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Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a
process called erythrophagocytosis (EP). This critical mechanism preserves systemic
heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling.
Although extensive work has demonstrated the various effects on macrophage
metabolic reprogramming by stimulation with proinflammatory cytokines, little is known
about the impact of EP on the macrophage metabolome and proteome. Thus, we
performed mass spectrometry-based metabolomics and proteomics analyses of mouse
bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs.
Further, metabolomics was performed on BMDMs incubated with free IgG to ensure
that changes to macrophage metabolism were due to opsonized RBCs and not to
free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs
in the presence and absence of IgG-coated RBCs to assess the flux of glucose
through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP
significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS,
and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and
oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following
EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis
and enhanced PPP activation. Notably, we show that it is fueled by glucose derived
from the macrophages themselves or from the extracellular media prior to EP, but
not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative
burst, leading to the generation of reactive oxygen species necessary to promote
digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by
redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-β, respectively.
Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites
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(α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the
dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid
(ALA) synthase and arginase activity as indicated by significant accumulations of ALA
and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic
reprogramming of BMDMs does not occur following exposure to IgG alone. In
conclusion, we show that EP reprograms macrophage metabolism and modifies
macrophage polarization.

Keywords: macrophage metabolism, omics technologies, blood, OXPHOS, mitochondrial dysregulation, pentose
phosphate pathway, lipid accumulation

INTRODUCTION

Erythrocyte (red blood cell, RBC) function extends beyond the
monumental task of maintaining systemic acid/base equilibria via
oxygen, carbon dioxide, and the transport of nutrients to tissues.
Other vital roles include erythrocrine function [i.e., release of
metabolically active molecules such as adenosine triphosphate
(ATP) and nitric oxide (NO)], redox regulation, systemic
hemodynamics, immunomodulation, and iron metabolism
(Alayash et al., 2001; Kuhn et al., 2017). In adults, RBCs account
for ∼83% of the total cells in the body (25 out of ∼30 trillion)
and have an average lifespan of 120 days; thus, ∼0.2 trillion
RBCs are cleared from the bloodstream and generated de novo
on a daily basis (Nemkov et al., 2018). Importantly, RBC damage
and changes to deformability are directly linked to several severe
pathologies (Caspary et al., 1967; Yoshida et al., 2019) including
endothelial dysfunction (Kuhn et al., 2017), anemia (Alsultan
et al., 2010; Belanger et al., 2015; Belcher et al., 2017), sepsis
(Larsen et al., 2010), diabetic nephropathy (Brown et al., 2005),
and thrombosis (Barr et al., 2013; Weisel and Litvinov, 2019).

Recycling of iron derived from RBCs is essential for sustaining
erythropoiesis. As much as 70% of the total iron in the human
body, or 3–5 g, is contained within RBCs, specifically in the heme
protoporphyrin rings of hemoglobin (a single RBC contains ∼1.0
billion heme moieties per ∼250 million hemoglobin molecules;
Gkouvatsos et al., 2012; Korolnek and Hamza, 2015; Yoshida
et al., 2019). Notably, iron is a potent catalyst for generating
reactive oxygen species (ROS) via the Fenton reaction, which can
quickly lead to systemic toxicity due to the high reactivity of iron
when free in the circulation (e.g., upon overload of transferrin,
the plasma iron chaperone) (Papanikolaou and Pantopoulos,
2005; Kosman, 2010; Hod et al., 2010; Korolnek and Hamza,
2015; Rapido et al., 2017; Youssef and Spitalnik, 2017a). For this
reason, highly specialized mechanisms are required for regulating
RBC catabolism and iron recycling. To this end, macrophages
are integral to the tight regulatory mechanism of RBC clearance
(de Back et al., 2014; Klei et al., 2017) Reticuloendothelial
macrophages (REMs), primarily in the spleen and liver, opsonize
senescent RBCs in a process called erythrophagocytosis (EP)
(Gkouvatsos et al., 2012; de Back et al., 2014).

With ∼2 million RBCs being recycled every second via
this mechanism, EP is the largest source of iron flux in the
body (Korolnek and Hamza, 2015). Excessive EP by individual
macrophages can lead to ferroptosis both in vitro and in vivo

(Dixon et al., 2012; Youssef and Spitalnik, 2017a). This form
of iron-induced, non-apoptotic cell death is characterized by
an overwhelming, iron-dependent accumulation of lethal ROS
derived from lipid peroxidation (Dixon et al., 2012; Cao and
Dixon, 2016). During this process, free radicals can strip electrons
from unsaturated fatty acid components of membrane lipids,
initiating a self-propagating chain reaction and massive oxidative
destruction of lipids (Yang and Stockwell, 2016; Ramana et al.,
2017). A bolus of intracellular iron and heme due to EP can also
upregulate transcription of aminolevulinic acid (ALA) synthase,
using glycine and succinyl-CoA from the Krebs cycle to produce
ALA and initiate porphyrin (the heme precursor) synthesis.
Other heme-responsive genes include heme oxygenase 1 (HO-1),
a heme-catabolizing, and anti-inflammatory enzyme associated
with maintaining the integrity of the REM lineage (Kovtunovych
et al., 2010; Naito et al., 2014; Soares and Hamza, 2016), and
SPI-C, a E26 transformation-specific (Ets) transcription factor
required for the development of splenic and bone marrow
(F4/80hi) macrophages (Kohyama et al., 2009; Haldar et al.,
2014). In the clinic, hypoferremia (iron-deficiency) and heme-
catabolizing enzyme deficiencies (e.g., HO-1 deficiency) can
cause progressive depletion of erythrophagocytic macrophage
populations, profoundly deregulating heme-iron metabolism and
homeostasis (Guida et al., 2015; Soares and Hamza, 2016).

Two major macrophage subsets (M1/M2) were identified,
based on their polarization status, and defined by their different
functional programs, migration mode, and cytokine secretion
profiles (Labonte et al., 2014; Curi et al., 2017; Mould et al.,
2017; Remmerie and Scott, 2018). Classically activated (M1)
macrophages are described as proinflammatory macrophages
that are more migratory in nature and release inflammatory
cytokines, such as interleukin-6 (IL-6), interferon-γ (IFN-γ), and
tumor necrosis factor-α (TNF-α), to aid in the amplification of
immune responses and directed microenvironmental remodeling
(Martinez and Gordon, 2014; Meiser et al., 2016; Gaber
et al., 2017; Nonnenmacher and Hiller, 2018). By contrast,
alternatively activated (M2) macrophages are typically less
migratory owning to their extensive roles in repairing tissue-
damage, and have a proresolution profile characterized by
the secretion of cytokines, such as transforming growth
factor-β (TGF-β), IL-4, IL-10, and IL-13 (Zhang and An,
2007; Nahrendorf and Swirski, 2013; Yang and Ming, 2014).
Although the M1/M2 polarization nomenclature is helpful
in binning macrophage subsets, macrophage populations are
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actually quite heterogenous, polarization is both transient
and plastic, intermediate forms have been seen, and other
subtypes have been proposed (e.g., M4, Mox, Mhem) (Sica
and Mantovani, 2012; Nahrendorf and Swirski, 2013; Labonte
et al., 2014; Youssef and Spitalnik, 2017b; Viola et al., 2019).
The focus of the studies described herein will be on the
metabolic differences between these subsets and not their
cytokine profiles.

M1 macrophages exhibit a metabolic shift similar to the
cancer-associated Warburg effect, in which the Krebs cycle
has been altered and there are increases in lactate production
and an amplified flux through the pentose phosphate pathway
(PPP) (Kelly and O’Neill, 2015; Viola et al., 2019). Importantly,
amplified PPP flux fuels the production of reduced nicotinamide
adenine dinucleotide phosphate (NADPH), thereby promoting
ROS generation via NADPH oxidase (Kelly and O’Neill,
2015). Increases in mitochondrial ROS can negatively affect
Complex II activity in the electron transport chain, prompting
accumulation of succinate (Zhao et al., 2019). Succinate can then
stabilize hypoxia-inducible factor 1-alpha (HIF-1α) via inhibited
hydroxylation, inducing expression of glycolytic enzymes and
proinflammatory IL-1β (Tannahill et al., 2013). M1 macrophages
also have increased phenylalanine production, which promotes
the expression and activity of GTP cyclohydrolase I (Li et al.,
2007). This allows for directed modulation of tetrahydrobiopterin
synthesis and, by extension, nitric oxide (NO) production (Li
et al., 2007). In contrast, M2 macrophages are not as dependent
on glycolysis for producing energy-fueling metabolites like ATP
and, instead, rely more heavily on mitochondrial metabolism
(Kelly and O’Neill, 2015; Noe and Mitchell, 2019; Viola et al.,
2019). Their polarization state is partly mediated by increases
in intracellular itaconate (an anti-inflammatory metabolite that
activates Nrf2 via KEAP1 alkylation) (Mills et al., 2018; O’Neill
and Artyomov, 2019) and arginine metabolism (Noe and
Mitchell, 2019). Arginine is preferentially metabolized to produce
ornithine and urea instead of NO via arginase 1 (Arg-1) to
promote polyamine generation and HIF1α destabilization (Kelly
and O’Neill, 2015; Noe and Mitchell, 2019).

Fundamental to macrophage activity, metabolic
reprogramming modulates key immune functions such as
phagocytosis, inflammatory cytokine signaling, and extracellular
matrix remodeling (Curi et al., 2017; Van den Bossche et al.,
2017; Nonnenmacher and Hiller, 2018; D’Alessandro et al.,
2018). Despite extensive evidence highlighting the central
role of metabolic reprogramming following stimulation with
proinflammatory factors (e.g., LPS, INF-γ) (Martinez and
Gordon, 2014; Kelly and O’Neill, 2015), there is limited
information that directly addresses the impact of phagocytosis
itself on macrophage metabolism. To the best of our knowledge,
no study has yet focused on these aspects within the framework
of EP. Therefore, we addressed this deficit by conducing
metabolomic analyses on bone marrow derived macrophages
(BMDMs) that had phagocytosed IgG-opsonized RBCs. Given
the metabolic derangement that can ensue due to heme-iron
dysregulation, we hypothesize BMDMs that have engulfed
iron-loaded RBCs will be burdened by increased oxidant stress
and accumulate eicosanoids and oxylipins.

MATERIALS AND METHODS

Mice
Wild-type C57BL/6 mice (6–12 weeks of age) were purchased
from Jackson Laboratories. All procedures were approved by
the Institutional Animal Care and Use Committee at Columbia
University (New York City, NY, United States). Each experiment
was conducted at least twice in biological triplicates (n = 3 per
group, each independent experiment).

RBC Collection
Mice were bled aseptically via cardiac puncture and pooled whole
blood was placed in CPDA-1 solution obtained from human
primary collection packs (Baxter International, Deerfield, IL,
United States) to a final concentration of 15% CPDA-1. Whole
blood was log4 leukofiltered using Neonatal High-efficiency
Leukocyte Reduction Filters (Purecell Neo; Pall Corporation,
Port Washington, NY, United States). RBCs from leukofiltered
blood were packed by centrifugation (10 min, 4◦C, 1,000 × g)
and a portion of the plasma-containing CPDA-1 supernatant was
removed to yield a hematocrit of ∼75%. Packed RBCs were used
“fresh” (i.e., stored < 24 h at 4◦C) to interrogate EP.

In vitro EP Assay
Mononuclear cells obtained from mouse femurs were cultured
for 7–11 days in Iscove’s Modified Dulbecco’s Medium
supplemented with 10% FBS, 2 mM L-glutamine, 50 units/ml
penicillin, 50 µg/mL streptomycin, 20 µg/mL gentamycin
(Thermo Fisher Scientific, Waltham, MA, United States) and
20 ng/mL human macrophage colony-stimulating factor (M-
CSF) (PeproTech, Rocky Hill, NJ, United States) to generate
primary BMDMs. Opsonized RBCs were generated by incubating
RBCs with rabbit, anti-mouse RBC IgG at 0.5 mg/mL (Rockland
Immunochemicals, Limerick, PA, United States). Adherent
BMDMs were plated 24 h prior to the experiment and incubated
with PBS or opsonized RBCs for 2 h at 37◦C. Following
incubation, aliquots of the extracellular media were taken for
metabolomic analysis of supernatants and non-ingested RBCs
were lysed. Adherent BMDMs were washed with PBS, collected
by scraping, and pelleted for metabolic analysis of cell pellets.

In vitro IgG Assay
Mononuclear cells obtained from bone marrow of C57BL/6J
mice were seeded at 1 × 106 cell/mL in a 48-well plate and
differentiated for 7 days in RPMI 1,640 medium supplemented
with 10% FCS, 1% penicillin/streptomycin (P/S) and 10 ng/mL
M-CSF (R&D system; Minneapolis, MN, United States). Cells
were then washed with (1x) PBS, and complete media in
the absence of M-CSF was added to the cultures. Vehicle
or mouse IgG (0.5 mg/mL) (R&D System, Minneapolis, MN,
United States) were added for 1 h at 37◦C. Following incubation,
cells were washed and stored at –80◦C for metabolomics. Thawed
cells were lysed by adding lysis buffer directly to wells and
removed by scraping.
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Metabolic Labeling Experiments
Uniformly labeled 13C6-glucose (Cambridge Isotope
Laboratories, Tewksbury, MA, United States) was incubated
with RBCs (161 mM for 50% final ratio of labeled glucose) for
4 h at 37◦C, before being gently washed with PBS to remove
extracellular 13C6-glucose. For labeling BMDMs, 13C6-glucose
was supplemented in the media used for culturing BMDMs
(25 mM for 50% final ratio of labeled glucose) 1 h prior to,
or during, EP. Samples were collected at 1, 3, and 12 h, and
metabolites from cells extracted (in the absence of heavy labeled
internal standards) for metabolomic analysis.

UHPLC-MS Metabolomics
Metabolites were extracted from cell pellets (∼1 × 106 cells) or
supernatants at a dilution of 1:10 or 1:25, respectively, in ice-cold
lysis buffer (5:3:2 MeOH:ACN:H2O) in the presence of a mix of
heavy labeled internal standards. These standards included 15
uniformly labeled 13C15N-amino acids at a final concentration
of 2.5 µM, 13C1-lactate (40 µM), 13C5-2-α-ketoglutarate,13C4-
succinate, 13C1,4-fumarate, 2H4-prostaglandin E2, and
2H8-arachidonic acid at a final concentration of 1 µM
(Cambridge Isotopes Laboratories, Inc., Tewksbury, MA,
United States). Samples were vortexed, insoluble material
pelleted, and supernatants collected. Extracts (20 µL) were
injected into a Thermo Vanquish UHPLC system coupled to a
Thermo Q Exactive mass spectrometer (Vanquish – Q Exactive;
Thermo Fisher Scientific, San Jose, CA, United States and
Bremen, Germany) with electrospray ionization for metabolomic
analysis, as described (Catala et al., 2018). Technical mixes
were generated by pooling aliquots of extracts and ran every
3 analytical runs to control for technical variability as judged
by coefficients of variation (CVs). Metabolite assignments,
isotopologue distributions, and correction for expected
natural abundancies of 13C were performed using MAVEN
(Princeton, NJ, United States) (Melamud et al., 2010). Discovery
mode analysis was performed with standard workflows using
Compound Discoverer (Thermo Fisher Scientific, Waltham,
MA, United States).

UHPLC-MS Lipidomics
Hydrophobic metabolites were extracted from cell pellets
(∼1 × 106 cells) in ice-cold methanol at a 1:10 dilution.
Samples were quickly vortexed at room temperature followed
by incubation at -20◦C for 30 min and centrifugation (18,213
× g, 10 min, 4◦C). Supernatants (40 µL) were diluted 1:1
using 10 mM ammonium acetate and protein pellets stored at
−80◦C. Extracts (20 µL) were injected into our UHPLC-MS
system with electrospray ionization. Metabolites were separated
on a 150 × 2.1 mm, 1.8 µm Acquity HSS T3 column (Waters,
Milford, MA, United States) at 45◦C using a 17 min gradient
method at 300 µL/min and mobile phases (A: 75:25 H2O:ACN,
5 mM NH4OAc; B: 50:45:5 IPA:ACN:H2O, 5 mM NH4OAc)
for negative ion mode. Solvent gradient: 0–1.0 min 25% B; 1.0–
2.0 min 50% B; 2.0–8.0 min 90% B; 8.0–10.0 min 99% B; 10.0–
14.0 min hold at 99% B; 14.0–14.1 min 25% B, 400 µL/min;
14.1–16.9 min hold at 25% B, 400 µL/min; 16.9–17.0 min hold

at 25% B. Technical mixes were generated, ran and technical
variability assessed, as described above.

Nano-UHPLC-Tandem MS Proteomics
Proteins extracted from BMDM cell pellets were separated by
SDS-PAGE, and bands ranging from ∼20 to 80 kDa were
excised, reduced, alkylated, and trypsin digested. Extracted
peptides were analyzed by nanoLCMS-MS (Thermo EASY-nLC
1,000 – Q Exactive HF; Thermo Fisher Scientific; San Jose, CA,
United States and Bremen, Germany) and separated on a house-
made 15 cm C18 analytical column (100 mm inner diameter)
packed with Cortecs C18 resin (2.7 mm; Phenomenex, Torrance,
CA, United States), using a 80 min linear gradient of 2–32%
ACN at 350 nL/min.

Statistical Analysis
Statistical (i.e., t-test, ANOVA, linear regression and Spearman
correlations) and multivariate [i.e., principal component analysis
(PCA), partial least squares-discriminant analysis (PLS-DA), and
hierarchical clustering analysis (HCA)] analyses, heat maps, and
graphs were performed and prepared using GraphPad Prism 5.0
(GraphPad Software, Inc., La Jolla, CA, United States), Morpheus
(Broad Institute; Boston, MA, United States), and MetaboAnalyst
4.0 (Chong et al., 2018).

RESULTS

EP Induces Extensive Metabolic
Reprogramming of BMDMs
To elucidate the metabolic phenotype of macrophages following
EP, BMDMs were isolated from C57BL/6 mice and incubated
with IgG-opsonized RBCs for 2 h at 37◦C. Extracellular
media (supernatants) and cell pellets were collected for
metabolomics (Figure 1A and analyzed using untargeted
(Figure 1D) and targeted (Figure 1E) mass spectrometry
methods. In Supplementary Figures S1A,B, we provide
an overview of the untargeted metabolomics workflow and
volcano plot from the data generated through this approach;
in addition, we report absolute quantification in cells and
supernatants are provided in Supplementary Figures S1C,D
for of amino acids, and Supplementary Figures S1E,F
glycolytic metabolites and oxylipins. An extensive report
of the metabolomics data is provided in [Supplementary
Table S1 and Supplementary Figures S1A,B, Untargeted,
Targeted (5 MM), and Global (5 MM) Tabs]. Similarly, cell pellet
metabolomics analyses were performed on BMDMs incubated
with IgG to ensure that changes to BMDM metabolome were
due to ingestion of IgG-opsonized RBCs and not to IgG
binding alone (Supplementary Figure S2 and extensively
reported in Supplementary Table S2). Increased levels of
tryptophan, flavin mononucleotide (FMN, p = 0.0002), maltose
(p = 0.0002), and 2-methyleneglutarate (2-MG, p = 0.0021)
were noted in BMDMs that were incubated with IgG and
are indicative of reprogramming of riboflavin, sugar, and
C5-dibasic acid metabolism (data not shown). Although this
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FIGURE 1 | In vitro assessment of BMDM EP. Mouse RBCs were incubated with rabbit, anti-mouse RBC IgG. BMDMs were then incubated with PBS (control) or
with IgG-coated RBCs for in vitro opsonization to reflect EP. (A) Metabolic correlates identified before (Pre) and after (Post) EP were plotted as a
hierarchically-clustered heat map (B). The metabolome view map of relevant metabolic pathways showed significant changes in cellular metabolic pathways
following EP (C). Univariate analysis of the BMDM metabolome using untargeted (D) and targeted (E) metabolomics methods to identify metabolites that change
due to EP. The region highlighted in red (fold change (FC) ≥ 2.0; p-value < 0.05) indicates metabolites that are present in significantly higher amounts in BMDMs
following EP (Post); whereas, the region highlighted in blue (fold change ≤ 0.5; p-value < 0.05) indicates metabolites that accumulate in BMDMs before EP (Pre).
Amino acids identified clustered in similar regions of Pre were encircled (red).

could have implications for macrophage effector function,
similar to what has been reported for dendritic cell activation
by Toll-like receptor signaling (Thwe et al., 2017), these
results will not be discussed further except in the context
of comparing particular metabolites found to be involved
in EP-mediated metabolic reprogramming. Following EP,
BMDMs were characterized by substantial increases in
hundreds of metabolites (Figures 1D,E), some of which are
plotted in the heat maps of Figures 1B, 5A. Specifically,
enrichment was observed in pathways involved in amino
acid and fatty acid metabolism, the Krebs cycle [also referred
to as the tricarboxylate acid (TCA) cycle], and arachidonate
metabolism (pathway leading to eicosanoid and oxylipin
production; Figure 1C).

EP Increases Metabolites Involved in
PPP and GSH Metabolism
EP promoted significant accumulation of early [i.e., glucose
6-phosphate (G6P), p = 0.009; fructose bisphosphate (FBP),
p = 0.0078) but not late (e.g., pyruvate (PYR), lactate (LAC)]
glycolytic metabolites (Figure 2A). Additionally, following EP,
intermediates of the oxidative [i.e., 6-phosphogluconolactone
(GDL), p = 0.0027; 6-phosphogluconate (6PDG), p = 0.0170] and
non-oxidative [i.e., sedoheptulose phosphate (SP), p = 0.0109]

branches of the PPP increased significantly (Figure 2A).
These results suggested a slower flux through glycolysis and
enhanced PPP activation. To test this hypothesis, tracing
experiments were performed by incubating BMDMs with
13C6-glucose 1 h prior to and during EP (Figure 3). These
results indicated that 13C5-ribose phosphate and pentose
phosphate isobaric isomers were exclusively labeled from
glucose taken up de novo during EP (Figure 3B, green) or
from endogenous glucose already in the macrophage prior
to EP (Figure 3B, red), but not from the RBCs themselves
(Figure 3B, blue). This suggests that RBC-derived cytosolic
sugars do not participate in fueling this activation of glycolysis
or the PPP. PPP activation is consistent with (i) increased
oxidant stress resulting from phagocytosis of iron-loaded
RBCs; and (ii) increased flux through NADPH-generating
pathways to fuel NADPH oxidase-dependent ROS production
to target the engulfed cell via radical attack (Xu et al., 2016).
Consistent with increased oxidant stress, decreases in free
reduced cysteine and significant increases in oxidized cysteine
disulfide [cystine (CYSS), p = 0.0348] and cysteine glutathione
disulfide [S-glutathionyl-L-cysteine (GS-CYS), p = 0.0110] were
noted (Figure 2B). Further, higher levels of histidine (HIS,
p = 0.0091), glutamate (GLU, p = 0.0283), methionine, serine
(SER, p = 0.0392), and dimethylglycine (DMGLY, p = 0.0308)
indicate alterations of glutathione and sulfur homeostasis
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FIGURE 2 | EP reprograms glycolysis, the pentose phosphate pathway, and glutathione metabolism. Metabolites from glycolysis and the pentose phosphate
pathway (PPP) (A). As part of heme metabolism, biliverdin (BILV) confirms successful EP of IgG-opsonized RBCs by BMDMs. Entry into glutathione (GSH)
metabolism via methionine (MET) and glutamate (GLU) (B). For all plots, the y-axis represents relative intensity (a.u.). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (unpaired
t-test, 2-tailed distribution). GLUC, glucose; G6P, glucose 6-phosphate; FBP, fructose bisphosphate; PG, phophoglycerate; PEP, phosphoenolpyruvate; PYR,
pyruvate; LAC, lactate; GDL, 6-phosphate gluconolactone; 6PDG, 6-phospho-D-gluconate; SP, sedoheptulose phosphate; RP, ribose phosphate (isomers); GLN,
glutamine; CYS, cysteine; CYSS, cystine; SER, serine; GS-CYS, S-gultathionyl-L-cysteine; HIS, histidine; DMGLY, dimethylglygine; SAM/H, S-adenosyl
methionine/homocysteine.

and one-carbon metabolism, which are involved in repairing
oxidant protein damage (Reisz et al., 2018; Figure 2B and
Supplementary Figure S1C). Importantly, these metabolites did

not increase when BMDMs were incubated with IgG alone
(the subset of significant metabolites with pathways noted in
Supplementary Figures S2C,D).
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FIGURE 3 | Flux analysis of BMDMs incubated with heavy labeled substrates. BMDMs in PBS (red) or with IgG-opsonized RBCs (green) were uniformly labeled with
13C6-glucose (A). Experimental results of 13C6-glucose detection in BMDMs (B). Enrichment of the + 5 isotopologues of PPP metabolites, such as pentose
phosphate isobaric isomers, were observed (top). Total percent labeled amounts of these isomers are shown in the bottom panel. These carbons are derived from
glucose flux from the Embden-Meyerhof glycolytic pathway through the PPP. Continuous lines reflect the median of the three groups; whereas, the dashed lines
represent interquartile ranges.

EP Promotes Purine Oxidation and
Dysregulation of Mitochondrial
Metabolism
Consistent with dysregulated glutathione homeostasis, increased
purine oxidation was observed in macrophages upon EP,
as indicated by ATP breakdown and increases in oxidation
products, including inosine, hypoxanthine (HPX, p = 0.0377),
and xanthine (XAN, p = 0.0088) (Figure 4A). HPX and
XAN did not accumulate upon incubation of BMDMs with
IgG alone (Supplementary Figure S2C). Purine oxidation is
tied to mitochondrial metabolism via salvage reactions fueled
by aspartate consumption and fumarate generation. Of note,
higher levels of intracellular aspartate (ASP, p = 0.0332),
but not fumarate, were observed in macrophages upon EP.
Further, increases in α-ketoglutarate (αKG, p = 0.0048),
2-hydroxyglutarate (2HG, p = 0.0017), and itaconate were
detected after EP in the absence of increases in late carboxylic
acid intermediates (e.g., succinate, fumarate; Figure 4B). Hence,
significant decreases in succinate to itaconate ratios (SUCC/ITA,
p = 0.0215) were noted (Figure 4B, boxed in red). Consistent with
decreased NO synthase (NOS) activity and increased arginase
activity following EP, increases in free arginine (ARG, p = 0.0173)
and ornithine (ORN, p = 0.0074), but not citrulline or polyamines
(spermidine), were noted (Figure 4B). Lastly, upregulation of
ALA synthase, due to an intracellular bolus of iron and heme
in BMDMs during EP, was confirmed by a significant increase of
ALA (p = 0.0344; Figure 4B). Increased levels of these metabolites

were not observed when BMDMs were incubated with IgG alone
(Supplementary Figure S2E, subset of significant metabolites).

EP Induces Significant Increases in
Prostaglandins and Oxylipins
Phospholipid hydrolysis generates free fatty acids, including
arachidonate (the direct precursor of eicosanoids), thereby
directly modulating inflammation, immunity, and other
signaling pathways (Esser-von Bieren, 2017). Dysregulation
of intracellular redox metabolism can result in increased
peroxidation of macrophage membrane-derived lipids. Following
EP, macrophages are exposed to a bolus of RBC membrane-
derived lipids that are susceptible to lipid peroxidation and iron
stores that can activate cyclooxygenases (COXs) and generate
proinflammatory eicosanoid derivatives (Youssef et al., 2018).
Therefore, lipidomics analyses were performed to investigate
the production of eicosanoids and oxylipins in BMDMs after
EP [Figure 5 and extensively reported in Supplementary
Table S1, Global (17MM) Tab]. Decreases in arachidonic acid
were found, accompanied by decreases in leukotrienes and
significant increases in thromboxane B2 (TXB2, p = 0.0070),
prostaglandin E2 (PGE2, p < 0.0001), and hydroxyeicosatrienate
(HETE) derivatives [5(S)/15(S)-HETE, p < 0.0001; 8-HETE,
p = 0.0016; 9/20-HETE, p = 0.0019] (Figure 5). Further,
increases in linoleic acid (LA, p = 0.0013) were accompanied by
accumulation of dihydroxyoctadecenate (diHOME, p = 0.0003)
and oxooctadecadienates (9-oxoODE, p = 0.0032; 13-oxoODE,
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FIGURE 4 | EP remodels purine and arginine metabolism, glutathione homeostasis, and the Krebs cycle in BMDMs. Overview and downstream metabolites of
purine metabolism with entry into this pathway beginning with adenosine triphosphate (ATP) (A). Overview of arginine (ARG) metabolism, GSH homeostasis, and the
Krebs cycle (B). For all plots, the y-axis represents relative intensity (a.u.). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (unpaired t-test, 2-tailed distribution). PO3, phosphate;
URA, urate; AMP, adenosine monophosphate; NAM, nicotinamide; HPX, hypoxanthine; INO, inosine; XAN, xanthine; ALA, aminolevulinate; ASP, aspartate; 2HG,
2-hydroxyglutarate; SUCC, succinate; ORN, ornithine; OH-ISOU, hydroxyisourate; SPMD, spermidine; SPM, spermine; ITA, itaconate; FUM, fumarate; CIT, citrate;
MAL, malate; αKG, α-ketoglutarate.
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FIGURE 5 | EP reprograms arachidonate and linoleate metabolism in BMDMs. The top 50 metabolites in BMDMs that are part of eicosanoid and oxylipin synthesis
and change significantly following EP (A). Values are plotted as a hierarchically-clustered heat map based on p-value. Overview of eicosanoid and oxylipin
metabolism, stemming from arachidonic acid (ARA) and linoleic acid (LA) (B). For all plots, the y-axis represents relative intensity (a.u.). *p ≤ 0.05; **p ≤ 0.01;
***p ≤ 0.001 (unpaired t-test, 2-tailed distribution). PGG2, prostaglandin G2; PGH2, prostaglandin H2; PGE2, prostaglandin E2; PGF2, prostaglandin F2; HETE,
hydroxyeicosatetraenoic acid; HPETE, hydroperoxyeicosatetraenoic acid; LTA4, leukotriene A4; LTB4, leukotriene B4; TX, thromboxane; TXB2, thromboxane B2;
diHOME, dihydroxyoctadecanoic acids; triHOME, trihydroxyoctadecanoic acids; HODE, hydroxyoctadecadienoic acid; OxoODE, oxooctadecadienoic acid.

p = 0.0001), without increases in hydroxyoctadecadienate
(HODE) (Figure 5).

EP Modulates the Protein Landscape,
Including Modifications of Key Metabolic
Enzymes
Proteomics analyses of BMDMs, before and after EP,
identified ∼3,000 unique proteins (Supplementary Table S3).
Unsupervised analyses, including PLS-DA, identified significant
effects of EP on the BMDM proteome, contributing to ∼51% of
the total variance (Supplementary Figure S2A). Top proteins
are presented in a PLS-DA variable importance in projection
(VIP) plot (Supplementary Figures S3A,B) and in heat maps
of Supplementary Figure S3C (top 15) and Figure 6A (top 50).
EP induced increases in RBC-derived protein components (e.g.,
hemoglobin, band 3, spectrin, ankyrin, selenium-binding protein,
peroxiredoxin 2) in BMDMs (Figure 6B). Notably, the functional
cysteine (Cys) residues of RBC-derived proteins were irreversibly
oxidized to dehydroalanine, including Cys94 of hemoglobin-β
and Cys152 of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Figures 6C,D). Conversely, cytoskeletal components
(e.g., tubulin 4A), ribosomal proteins (e.g., 40S ribosomal
protein), mitochondrial components, and nuclear components
(e.g., histones) were decreased after EP (Figure 6B). No

significant changes in interleukins, interferons, or interferon-
dependent proteins were observed after EP. Notably, the terminal
oxidase in mitochondrial electron transport (COX5A) increased
significantly after EP, which is consistent with the alterations to
mitochondrial metabolism discussed previously.

DISCUSSION

Metabolic reprogramming is critical to the immune response
and contributes significantly to macrophage effector function
(Martinez and Gordon, 2014). Macrophage immunometabolism
is affected by various factors, including cytokines (Martinez
and Gordon, 2014), complement components (Bohlson et al.,
2014), pathogen-derived molecules (e.g., LPS) (Tannahill et al.,
2013), and environmental stimuli [e.g., diet, Ji et al., 2012, and
dietary antioxidants, such as pyrroloquinoline quinone (Van den
Bossche et al., 2017; Friedman et al., 2018). Reprogramming
of macrophage metabolism contributes to the etiopathogenesis
of several diseases, including pulmonary hypertension (Pugliese
et al., 2017; D’Alessandro et al., 2018), age-related chronically
inflammatory diseases (Oishi and Manabe, 2016; Parisi et al.,
2018), neurodegenerative diseases (Peruzzotti-Jametti et al.,
2018), and inflammatory complications following ischemia and
reperfusion (Chouchani et al., 2014; Huen and Cantley, 2015).

Frontiers in Physiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 396

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00396 April 30, 2020 Time: 13:28 # 10

Catala et al. Macrophage Metabolism Following Erythrophagocytosis

FIGURE 6 | EP alters the BMDM proteome. (A). The top 50 proteins in BMDMs that are significantly changed by EP (A). Values are plotted as a
hierarchically-clustered heat map based on p-value with proteins listed by gene name. Univariate analysis of the BMDM proteome using untargeted proteomics to
identify proteins that change due to EP (B). The region highlighted in red (FC > 1.5; p < 0.05) indicates proteins present in significantly higher amounts in BMDMs
after EP (Post); whereas, the region highlighted in blue (FC < 0.67; p < 0.05) indicates proteins found to be accumulated in BMDMs before EP (Pre). Representative
tandem mass spectrometry spectra with deduced protein sequences for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (C) and hemoglobin-β (D).
Dehydroalanine modification of Cys152 and carbamidomethylation of Cys156 in the active site of GAPDH (C). Dehydroalanine modification of Cys94 adjacent to the
heme binding site (H93, proximal) in the hemoglobin-β chain (D).

However, limited knowledge is available about the impact
of phagocytic activity and increased heme-iron burden on
macrophage metabolism, which is crucial for pathogen defense
mechanisms and general system homeostasis.

The present study investigated the impact of EP on
macrophage metabolism and revealed that EP activates a
series of pathways consistent with polarization toward the M2
metabolic phenotype, including those that support the generation
of reducing cofactor NADPH. We address the question of
whether these metabolic shifts were fueled by catabolism of
RBC-derived substrates through glucose tracing experiments.
Interestingly, EP fuels the PPP primarily by using glucose from
extracellular sources or from macrophage reserves, rather than
from RBC-derived sugar moieties. Whereas PPP activation in
other non-phagocytic cell types typically counteracts oxidant
stress, macrophages specifically use this pathway to produce ROS
by, for example, upregulating nicotinamide adenine dinucleotide
phosphate oxidase (NOX) 1 and 2 expression (Xu et al.,
2016). Through increased NOX catalytic activity, superoxide
generation enhances ROS production by macrophages, thereby
supporting phagocytic activity during microbial infections and
the use of heme-iron for electron transport across biological
membranes (Xu et al., 2016). Further, NOX-generated ROS
increase proteolytic attack of phagocytosed cellular components,

which correlates with the redox proteomics analysis results
presented herein. Although we expected to observe significant
increases of RBC-derived proteins in macrophages after EP,
these proteins were rapidly targeted by irreversible oxidation
within 1 h. A key example was the peroxidation of Cys94
of hemoglobin-β, which participates in recycling oxidized
thiols of peroxiredoxins in mature RBCs and is progressively
oxidized in RBCs during aging in vivo and in vitro (Harper
et al., 2015; Wither et al., 2016). Irreversible oxidation of
hemoglobin-β Cys94 and of active-site Cys152 of GAPDH
suggests that RBC-derived enzymes are rapidly inactivated
upon EP. Since Cys152 oxidation of GAPDH is required
for catalysis, redox modulation of this residue is sufficient
for mediating a metabolic switch from glycolysis to the PPP
by limiting fluxes downstream of glyceraldehyde 3-phosphate
(Reisz et al., 2016, 2018). Because no significant increases
in late glycolysis and lactate production were observed in
BMDMs following EP, we cannot exclude the possibility that
the redox changes detected of the reactive thiol of Cys152
also targeted the endogenous (macrophage) enzyme. In RBCs,
GAPDH membrane localization is associated with binding to the
N-terminus of band 3, inhibiting glycolysis to promote PPP flux
in response to oxidant challenges (Puchulu-Campanella et al.,
2013), whereas subcellular GAPDH relocation in macrophages

Frontiers in Physiology | www.frontiersin.org 10 April 2020 | Volume 11 | Article 396

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00396 April 30, 2020 Time: 13:28 # 11

Catala et al. Macrophage Metabolism Following Erythrophagocytosis

plays unexpected moonlighting functions (Chauhan et al.,
2017). Clustering of band 3 can prime RBC clearance, since
they are recognized by natural antibodies of the IgG isotype,
triggering complement activation via the classical pathway and
enhancement of EP via macrophage complement receptors 1
(CD35) and 3 (CD11b/CD18), and Fc receptors (Lutz, 2004;
Arese et al., 2005; Kay, 2005; Klei et al., 2017). Macrophages
exposed to increased levels of iron then relocate GAPDH to
the membrane, where it interacts with transferrin and serves
as a de facto transferrin or plasminogen receptor to regulate
iron uptake and fibrinolysis (Polati et al., 2012; Chauhan
et al., 2017). When not engaged in glycolysis, GAPDH can
bind TNF-α mRNA in monocytes to repress the production
of this inflammatory cytokine post-transcriptionally (Van den
Bossche et al., 2017). Interestingly, though the mechanism that
regulates the metabolic shift to the PPP in the phagocytic
cell is not better defined in this study, the steady state
data and tracing experiments are suggestive of a potential
bottleneck downstream to fructose 1,6-bisphosphate at the
level of the glycolytic enzyme aldolase. Though speculative at
this stage, it is interesting to note that the N-term of RBC-
specific band 3 also binds to and inhibits aldolase (other than
GAPDH), suggestive that the proteolysis-derived components
of the phagocytosed RBC could cross-regulate the metabolism
of the macrophage.

Krebs cycle rewiring has profound implications for
macrophage effector function and is intimately involved
in the remodeling necessary for supporting biosynthetic
and bioenergetic requirements (Ryan and O’Neill, 2017).
This pathway is disrupted during macrophage activation by
inflammatory stimuli and leads to the accumulation of various
metabolites, including succinate and citrate (Jha et al., 2015;
Lampropoulou et al., 2016; Ryan and O’Neill, 2017; Williams
and O’Neill, 2018; Yu et al., 2019). Although succinate and
itaconate levels were not significantly elevated before or after
EP, a significant SUCC/ITA ratio (p = 0.0215) was observed in
BMDMs following RBC ingestion, suggesting that the balance
between these two metabolites is regulated by EP. Notably, the
lack of succinate accumulation following EP is consistent with
inhibition of proinflammatory cascades (i.e., stabilization of
HIF1α impairs production of downstream targets, such as IL-1β;
Selak et al., 2005; Tannahill et al., 2013). Other metabolites that
influence prolyl hydroxylases to regulate HIF1α stability include
αKG (the precursor to succinate) and fumarate (Boulahbel
et al., 2009). While fumarate levels did not increase significantly
following EP, αKG, and 2HG (a reversible derivative of αKG)
accumulated significantly. Notably, αKG also plays a critical
role in epigenetic reprogramming of macrophages (Liu et al.,
2017; e.g., it drives Jumonji-Domain Containing Protein 3-
dependent epigenetic changes to modulate macrophage effector
function) (Diskin and Palsson-McDermott, 2018) whereas,
2HG impairs the activity of αKG-dependent dioxygenases
associated with important cellular pathways, such as DNA repair
(Ye et al., 2018).

In inflammatory macrophages, HIF1α stabilization can also
be achieved via S-nitrosylation mediated by NO availability

(Olson and van der Vliet, 2011). But in M2 macrophages, NOS-
mediated NO synthesis is prevented by arginine consumption
by enzymes such as Arg-1 (Rath et al., 2014). Consistent with
increased arginase activity at the expense of NOS activity,
EP significantly increased arginine and ornithine levels, but
not citrulline. Since RBCs carry both NOS and arginase
(D’Alessandro et al., 2019), it is possible that these enzymes
could interfere with these pathways in macrophages upon
EP. However, NOS is more redox sensitive (Forstermann
and Sessa, 2012) and is readily inactivated by EP-induced
oxidant stress. Future tracing experiments with 13C15N-arginine
in an RBC-specific arginase knockout mouse could test
this hypothesis.

Macrophages that have undergone EP are exposed to
the cytosolic and membrane lipidome of the opsonized
RBCs. The M2 metabolic phenotype is associated with an
increased reliance on mitochondrial metabolism and fatty acid
catabolism (Nomura et al., 2016; Remmerie and Scott, 2018).
Fatty acid oxidation (FAO) enables subsequent conversion of
mitochondrial fatty acids into numerous products, such as
acetyl-coenzyme A (acetyl-CoA), NADH, and FADH2, which
can be used by the cell to generate energy (Remmerie and
Scott, 2018). EP promoted consumption of CoA precursors
(e.g., pantothenol phosphate) and accumulation of free fatty
acids in the absence of significant acyl-conjugated carnitine
accumulation. Heme catabolism leads to the activation of anti-
inflammatory cascades (e.g., HO-1 activation; Naito et al.,
2014), but can also prompt the generation of proinflammatory
lipid mediators. Significant increases in intracellular heme
catabolites, such as biliverdin (BILV, p = 0.0151), following
EP confirmed activation of heme catabolism. Further, several
metabolites involved in ARA and LA metabolism increased
significantly, which could be aided by various hemoproteins
(e.g., COXs). During the inflammatory phase following injury
or infection, macrophages are natural reservoirs of COX-
2 and prostaglandins, and this pathway is, indeed, activated
by iron-triggered ferroptotic cascades in response to iron
overload in macrophages following phagocytosis of transfused,
storage-damaged RBCs (Youssef et al., 2018). Consistent
with this, EP-induced increases of specific oxylipins (i.e.,
prostaglandins, HETEs, diOMEs, and oxoODEs, but not
leukotrienes or HODEs). It is intriguing to speculate whether
pathological EP, in the context of chronic inflammatory
diseases and aging (e.g., in the context of inflammaging-
induced anemia; Ferrucci and Balducci, 2008), may excessively
activate ferroptotic cascades, thereby exacerbating the risk of
bacterial infection. Further, this may be clinically relevant for
transfusion recipients of stored RBCs, since REM-mediated
clearance is expected to be enhanced by the RBC “storage
lesion” (e.g., increased PS exposure, decreased exposure of
CD47 (a “do not eat me” signal; Burger et al., 2012a,b), and
decreased deformability) (D’Alessandro et al., 2015; Takimoto
et al., 2019). This is significant if one considers that ∼25% of
transfused RBCs can be cleared within 24 h post-transfusion
and there are ∼5 million transfusion recipients annually in
the United States.
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Most immunometabolism studies to date rely on LPS
or cytokine-dependent stimulation of macrophages, and the
literature describing the metabolic impact of phagocytosis itself
is scarce to non-existent. Thus, this study provides the first
metabolic description of macrophages following ingestion of
opsonized RBCs. Before summarizing our main conclusions,
we would like to highlight some of the limitations of this
study: first of all, the ex vivo nature of the study and
the use of mouse BMDMs may not necessarily recapitulate
the phenomenon of EP in vivo by tissue-specific residential
macrophages in mice or humans; in addition, the lack of
potentially relevant controls (e.g., phagocytosis of IgG-coated
latex beads or C3b complement-mediated phagocytosis) or the
use of other mouse strains than C57BL/6 mice may have
differentially impacted our findings, at least to the extent
different mouse strains have been reported to differ in iron
reduction and homeostasis (Howie et al., 2019) – a key
component of EP (Youssef et al., 2018). Acknowledging these
limitations, here we report that EP induces changes in the
macrophage metabolome that are consistent with polarization
toward an M2 metabolic phenotype. One caveat is that these
experiments focus on a metabolomic assessment of BMDMs
ingesting IgG-opsonized RBCs, or being incubated with IgG,
in vitro; thus, transcriptional and flow cytometric data from
experiments performed in vivo are necessary to confirm the
apparent upregulation and/or downregulation of the gene
products identified from our proteomic analysis. Additionally,
no direct interventions were tested to determine whether genetic
or pharmacological manipulation could identify which specific,
EP-modulated, metabolic pathways are critical for macrophage
reprogramming toward a M2 metabolic phenotype. Indeed, the
specific pathways identified differ when macrophages ingest
other particles (i.e., IgG-opsonized bacteria, viruses, or apoptotic
cells) or when Fcγ-receptors are ligated by immune complexes.
However, we do show that incubation of BMDMs with IgG
alone does not induce metabolic reprogramming similar to
that mediated by EP. Future studies are necessary to confirm
these results in more physiologically relevant contexts in vivo,
such as during hemolytic transfusion reactions or autoimmune
hemolytic anemia, or in settings of splenic (and hepatic)
REM ingestion of senescent RBCs, malaria-infected RBCs, or
transfused storage-damaged RBCs.
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