kg−1min−1) 55.9 ± 1.4 48.1 ± 1.9
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FIGURE 1 | Training distress scale (TDS) total scores (mean ± SE) and upper respiratory tract infection (URTI) prevalence grouped (2–3 weeks running averages)
across the 25-week season in n = 30 swimmers. TDS and illness significantly increase above baseline, and remained elevated.

Specialty n = 5). Participants voluntarily signed informed
consent forms, and all research procedures were approved by
the Queens University of Charlotte Institutional Review Board
(FILE #5-17-BCOH-363). Participants completed baseline testing
within the first two weeks of recruitment. Demographic and
training histories were acquired with questionnaires. Height,
body mass, and percent body fat were measured (seca Medical
Body Composition Analyzer 514 bioelectrical impedance scale,
Hanover, MD, United States). VO2max was assessed using
the Bruce’s treadmill protocol, with oxygen consumption and
ventilation continuously monitored using the Cosmed Fitmate
metabolic system (Cosmed, Rome, Italy) (Nieman et al., 2006).
Swimmers in this study were competing for an NCAA Division
II school, and both men’s and women’s swim teams won the
national title the year of data collection (which was the 4th
national title consecutively). The average number of “pool” hours
ranged from 15–18 per week (depending mainly on the specialty
sub-group of the swimmers, with distance swimmers clocking
more pool hours). The number of weight room hours was not
quantified in this study.

Research Design
Athletes provided blood samples, illness symptoms, and ratings
of training distress every Monday morning for 19 weeks out of
the 25-week season. On Mondays at approximately 5:45 am, the
athletes reported to the training facility in their normal state (no
restrictions on food or water or rest) and completed the Training
Distress Scale (TDS) and Wisconsin Upper Respiratory Symptom
Survey (WURSS) questionnaires (Grove et al., 2014; Barrett

et al., 2005). Fingerstick blood samples were then collected using
the Volumetric Absorptive Microsampling (VAMS) technology
(Neoteryx, Torrance, CA, United States). Coaches provided
weekly feedback on each athlete regarding swim performance,
signs of training distress, and training intensity (10-point
Likert scale, with 10 being the most intense). Coaches used
these qualifiers when recording swimmer performance: 1-Below
expectations, 2-fair, 3-average, 4-better than expected, and 5-far
exceeded expectations. For training distress, the coaches used
these qualifiers: 1-no signs, 2-slightly distressed, 3- distressed, 4-
recognizable fatigue and drop in performance, and 5- likely FOR
with inability to train at expected levels. Coaches were sent the list
of swimmers participating in the study with the above questions
in a spreadsheet that they filled out based on the previous week
of observations. The same coach assessed the same swimmers to
reduce inter-rater variability.

Training Distress Scale and Illness
Monitoring
The TDS (Grove et al., 2014) includes 19 questions, and the
athletes reported symptoms from the previous week using a 0–
4 scale. The total TDS score was calculated using the sum of
responses from the 19 questions. The first question of the WURSS
(Barrett et al., 2005) was used to monitor illness severity from the
previous week (0 = not sick, 1 = very mild URTI to 7 = severe).

Proteomics Profiling
Dried blood spot (DBS) specimens (approximately 1–2 drops of
blood, or 40–60 µL of blood/sample) using VAMS (Neoteryx,
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FIGURE 2 | (A) Variances of the Principal Components (PC’s) from the PCA analysis of the TDS questionnaire data indicated that ∼40.5% of variance was explained
by PC1. (B) PC1 was largely attributed to illness prevalence (URTI) (0 = no illness; >0 = illness).
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FIGURE 3 | PC1 for TDS was largely attributed to illness prevalence (URTI). The boxplot shows the differences between TDS scores based on URTI prevalence for
PC1 (p < 0.001)1; (0 = no illness; >0 = illness).

Torrance, CA, United States) were dried overnight and stored
with desiccant. Proteins from the DBS samples were solubilized
and reduced in 80 µl 8 M Urea, 50 mM AmBiC and 0.1 mM DTT
for 30 min at 37◦C. 6 µl of the protein content (∼30 µg) was
transferred to a new 96 wells plate and 1pmol heavy standards
was added together with 0.6 µg of trypsin (1:50) in a total
volume of 45 µl of 50 mM AmBiC. Tryptic digestion was done
O/N while shaking at 37◦C. The next day 5 µl of 10% FA was
added to quench the tryptic digestion. Samples were cleaned
up using C18 reverse phase columns in 96 well plate format
(Waters Sep-Pak R©, C18, 40 mg) and dried down. All samples
were randomized and subsequently measured consecutively by
mass spectrometry (MS). MS analyses were performed on a Triple
Quad mass spectrometer (Agilent 6460 Triple Quad) coupled to
a normal flow LC autosampler (Agilent 1290 Infinity). 20 µg of
peptide of each sample was injected and peptides were separated
with reverse phase normal flow LC chromatography. Samples
were loaded on a Liquid Chromatography, 2.1 cm × 25 cm
C18 2.7 µm 120 Å column (651750-902, AdvanceBio Peptide
Mapping, Agilent) with a flow rate of 0.2 mL/min (buffer A,
HPLC H2O, 0.1% FA; buffer B, 100% ACN, 0.1% FA; 40-min
gradient; 0–3 min: 5% buffer B, 3–18 min: 5 to >25% buffer B,
18–26 min: 25 to >29.5% buffer B, 26–30 min: 29.5 to >40%
buffer B, 30–35 min: 95% buffer B, 35–40 min, 5% buffer B).
Peptides were transferred to the gaseous phase with positive ion
electrospray ionization at 5.0 kV. Gas flow was 12 l min−1, cell

accelerator voltage was set to 4 and the cycle time was set to
1,500 ms to measure 10 data points per peptide peak. Collision
energy and fragmentor were peptide specific and optimized prior
to measurements. Spectra were analyzed for quality using Skyline
(MacCoss Lab Software1) with manual validation.

Method Development and Limit of Quantitation
In order to reliably identify the targeted peptides, heavy labeled
synthetic peptides were ordered for every targeted peptide
(JPT Peptide Technologies, Berlin, Germany). Using Skyline
the retention time of each peptide was measured and the
fragmentation of each peptide was optimized by changing the
collision energy for every peptide. The MS method was optimized
using Masshunter software (Agilent Technologies, Santa Clara,
CA, United States) with the requirement of acquiring at least
10 data points across all peptide peaks for accurate quantitation.
Isolation windows were set to 1 min. As a last step, for every
peptide a Limit of Quantitation (LOQ) curve was made to
ascertain that the quantity of peptides measured was within
the linear range of the curve. Heavy standards were spiked
in the DBS matrix in 8 different concentrations and every
concentration was injected three times as technical replicates.
When the coefficient of variation (CV) was greater than 0.2, the
data at these intensities for a particular peptide were considered

1https://skyline.ms/
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FIGURE 4 | Generalized Linear Mixed Models (GLMM) representation of 32 GLMM models (y-axis) with the aim to see which of these 5 variables (x-axis) could best
explain PC1 variance of the TDS Principal Component Analysis (PCA). Blue and white colors represent no significant relationship with PC1 when a variable was or
was not taken into account in the respective model (white and blue, respectively). Red represents when there was a relationship between the variable and PC1 (with
darker red representing a stronger association). This figure clearly shows that PC1 was largely attributed to URTI and only to some extent to the Distress score and
Group (pink color). Values are in –log(p-value). This GLMM analysis shows that (a) there was a strong correlation between PC1 and URTI (0 = no illness, >0 = illness);
(b) there was no significant correlations between PC1 and the coaches’ ratings of distress (Distr_score) or swim performance (Perf_score) in the athletes, the
swimmer training group (Group = sprinters, middle-, and long-distance), or sex (male and female).

too variable to be used for quantitation purposes and were not
used for further analysis.

Library Creation
For high throughput data analysis, a library was created based
on the fractionation information of heavy labeled standards (JPT
peptide technologies) obtained during method development. The
library included the information both for native “light” peptides
and their “heavy” labeled synthetic counterparts. The format of
the library was applicable to the OpenSWATH workflow (Röst
et al., 2014) used for Data Independent Acquisition (DIA).

Data Processing
The MRM (Multiple Reaction Monitoring) files were processed
using OpenSWATH software and Skyline. Skyline was used for
method development and peptide verification. OpenSWATH was
used for high through-put data MRM signal processing in order
to identify and quantify peptides. After the first data processing
by OpenSWATH, the data was treated as follows: first, peaks were
smoothened followed by intensity correction of the fragments
according to the ratio of the fragments as was present in the
library (as defined during method optimization). Peptides were

then filtered based on their LOQ results; only peptides that had
an intensity in the linear range of the LOQ curve were kept for
further analysis. Data was then normalized based on the median
intensity of the signal of the heavy peptides. Peptides were finally
merged into proteins based on their relative median intensity.

Statistical Analysis
Principal Component Analysis (PCA) was used from the
FactoMiner R library to analyze TDS scores to find the subspace
corresponding to the maximum-variance directions in the
original space (Lê et al., 2008). In order to obtain the meaningful
factors which explained the higher variation, 32 linear mixed
models were created by combining different variables, with
consideration for a random effect intercept by the athlete. The
variables included in this analysis were the coaches rating of
distress (Coach_distr) and performance (Coach_perf) for the
athletes, swimmer group (based on swim race distance), sex,
URTI (using binary data, with “0” indicating no illness, and
“>0” indicating illness during the defined time period), and the
first principal component as a response variable. P-values were
obtained through the ANOVA procedure.
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FIGURE 5 | Generalized Linear Mixed Models results of the 12 targeted chronic proteins in the study (y-axis) across the weeks (x-axis). White rectangles mean that
there was no significant difference in expression for the specific protein for that week compared to the baseline weeks. The intensity of blue color of the rectangles
indicates the significance of the difference in expression of the proteins between those weeks and the baseline values. Values are in –log(p-value).

A Generalized Linear Mixed Models (GLMM) approach was
used to model the response of the 12 targeted proteins across
the weeks compared to the baseline week. In the models, the
athlete was used as the random effect and sex as the fixed
effect. Pairwise comparisons between each time-by-condition
level were calculated using the glht function from multcomp
R package (Hothorn et al., 2008). The Tukey correction for
multiple comparisons was applied to adjust the significance
level in this study.

The (LDA analysis was used to evaluate the separation
between groups based on different time periods: baseline,
and when athletes were taking exams, competing in meets,
or engaged in both exams and competitive meets. In the
beginning, LDA was focused only on meta-data (TDS, and
URTI = 0/>0) and then secondly, the analysis focused
on the additional effect of the protein data. The LDA
analysis included leave-by-one CV and calculated p-values
from the Kruskal–Wallis non-parametric rank sum test
(Kruskal and Wallis, 1952).

The LASSO (Least Absolute Shrinkage and Selection
Operation) logistic regression model (Tibshirani, 1996)
was used to evaluate differences between time segments
(baseline versus exams, meets, and meets and exams, and
also meets versus meets and exams). LASSO is a powerful
regularization technique and incorporates an L1- penalization

term into the loss function forcing some coefficients to be
zero. Differences between scores from LASSO output were
compared using the Kruskal–Wallis non-parametric rank sum
test (Kruskal and Wallis, 1952).

RESULTS

Of the thirty-five swimmers recruited to the study, 32 swimmers
completed the protocol. See Table 1 for subject characteristics.

Figure 1 shows the TDS scores (mean ± SE) and URTI
prevalence across the 25-week season in the swimmers. The data
were grouped in 2–3 weeks segments to facilitate interpretation
and analysis of the data with respect to training blocks and
academic periods. TDS scores varied between athletes, and
were highest during the early fall conditioning ramp up
period (8.9 ± 1.6 at baseline to a peak of 22.6 ± 2.0). The
percent of athletes reporting illness was high throughout the
season (50.0–78.1%).

Analysis of TDS data using PCA revealed that 40.8% of the
variance was explained by PC1 (Figure 2A). PC1 was largely
attributed to URTI prevalence (Figure 2B). Boxplots in Figure 3
show the differences in TDS scores based on URTI prevalence
for PC1. The centered PC1 TDS scores for the athletes reporting
illness and no illness were different across the season (P < 0.001).
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FIGURE 6 | (A) Linear Discriminant Analysis (LDA) analysis taking into account TDS, illness, and protein data. Red = baseline weeks; green = exam weeks;
blue = swim meet weeks; purple = exam and swim meet weeks. This analysis without the protein expression data supported a separation of baseline weeks from all
other weeks (p < 0.001, Kruskal–Wallis). (B) The same LDA analysis after the inclusion of the 12 selected proteins. This analysis showed an improved, distinct
separation of the baseline weeks from all other time periods (p < 0.001, Kruskal–Wallis).
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FIGURE 7 | Logistic LASSO regression including the TDS total score, coaches’ ratings of swimmer’s distress and performance, and 12 selected blood proteins
showed a significant separation when comparing exams and meets with exams time segments (p-value < 0.001). The regression analysis between these time
periods was not significant when the protein data were removed.

TABLE 2 | The 12 targeted proteins measured in this study based on the data from Nieman et al. (2018).

UniProt protein Protein name Function

P35542 Serum amyloid A-4 protein Major acute phase reactant; cell chemotaxis

P05164 Myeloperoxidase Granulocyte microbicidal activity; production of hypochlorous acid

P07360 Complement component C8 gamma chain Part of membrane attack complex; forms pores in target cells

P0C0L5 Complement C4B Non-enzymatic component C3, C5 convertases; complement activation; inflammation

P05155 Plasma protease C1 inhibitor Crucial role in complement activation.

Q14624 Inter-alpha-trypsin inhibitor heavy chain H4 Acute-phase protein involved in trauma inflammatory response

P19652 Alpha-1-acid glycoprotein 2 Transport protein; modulates immune; acute-phase; inflammation

P10643 Complement component C7 Part of membrane attack complex; forms pores in target cells

P02765 Alpha-2-HS-glycoprotein Promotes endocytosis; acute-phase response; phagocytosis; bone mineral

P01834 Ig kappa chain C region Antigen and Ig receptor binding; complement activation; innate; phagocytosis

P08185 Corticosteroid-binding globulin Major transport protein for glucocorticoids and progestins

P35754 Glutaredoxin-1 Glutathione activity; cell redox homeostasis

The GLMM representation of 32 analysis models is shown
in Figure 4. The goal of this analysis was to explain
PC1 variance of the TDS PCA. This analysis showed that
there was a strong correlation between URTI and PC1
(red colors). The coaches’ ratings of swim performance and
swimmer’s distress, swimmer’s sex, and racing distance were not
correlated with PC1.

Generalized Linear Mixed Models analysis of protein
expression across the season in the swimmers is shown
in Figure 5. The data support protein expression during

selected weeks. To improve interpretation of these data, LDA
analysis was conducted with TDS and URTI data included and
sorted into periods when the swimmers were taking exams
with normal training (exams), engaging in competitive meets
(meets), and when the swimmers were taking both exams
and competing in meets (meet-exam). This LDA analysis
was conducted both with and without the proteomics data
(Figures 6A,B). This analysis showed a separation of the
baseline weeks from weeks with exams, meets, or both exams
and meets (p < 0.001, Kruskal–Wallis). Adding the panel of
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protein expression data enhanced the separation between these
groups of weeks (p < 0.001, Kruskal–Wallis). Figure 7 depicts
results from the logistic LASSO regression that included the
TDS total score, coaches’ ratings of swimmer’s distress and
performance, and 12 selected blood proteins. This analysis
showed a separation of weeks when exams were taken from
weeks when both competitive swim meets and exams were
engaged in (p-value < 0.001). The regression analysis between
these time periods was not significant when the protein
data were removed.

DISCUSSION

This study tracked changes in a targeted group of proteins,
recently identified as potential biomarkers of overreaching in
athletes (Nieman et al., 2018), in high level swimmers over
the course of the entire season. Indeed, combining proteomic
data with self-reported training distress and illness, allowed for
identification of periods of high physiologic stress and potential
overreaching in swimmers.

The swimmers in this study experienced high levels of distress
and URTI (prevalence of 50.0–78.1% during each 2 to 3-week
segment) throughout the 25-week season, confirming reports
from other investigators (Hellard et al., 2015; Collette et al.,
2018). Hellard et al. (2015) followed 28 elite swimmers for
4 years and showed that the odds of URTI were 50–70% higher
during intensive training periods. Studies and comprehensive
reviews generally support the relationship between training loads
and illness, especially during periods of intensification and
competition (Fricker et al., 2005; Gleeson et al., 2013; Aubry et al.,
2014; Drew and Finch, 2016; Jones et al., 2017).

The physiologic and psychologic response to both internal
and external stress is highly individualized in swimmers (Collette
et al., 2018). This variance underscores the importance of
adding physiologic biomarkers to aid in the identification of
overreaching and overtraining. In a previous study conducted by
our research group, a targeted panel of proteins was identified
that could be utilized and validated in future investigations
of overreaching and overtraining (Nieman et al., 2018). These
proteins can be analyzed in fingerprick DBS samples, improving
the potential practical application of this technology to athletic
settings compared to full blood draws. The targeted protein
panel met the requirement that changes in response to acute
exercise should be distinguishable from chronic changes, and
be relatively easy to collect and measure (Meeusen et al.,
2013). Our analysis found that most of these targeted proteins
were involved in the immune defense response including the
acute phase response, complement activation, and humoral
responses mediated by circulating immunoglobulins (Nieman
et al., 2018). The acute phase response is a systemic reaction
to prolonged exercise stress, and involves the production of
many proteins including serum amyloid A (SAA), complement
and transport proteins, antiproteases, and those involved with
the coagulation and fibrinolytic system (Gabay and Kushner,
1999; Balfoussia et al., 2014). Liver production of SAA rises
strongly during the acute phase response, and is involved

in signaling pathways related to phagocyte migration and
inflammation (Ye and Sun, 2015). Although more human studies
are needed to improve practical applications in the athletic
setting, SAA, one of the proteins in the targeted protein panel
(Table 2), has been used in studies of race horses and dogs
as an indicator of exercise-induced muscle damage and poor
performance (Cywinska et al., 2010, 2013; Casella et al., 2013;
Valle et al., 2015).

The data of the current study supports the use of this targeted
protein panel in combination with ratings of training distress
when monitoring athletes during a competitive training season.
The chief limitation of the current study was the lack of a
suitable control group, and future research will help define DBS
protein levels that when combined with TDS scores predict
overtraining. TDS, illness, and proteomics data can be used to
support decisions by the coaches or performance monitoring
team regarding alleviation of both internal and external loads
for the athlete. A unique finding in this study was the apparent
importance of the internal stressors to the University level
athlete, such as academic exam periods, psychological pressure to
perform athletically, and other personal stressors. These internal
stressors contribute to the physiologic response in the body to
external training loads, and future research should investigate
strategies to mitigate the negative response of both internal and
external stressors of athletes.

CONCLUSION

This study showed that training distress was strongly related to
URTI prevalence in collegiate swimmers, and that proteomics
data added strength to this relationship, especially during high
stress periods when the athletes were involved with exams and/or
competitive swim meets. Coaches feedback regarding training
distress and level of swim performance did not correlate well
with the swimmer’s TDS scores, confirming the findings of
other studies (Brink et al., 2014, 2017). One potential cause
for the disconnect between athlete and coach is that periods of
physiologic stress are related at least in part to factors outside
the training program. According to the NCAA, 73% of college
athletes believe their coach cares about their overall well-being
(Paskus, 2016). Despite this, 30% of athletes report they have
been overwhelmed during the past month, and desire more
focus by the coaches on their education, sleep, and nutrition.
Division II NCAA athletes report spending 32.5 h/week on
athletics, and up to 38.5 h/week on academics (Paskus, 2016).
Coaches often do not account for all of the stresses experience
by their athletes, including academic, social, financial, and living
challenges. Further research using proteomics data as an objective
measure will refine strategies to reduce training stress and illness
prevalence among elite athletes, and improve coach’s perceptions
of training-related distress.
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