
fphys-11-00419 May 18, 2020 Time: 16:43 # 1

MINI REVIEW
published: 25 May 2020

doi: 10.3389/fphys.2020.00419

Edited by:
Ginés Viscor,

University of Barcelona, Spain

Reviewed by:
Edward M. Dzialowski,

University of North Texas,
United States

Sydney Frances Hope,
Virginia Tech, United States

Gary Burness,
Trent University, Canada

*Correspondence:
Andreas Nord

andreas.nord@biol.lu.se

Specialty section:
This article was submitted to

Environmental, Aviation and Space
Physiology,

a section of the journal
Frontiers in Physiology

Received: 20 January 2020
Accepted: 07 April 2020
Published: 25 May 2020

Citation:
Nord A and Giroud S (2020)

Lifelong Effects of Thermal Challenges
During Development in Birds

and Mammals. Front. Physiol. 11:419.
doi: 10.3389/fphys.2020.00419

Lifelong Effects of Thermal
Challenges During Development in
Birds and Mammals
Andreas Nord1* and Sylvain Giroud2

1 Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, Sweden, 2 Research Institute of Wildlife
Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria

Before they develop competent endothermy, mammals and birds are sensitive to
fluctuating temperature. It follows that early life thermal environment can trigger changes
to the ontogeny of thermoregulatory control. At the ecological level, we have incomplete
knowledge of how such responses affect temperature tolerance later in life. In some
cases, changes to pre- and postnatal temperature prime an organism’s capacity to
meet a corresponding thermal environment in adulthood. However, in other cases,
developmental temperature seems to constrain temperature tolerance later in life.
The timing, duration, and severity of a thermal challenge will determine whether its
impact is ameliorating or constraining. However, the effects influencing the transition
between these states remain poorly understood, particularly in mammals and during
the postnatal period. As climate change is predicted to bring more frequent spells of
extreme temperature, it is relevant to ask under which circumstances developmental
thermal conditions predispose or constrain animals’ capacity to deal with temperature
variation. Increasingly stochastic weather also implies increasingly decoupled early- and
late-life thermal environments. Hence, there is a pressing need to understand better
how developmental temperature impacts thermoregulatory responses to matched and
mismatched thermal challenges in subsequent life stages. Here, we summarize studies
on how the thermal environment before, and shortly after, birth affects the ontogeny
of thermoregulation in birds and mammals, and outline how this might carry over to
temperature tolerance in adulthood. We also identify key points that need addressing
to understand how effects of temperature variation during development may facilitate or
constrain thermal adaptation over a lifetime.

Keywords: body temperature, climate change, development, endotherm, heterothermy, phenotypic flexibility,
temperature fluctuation, thermal adaptation

INTRODUCTION

Mammals and birds are endotherms and, as such, control core body temperature (Tb) by means
of endogenous heat production across a vast temperature span. However, for the duration of
embryonic development, and at least until adequate insulation has been attained, these animals are
effectively poikilothermic, i.e., have limited ability to maintain Tb when ambient temperature (Ta)
fluctuates (e.g., Pereyra and Morton, 2001; Geiser et al., 2019). Hence, parents buffer changes in Ta
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to secure appropriate developmental conditions until offspring
have attained endothermy. This is pivotal, because low Tb slows
growth rate which may prolong both the embryonic period
and time to independence with potential downstream ecological
consequences (Remes and Martin, 2002; Cheng and Martin,
2012). Yet, because parents also need to self-feed and, in the
case of altricial species, periodically leave the nest to provide for
offspring, developing endotherms will be subjected to fluctuating
Ta, at least for some periods in some early life stages.

Given the sensitivity to perturbations when regulatory systems
form (Burggren and Mueller, 2015; Eyck et al., 2019), the
embryonic thermal environment can affect pre- and postnatal
phenotypes. When there is substantial and sustained deviation
from optimum developmental temperature, offspring may accrue
congenital deficiencies (e.g., Lundy, 1969). Such pronounced
challenges are arguably rare in nature. It may therefore be
more relevant to consider effects of lower-intensity temperature
variation, such as during unusually cold or warm breeding
seasons, across a reproductive season, and in relation to variation
in parents’ reproductive investment. This has been studied
in some detail in poultry (e.g., Tzschentke and Nichelmann,
1999; Nichelmann and Tzschentke, 2002; Nichelmann, 2004).
Broadly speaking, these efforts show that mild, short-duration,
thermal stimuli before or shortly after hatching improve chicks’
capacity to deal with a corresponding challenge as juveniles
and in adolescence. However, this work has unclear ecological
relevance, because free-ranging animals are presumably adapted
to more variable thermal environments, and face different
thermoregulatory and energetic constrains, than poultry (e.g.,
Tickle et al., 2018; Tickle and Codd, 2019). Thus, work on
wild birds indicates that mildly hypothermic incubation reduces,
whereas mildly hyperthermic incubation increases, offspring cold
tolerance (e.g., DuRant et al., 2012, 2013a,b). In contrast, short-
and long-term effects of changes to rearing temperature on
thermoregulation are poorly understood. In mammals, it is not
known how offspring thermoregulation is affected by prenatal
temperature, and data on rearing temperature-effects on thermal
physiology in subsequent life stages are scarce.

The lack of information on how developmental temperature
affects adult thermoregulation is unfortunate, not the least
considering the predicted increase of extreme temperature
events (IPCC, 2013) that risks increasingly decoupling
juvenile and adult thermal environments. It is conceivable that
developmental-temperature-effects on adult thermoregulation
can be broadly categorized as ameliorating or constraining
(Figure 1): (a) if juveniles adapt non-reversibly to their thermal
environment, then as adults we expect individuals to perform
better in matched, and worse in mismatched, environments
(“Environmental matching hypothesis”; Figure 1A); (b) if
changes to developmental temperature constrain juvenile
growth and maturation, we expect that individuals who were
thermally challenged when growing up will consistently perform
worse than those that developed in “normal” environments
as adults (“Silver spoon hypothesis”; Figure 1B) (terminology
after Monaghan, 2008). Here, we summarize the main findings
for how developmental temperature affects the ontogeny of
thermoregulation and how this links to adult thermoregulatory
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FIGURE 1 | Possible effects of the thermal environment during development
on thermoregulatory performance in adulthood. Under the environmental
matching hypothesis (A), adult performance is better when the thermal
environment matches that in which the individual developed. Under the silver
spoon hypothesis (B), both colder-than-normal and warmer-than-normal
developmental temperatures act suppressively on the pre- and/or postnatal
phenotype, such that individuals that developed in unconstraining thermal
regimes (here, “normal”) consistently perform better than cold- and
warm-reared individuals as adults.

performance. We discuss the extent to which this may facilitate
or constrain thermal adaptation in adulthood, and finish
by addressing particularly pressing matters to investigate
in this context.

WHEN AND WHY DOES
DEVELOPMENTAL TEMPERATURE
VARY?

Mammals Before Parturition
Females of many mammals improve embryonic homeothermy
by reducing circadian variation in Tb during gestation (e.g.,
Fewell, 1995; Trethowan et al., 2016; Wharfe et al., 2016; Thiel
et al., 2019), and may even suppress febrile responses to protect
the embryo from thermal damage (Begg et al., 2007) (but see
Laburn et al., 1992). Even some heterotherms, which would
normally display large daily or seasonal Tb reduction, are more
homeothermic during pregnancy. For example, hibernating bears
maintain stable Tb during gestation and only allow Tb to drop
after parturition (Hissa, 1997; Tøien et al., 2011; Shimozuru et al.,
2013; Friebe et al., 2014). Other heterotherms do use torpor when
pregnant. This is typically a direct or preemptive response to
energy shortage and is more common in species regularly facing
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energetic challenges during breeding, such as those reproducing
when it is cold and those relying on ephemeral or seasonal/patchy
forage (reviewed by Geiser, 1996; McAllan and Geiser, 2014).
Females safeguarding energy balance in this manner do so at the
expense of prolonged gestation (e.g., Racey, 1973) and possible
phenotypic consequences to offspring resulting from a more
variable developmental temperature.

Mammals After Parturition
Until thermogenic capacity is sufficient for self-maintenance,
mammals experience fluctuating Tb as determined by the amount
of maternal brooding and thermal properties of the nest, and by
the extent to which post-parturition females use torpor. Some
of the fluctuations in nest temperature can be mitigated by
huddling, which allows maintained growth rate even during a
cold challenge (Gilbert et al., 2007, 2010, 2012). After weaning,
young mammals are inevitably exposed to fluctuating Ta in
line with habitat properties. Depending on reproductive period,
juveniles of the same species might experience warm or cold
temperatures during this time.

Birds Before Hatching
Because birds have external development, embryos are more
exposed to Ta compared to (non-monotreme) mammals. With
some exceptions, such as the megapodes that utilize heat from
decomposing material to incubate eggs (Booth and Jones, 2002)
and some species that rely on solar incubation (e.g., De Marchi
et al., 2008), heat for embryonic development is actively supplied
by one or both parents. Some capital breeders, such as common
eiders (Somateria mollissima), take no or few daily recesses from
incubation (e.g., Kristjánsson and Jónsson, 2011). At the other
extreme are single-sex intermittent incubators that leave the nest
to forage several times per hour (Deeming, 2002). It follows that
parental incubation behavior impacts the degree of temperature
fluctuation experienced by the embryo. Moreover, incubation
temperature is often lower in more strenuous conditions, such
as in low Ta or during incubation of larger clutches (reviewed by
Nord and Williams, 2015), because the energy costs of incubation
constrain parental investment in keeping eggs warm (Williams,
1996; Tinbergen and Williams, 2002; Nord and Williams, 2015).
Females of some species mitigate these costs by torpor (Calder
and Booser, 1973; Kissner and Brigham, 1993), with inevitable
consequences for embryonic temperature.

Birds After Hatching
Once eggs hatch, chicks are brooded by one, or both, parents
until thermogenic capacity and insulation are sufficient. Precocial
species, that self-feed from hatching onward, are exposed to the
elements during this time and will alternate short feeding bouts
with being brooded by the parents (e.g., Pedersen and Steen,
1979). Altricial chicks are more strongly affected by Ta, meaning
Tb is influenced by the balance between parental provisioning
and brooding. However, on account of the increase in thermal
mass as chicks grow, the brood as a unit may be functionally
homeothermic already a few days after hatching (Węgrzyn, 2013;
Andreasson et al., 2016).

RESPONSES TO PRENATAL
TEMPERATURE VARIATION

Mammals
We are not aware of any studies that have tested how fluctuating
temperatures in utero affect the subsequent thermoregulatory
performance of juveniles and adults. This clearly needs further
investigation (see section “Future Directions” below).

Birds
The effects of embryonic temperature on postnatal
thermoregulation have been studied particularly in poultry
since temperature fluctuations inside rearing facilities have
consequences for welfare and economic return (Naga Raja
Kumari and Narendra Nath, 2018). Thermal sensitivity is the
greatest when the hypothalamus-thyroid-pituitary-adrenal
(HTPA) axis forms (Loyau et al., 2015), in line with the
modulatory role of thyroid hormones in avian thermoregulation
(Ruuskanen et al., 2019). In the chicken, this commences during
the middle third of embryogenesis, when even brief (2–5 h)
exposure to hypo- or hyperthermic incubation alters thyroid
and glucocorticoid hormone secretion in response to a thermal
challenge after hatching, and results in phenotypic changes that
improve chicks’ capacity to deal with cold or heat at least until
market age of ca. 35–50 days (e.g., Yahav et al., 2004; Shinder
et al., 2009, 2011; Piestun et al., 2011). However, the effects appear
to be different when the challenge is continuous. For example,
periodic cooling during the entire incubation period in zebra
finches (Taeniopygia guttata) increased embryonic metabolic
rate, but decreased yolk conversion ratio, such that chicks
hatched in poorer condition (Olson et al., 2006, 2008). Similarly,
chickens incubated at constant low temperature produced
less, not more, heat during acute cold exposure compared to
controls (Black and Burggren, 2004). Moreover, Japanese quail
(Coturnix japonica) chicks incubated in constant or cyclical
low temperature were smaller, weighed less, and had elevated
metabolic rate (after constant low incubation only) as adults
relative to controls (Ben-Ezra and Burness, 2017).

Embryos of wild birds are adapted to the constantly fluctuating
temperatures produced by parental behavior (above, and Webb,
1987). Yet, studies directly manipulating egg temperature in free-
ranging birds largely corroborate findings in captive models.
Accordingly, chronically low incubation temperature lowers
body condition and elevates metabolic rate (Hepp et al., 2006;
DuRant et al., 2011; Nord and Nilsson, 2011), and reduces the
capacity to meet a cold challenge (DuRant et al., 2012, 2013a).
None of these studies measured effects on thermoregulation
once chicks were independent. Hence, it is unclear if incubation
temperature-linked effects on survival in wild birds after fledging
(Hepp and Kennamer, 2012; Nord and Nilsson, 2016; see also
Berntsen and Bech, 2016) has a thermo-physiological basis.

It is not known if brief exposure to low incubation
temperatures, similar to that in many poultry studies,
affects offspring thermoregulation. This is unfortunate,
because incubating birds sometimes prioritize self-
maintenance by ceasing to incubate for several hours (e.g.,
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MacDonald et al., 2013; reviewed by Nord and Williams, 2015).
The resultant thermal challenge for embryos may be equivalent
to when mammals enter torpor during gestation.

RESPONSES TO POSTNATAL
TEMPERATURE VARIATION

Mammals
We are aware of only two studies reporting on how early
life thermal conditions affect thermoregulation in adult
mammals. In fat-tailed dunnarts (Sminthopsis crassicaudata),
adults showed more frequent, deeper, torpor associated with
significantly greater energy savings when they developed, and
were subsequently kept, in cold compared to warm conditions
(Riek and Geiser, 2012). In yellow-footed antechinus (Antechinus
flavipes), rearing in warm conditions from weaning onward
caused increased metabolic rate when adult females, but not
males, were cold-exposed. After warm-exposure of adults that
were reared in the cold, metabolic rate was significantly reduced
for both sexes (Stawski and Geiser, 2020). Hence, developing in
the warmth seems to reduce flexibility of the metabolic response
to changing temperature, at least in males. In line with this,
piglets exposed to heat stress during their first 10 days of life
showed reduced thermo-tolerance when heat stressed at weaning
compared to piglets reared in standard and cold conditions
(Johnson et al., 2018).

Developmental temperature also affects morphology. In rats,
warm-rearing from parturition increases the size and vascularity
of thermolytic effectors (tail, salivary glands) (Demicka and
Caputa, 1993a,b). While vascularity is likely amenable to
subsequent thermal acclimation (e.g., Demicka and Caputa,
1993a), changes to external morphology (and associated heat
transfer consequences) could remain over the animals’ lifespan.

Birds
In the chicken, thermal manipulation for 12–24 h during the first
week after hatching elicits responses largely analogous to those
triggered by the same stimulus during incubation. Accordingly,
heat- or cold-acclimation at this age improves control of Tb and
survival when chicks are subsequently exposed to acute thermal
stress at 6–7 weeks of age (Arjona et al., 1988, 1990; Yahav and
Hurwitz, 1996; Shinder et al., 2002), possibly via acclimation of
evaporative cooling capacity (Marder and Arieli, 1988; Midtgård,
1989). It is not clear if the causation is similar to that in the
embryonic period. However, non-thermal challenges to young
birds can bring lasting effects on glucocorticoid levels (e.g.,
Marasco et al., 2013), which suggest that the HTPA axis is still
sensitive to developmental perturbations at this time.

In line with studies on mammals, postnatal Ta can affect the
size of thermolytic effectors. Japanese quail reared in warm Ta
developed smaller bills than birds reared in cold Ta (Burness
et al., 2013). As adults, after nearly 3 months in common
garden, warm-reared quail had higher bill temperature than cold-
reared birds, particularly in low Ta, indicating non-reversible
changes to bill vasculature (Burness et al., 2013). It would be
interesting to know if heart-weight reduction in warm-reared

chickens (Yahav and Hurwitz, 1996), which has obvious links to
circulation and thermoregulation, is equally non-reversible.

Only a handful of studies have manipulated rearing
temperature in wild birds, with context-specific ameliorating
or suppressing effects on growth, depending on the thermal
environment where the manipulation was performed (Dawson
et al., 2005; Rodríguez and Barba, 2016a,b; Andreasson et al.,
2018). Only one of these studies gives some insight into effects
on thermoregulation: Andreasson et al. (2018) found that
heated chicks maintained stable Tb throughout ontogeny
despite Ta approaching 50◦C, even at ages where control chicks
were poikilothermic. Hence, at least part of the suppressive
effects of postnatal Ta might reflect differential allocation of
resources from growth to thermoregulation to avoid hypo- or
hyperthermia. It is not known if any such changes remain until
adulthood. However, the fact that warm Ta improved chick
survival in a cold habitat (Dawson et al., 2005) and long-term
survival in an intermediate thermal environment (Andreasson
et al., 2018), but negatively affected survival in a hot and dry
climate (Rodríguez et al., 2016), suggests this is a topic worthy
of future investigation. In this context, it is interesting to note
that in altricial birds (like those in the studies above), the HTPA
axis matures during the first week after hatching (Debonne et al.,
2008), which suggests that thermal sensivity may be greater
postnatally than in precocical species.

FUTURE DIRECTIONS

There appears to be broad synergies between studies in birds
and mammals, despite variation in timing, duration, and severity
of thermal stressors. In birds, there is a bias toward studies of
production species with unclear ecological relevance, a general
lack of information on effects of postnatal temperature on
thermoregulation, and poor understanding of when a thermal
dose is constraining or ameliorating. Mammals are comparatively
understudied in all these regards. Hence, it is clear that more
studies are needed to address how developmental temperature
affects the ontogeny of thermoregulation and how this, in turn,
impacts thermal physiology of adults. Below we outline some
directions to further our knowledge of these matters (Figure 2):

– (i) Fill in the blanks: For example, there are few studies of
thermal sensitivity of mammalian embryonic development
and its short- and long-term consequences, despite
widespread occurrence of heterothermy during pregnancy.
In birds, there are no studies of how developmental
temperature affects energy-conserving strategies, despite
widespread heterothermy in this phylum (McKechnie
and Lovegrove, 2002), and it is unknown how chick
thermoregulation is affected by egg neglect.

– (ii) Predisposing or constraining: Increasingly stochastic
climate suggests increased likelihood that an animal will
develop during extreme weather, or that it will experience
such events sometime during its lifetime. A key challenge is
therefore to address if, how, and why, physiological changes
that manifest during development affect performance when
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(ii) Predisposing or constraining:
- Constraining thermal duration
- Constraining thermal dose

(i) Fill in the blanks:
- Thermal sensitivity 
(mammals)
- Critical windows 
(mammals)
- Egg neglect (birds)
- Energy-conserving 
responses (birds)

(iii) Intra-generational effects:
- Reversal of developmental 
temperature effects?

(ii) Predisposing or constraining:
- Environmental matching or silver spoon 
effects of developmental temperature?

(iii) Inter-generational effects:
- Genetic and non-genetic inheritance 
of thermoregulatory performance
- Fluctuating selection for 
thermoregulatory phenotypes

(iv) Ecological context:
- Non-model species
- Free-ranging
- Different life histories
- Different environments
- Different years

Embryonic temperature

- Prolonged gestation/incubation
- Reduced embryonic growth 
- Reduced embryonic survival (birds)
- Reduced yolk conversion (birds)

Capacity to meet stochastic and 
predictable temperature variation

Adult thermoregulation 
Adult morphology
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FIGURE 2 | A putative flow path linking breeeding environment, parental investment, developmental and rearing temperatures, and thermal performance in
adulthood. Main connections outlining how environmental and intrisic conditions experienced by parents during the breeding season can affect reproductive
investment and resultant embryonic and postnatal thermal environments are shown using green arrows, with relevant descriptors in bold font within the green boxes.
It is assumed that early life temperature can be either predisposing or constraining for subsequent thermoregulatory performance. These developmental trajectories
are shown by orange and gray arrows, respectively, with relevant effects summarized within the orange and gray boxes. Paths where data are scarce, or even
lacking, are traced using thin blue arrows, with key knowledge gaps listed within the blue boxes. For simplicity, these are referred to by the Roman numerals in the
section “Future Directions.”
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the juvenile and adult environments are mismatched.
While subtle, short-duration, variation in developmental
temperature can improve thermoregulatory performance
in the same environment later in life, there are switch
points where early-life temperature constrains subsequent
temperature tolerance (e.g., Costantini et al., 2012). We
need to understand better when a thermal dose transitions
from predisposing to constraining, the phenotypic changes
involved, and their epigenetic underpinnings (e.g., Vinoth
et al., 2018; Wang et al., 2019). In this context, there
is also a need for studies across life histories. For
example, is environmental matching as relevant in a trans-
continental migrant compared to a year-round resident
(cf. Yin et al., 2019)?

– (iii) Intra- and intergenerational effects: There is a need
to increase our understanding of the extent to which the
thermo-physiological effects of developmental temperature
remain over a lifetime, especially in wild models and
mammals. To understand the evolution of responses,
studies should address if traits that are differentially
expressed in different developmental temperatures are
heritable (cf. Rønning et al., 2007; Versteegh et al., 2008;
Nilsson et al., 2009).

– (iv) Broader ecological context: Studies of physiological
effects have used captive models, but fitness costs have
been documented in the wild with little information on
physiological mediators. We need to apply theory derived
from captive models to wild animals that live under
fluctuating Ta in a range of habitats, to better understand
the eco-evolutionary dynamics of developmental thermal
sensitivity.

CONCLUSION

It is clear that mammals and birds are sensitive to fluctuating
developmental temperature in broadly similar ways, and that
changes brought about by the early thermal environment
sometimes may permanently modify the phenotype. To
this end, effects of temperature resemble those of other
environmental factors during development (Costantini et al.,
2010). Some studies, particularly in poultry, adhere to the
environmental matching hypothesis (Figure 1A), showing that
thermal acclimation in early life (via well-timed, brief, thermal

manipulation) improves the capacity to meet matched stimuli
in adulthood. However, wild and captive studies where the
thermal challenge has been continuous (and the ecological
relevance greater) adheres more closely to the silver spoon
hypothesis (Figure 1B). That is, sustained deviation from
the thermal environment to which the population is adapted
seems to constrain phenotypic quality. However, we caution
against general conclusions in this regard, because many
key studies are yet to be performed (above and Figure 2),
particularly in wild systems. Furthering our knowledge on
how early life thermal conditions shape thermoregulatory
phenotypes is more pressing now than ever when climate
change increasingly exposes animals to extreme weather
(IPCC, 2013) with potentially severe consequences (McKechnie
and Wolf, 2010; Conradie et al., 2019; Riddell et al., 2019).
Proper understanding of the ontogeny and acclimatization
capacity of, and selection for, temperature tolerance is,
thus, key to predicting how individuals and populations
will respond to such challenges (cf. Stillman, 2003, 2019;
Burggren, 2018). We hope that this review will inspire
others to collect the data needed for better understanding
of these effects.
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