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Myocardial infarction (MI) is a type of serious heart attack in which the blood flow
to the heart is suddenly interrupted, resulting in injury to the heart muscles due
to a lack of oxygen supply. Although clinical diagnosis methods can be used to
identify the occurrence of MI, using the changes of molecular markers or characteristic
molecules in blood to characterize the early phase and later trend of MI will help
us choose a more reasonable treatment plan. Previously, comparative transcriptome
studies focused on finding differentially expressed genes between MI patients and
healthy people. However, signature molecules altered in different phases of MI have
not been well excavated. We developed a set of computational approaches integrating
multiple machine learning algorithms, including Monte Carlo feature selection (MCFS),
incremental feature selection (IFS), and support vector machine (SVM), to identify gene
expression characteristics on different phases of MI. 134 genes were determined to
serve as features for building optimal SVM classifiers to distinguish acute MI and post-
MI. Subsequently, functional enrichment analyses followed by protein-protein interaction
analysis on 134 genes identified several hub genes (IL1R1, TLR2, and TLR4) associated
with progression of MI, which can be used as new diagnostic molecules for MI.

Keywords: myocardial infarction, Monte Carlo feature selection, incremental feature selection, support vector
machine, gene

INTRODUCTION

Myocardial infarction (MI), one of the most common cardiac diseases, has been a serious threat
to human health worldwide for a long period. According to the third universal definition of MI,
it is the condition of myocardial necrosis in a clinical setting consistent with myocardial ischemia
(Bax et al., 2012). MI occurs when the blood flow is impaired and the cardiomyocyte is injured due
to the lack of oxygen supply (Lu et al., 2015). Patients with coronary atherosclerosis have a high
risk of developing a MI when inflammation takes place in the vascular wall (Thygesen et al., 2007).
Usually a more serious event is termed as acute myocardial infarction (AMI). The symptoms of MI
include chest pain, shortness of breath, abnormal heart beating, and fatigue (Kosuge et al., 2006).
Smoking and dyslipidemia are thought to be important risk factors for MI, which is correlated with
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the increasing mortality rate in China (Critchley et al., 2004).
Approximately three million cases of MI are diagnosed every
year and the annual incidence rate is about 600 cases per
100,000 people (Rogers et al., 2008; Nascimento et al., 2019).
The average mortality of MI is approximately 27% according to
statistics (White and Chew, 2008), making it a major cause of
death in the world.

After the onset of MI, many pathological processes occur,
such as the death of myocardial cells, and will develop into
different conditions depending on the status of the patient.
MI can be classified pathologically as acute, healing, or healed,
which is roughly correlated with the disease duration. Acute
MI describes a severe event usually accompanied by activated
inflammation at early onset. Then it progresses to healing, which
can be characterized by the presence of mononuclear cells and
fibroblasts and the absence of polymorphonuclear leukocytes.
The entire process reaching the healed state of MI takes about
several months when cellular infiltration fades away and scar
tissue appears (Thygesen et al., 2007). The different phases
after onset reflect distinct pathological conditions. So, a better
understanding of the phases will contribute to the treatment of
MI and improve the outcomes of patients.

Early and rapid diagnosis is important for the decision
of treatment and improvement of survival. There are several
methods for the evaluation of MI including electrocardiography
(ECG) and cardiac markers. The ECG has a high specificity
of 90% for MI but a poor sensitivity of 20% (Zimetbaum and
Josephson, 2003). Serum biomarkers of myocardial necrosis,
such as cardiac troponin (I or T), which can specifically reflect
myocardial injury, show high clinical sensitivity and can improve
the diagnostic accuracy (Jaffe et al., 2000). Levels of MB isoforms
of creatine (CK-MB) also exhibit the ability to identify MI as
an increased CK-MB value is associated with myocarditis and
electrical cardioversion (Members et al., 2007). Although the
traditional clinical approach has shown excellent performance
for diagnosing MI, an increasing number of studies have proven
that molecular markers, like the transcription profile in serum,
are capable of reflecting detailed pathological conditions and
subsequent progress of MI, which will help to determine the
optimal treatment.

Owing to the great development in RNA-seq technology,
many novel genes are found to play crucial roles in various
diseases. It has been reported that the specific expression pattern
of certain genes is relevant to the pathological condition of
MI. For examples, H-FABP, which is involved in myocardial
fatty-acid metabolism, is rapidly released into the cytosol in
early MI and can act as an early marker (Glatz et al., 1988).
B-type Natriuretic Peptide (BNP) is secreted by the ventricles
in response to the tension of cardiomyocytes and leads to the
reduction of blood pressure, making it a prognostic marker after
MI (De Lemos et al., 2001). Growth Differentiation Factor-15
(GDF15) is specifically expressed in the heart when ischemia or
reperfusion happened, and increasing GDF15 indicates a higher
risk of death in MI patients (Wollert et al., 2007). Besides, non-
coding RNAs are also found to be involved in the pathogenesis
of MI. Circulating miR-208a, which is only detected in AMI
patients, is thought to be the novel potential biomarker for early

diagnosis with higher sensitivity and specificity (Wang et al.,
2010). Given that the progress of MI involves numerous complex
biological processes and pathways, the overall transcriptome
analysis will contribute to revealing a more detailed molecular
mechanism and an easier way to locate the key genes related to
pathogenesis of MI.

In this study, we utilized bioinformatics methods to explore
the key gene networks associated with MI from the vast
transcriptomic data. Previous studies which aimed to find the
biomarker for MI put the focus on separated genes but ignored
the linkage among them. With the application of bioinformatics,
we can study the complex expression network consisting of
multiple genes with less time consumed and a higher efficiency.
Transcriptomic data was obtained from the published paper
which performed whole blood RNA profiling at different time
points in cohort with MI (Vanhaverbeke et al., 2019). In
order to identify the key biomarkers for distinguishing different
pathological extents, we manually divided all patients into three
categories based on the duration of MI. These three different
groups roughly reflect distinct pathological conditions. Next, we
constructed an optimal support vector machine (SVM) model
with the application of a feature selection method called Monte
Carlo Feature Selection (MCFS) (Chen et al., 2018a, 2019a,b,d,
2020; Pan et al., 2018, 2019a,b; Wang et al., 2018; Jiang et al.,
2019; Li et al., 2019) and incremental feature selection (IFS)
(Chen et al., 2018b, 2019d; Lei et al., 2018; Li and Huang,
2018; Sieber et al., 2018; Zhang et al., 2018; Wang and Huang,
2019; Yan et al., 2019). 134 optimal genes were selected which
show specific expression patterns during varied phases of MI
and can distinguish different categories with a highly accuracy.
The functional enrichment analysis suggested the important
biological processes and pathways related to the progress of MI
and corresponding hub genes were identified by gene network
analysis. The selected genes in the current study can serve as
novel biomarkers for different phases of MI and contribute to
revealing the pathological mechanism of MI.

MATERIALS AND METHODS

Dataset
The blood gene expression profiles of 166 samples which
incorporate three phases of MI (D0: acute MI, D30: 30-days
post-MI, and Y1: 1-year post-MI) were downloaded with the
gene expression omnibus (GEO) under accession number of
GSE123342 (Vanhaverbeke et al., 2019). There were 65 D0, 64
D30, and 37 Y1 samples. There were 70,523 probes in Affymetrix
Human Transcriptome Array 2.0 corresponding to 30,905 genes.
The probes for the same gene were averaged and the data was
quantile normalized (Bolstad et al., 2003). We wanted to find the
genes with changed expression patterns in post-MI.

Monte Carlo Feature Selection (MCFS)
Monte Carlo feature selection has been a widely used method
for feature selection (Chen et al., 2018a, 2019a,b,d, 2020; Pan
et al., 2018, 2019a,b; Wang et al., 2018; Jiang et al., 2019; Li et al.,
2019). It was originally developed by Draminski et al. (2008).
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It randomly constructed many tree classifiers of the sub datasets
from the original dataset and assigned the importance to a feature
based on how much it participated in the tree classifiers. The java
software dmLab1 with default parameters (Draminski et al., 2008)
was used to apply the Monte-Carlo feature selection method.

To be more specific, the original dataset was divided into s
subsets of m features (m<<d, where d is the total number of
features, i.e., 30,905 genes in this study). Then, for each subset, t
trees were constructed. Therefore, a total of s·t classification trees
were constructed. At last, the relative importance (RI) of each
feature was estimated as follows:

RIg =

st∑
τ=1

(wAcc)u
∑
ng (τ)

IG(ng(τ))

(
no. in ng(τ)

no. in τ

)v
(1)

where IG(ng(τ)) was the information gain (IG) of node ng(τ),
(no. in ng(τ)) was the number of samples in node ng(τ), (no. in τ)
was the number of samples in tree τ, wAcc was the weighted
accuracy over all samples, and u and v were two regular factors
which were set as default.

After running MCFS, all features can be ranked based on their
RI. The higher the RI, the more important a feature was.

Incremental Feature Selection (IFS)
With MCFS, all features were ranked. But we still did not know
how many genes we should choose. Ideally, we wanted the
number of selected genes to be small but their classification
performance to be great. To find the balance and the optimal
signature, we adopted IFS (Chen et al., 2018b, 2019d; Lei et al.,
2018; Li and Huang, 2018; Sieber et al., 2018; Zhang et al., 2018;
Wang and Huang, 2019; Yan et al., 2019). During IFS, a serial of
feature sets F = [f1, f2, . . . , fN] were constructed. N ranged from
1 to 1000. For each feature set, we constructed corresponding
support vector machine (SVM) classifiers using the R function
svm with default parameters in package e10712 and evaluated
the performance using leave-one-out cross validation (LOOCV).
Therefore, we can get a serial of LOOCV accuracies which
corresponded to different feature sets with various numbers of
features. With the help of the IFS curve, we can balance the
model complexity and classification performance. If the number
of features was too small, the performance would be bad. If the
number of features was too large, too much noise would be
introduced and the performance would decrease. The optimal
selection would be achieved when the number of features was
small and the accuracy was high.

Functional Enrichment Analysis
The biological functions of the optimal MI signature genes were
analyzed using hypergeometric enrichment analysis (Shi et al.,
2018a,b). The significance of the signature genes onto Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, Gene
Ontology (GO) biological process (BP), molecular function (MF),
and cell component (CC) were represented with hypergeometric
p values.

1http://www.ipipan.eu/staff/m.draminski/mcfs.html
2https://cran.r-project.org/web/packages/e1071/index.html

RESULTS

Feature Ranking Based on MCFS
Method
In this study, we exploited newly published gene expression
profiles of patients with MI (Vanhaverbeke et al., 2019). Each
patient was represented by 30,905 gene expression features. We
integrated expression profiles of all patients into one matrix for
quantile normalization followed by applying the MCFS method
for ranking analysis. Each feature was assessed by estimating the
relative importance (RI) value. After evaluating all features, we
generated a feature list F in descending order of RI values of
features. The ranked features with RI values were provided in
Supplementary Table S1.

Establishing Classifier Using SVM With
IFS
According to the feature list obtained by the MCFS algorism, the
IFS method was employed to identify optimal feature sets which
could train the best performance for SVM. To save computing
time, we established the series of feature subsets (F1, F2, F3, . . .,
F1000) based on the top 1 to 1000 genes in F. For each feature
set, we established a classifier by SVM algorithm and estimated
optimal parameters through Leave-One-Out Cross-Validation
(LOOCV). The LOOCV accuracies on multiple feature subsets
were shown in Figure 1, from which we can see that the accuracy
reached a plateau area when the top 134 features were used for

FIGURE 1 | The IFS-curve obtained by IFS method. The X-axis represents the
number of features participating in the classification. The Y-axis represents the
LOOCV accuracy produced by SVM. The accuracy reached 0.831 when the
top 134 features were used. When even more features were added, the
accuracy did not increase too much. It reached the plateau area. Therefore, to
balance the number of features and the accuracy, 134 features were selected.
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TABLE 1 | The confusion matrix of the predicted results using the 134 features.

Predicted D0* Predicted D30** Predicted Y1***

Actual D0* 47 12 6

Actual D30** 2 58 4

Actual Y1*** 1 3 33

*, acute MI; **, 30-days post-MI; ***, 1-year post-MI.

building the classifier. The 134 optimal features were listed in
Supplementary Table S2. The confusion matrix of the predicted
results using the 134 features was shown in Table 1. It can be seen
that all three classifiers had a great performance.

Cluster Analysis With Optimal Features
In order to confirm the performance of identified optimal
features/genes representing different phases of samples, we

performed cluster analysis on expression profiles of 134 optimal
genes in 166 samples which incorporate three phases of MI
(D0: acute MI, D30: 30-days post-MI, and Y1: 1-year post-MI).
We used a heatmap to visualize the expression of such optimal
genes among three groups of samples (Figure 2). The cluster
tree illustrated that most samples belonging to the same phase
can be clustered together and different phases were classified into
different branches. In addition, these optimal genes were also
classified into three clusters which correspond to high expression
in three phases. The largest gene cluster with 90 genes was highly
expressed in D0, the cluster with 16 genes had a high expression
of D30, and the cluster with 28 genes was highly expressed in Y1.

The expression levels of genes like KLHL8, HCLS1, MOB3A,
IL17RA, ETF1, ZFAS1, CRK, MXD1, UBXN2B, FCAR, and
EXTL3 decreased in post-MI while the expression levels of
genes like DCK and RNU4-7P increased in post-MI. We plotted
the boxplots of several representative genes in Figure 3. For

FIGURE 2 | Heatmap of all MI samples on the top 134 genes. The columns refer to samples and the rows refer to genes. Different phases of samples were colored
by green (D0 represents acute MI), red (D30 represents 30-days post-MI), and blue (Y1 represents 1-year post-MI), respectively. It can be seen that the samples from
different time points had different expression patterns. For each time point, there was a corresponding cluster with highly expressed genes at this time point.
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FIGURE 3 | The boxplots of representative post-MI expression patterns. The expression level of genes like DCK (A) and RNU4-7P (B) increased in post-MI while the
expression levels of genes like FCAR (C) and IL17RA (D) decreased in post-MI. These expression patterns may reveal the mechanisms of MI.

example, in Figure 3C, the expression levels of FCAR on D0 was
significantly higher than on D30 and the expression levels on
D30 was significantly higher than on Y1. There was a consistent
post-MI trend of FCAR. These expression patterns may reveal the
mechanisms of MI. FCAR is a member of the immunoglobulin
superfamily and encodes a receptor for the Fc region of IgA. The
cell surface receptors for immunoglobulin, such as the protein

of FCAR, can activate many inflammatory processes involved
in atherosclerosis and coronary artery disease (Daëron, 1997;
Gavasso et al., 2005). The variation in FCAR which causes an
amino acid alteration was found to increase the risk of MI
and coronary heart disease, indicating the potential functional
role of FCAR in the development of cardiovascular disease
(Iakoubova et al., 2006, 2008).
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Functional Enrichment Analysis on
Optimal Features
We next performed functional enrichment analysis on these 134
optimal features/genes. A hypergeometric distribution test was
applied to calculate p value to determine the significantly
enriched entries. Firstly, we performed Gene Ontology
enrichment analysis on the gene set. In biological progress
aspect, the top 3 GO terms were GO: 0044264, GO: 0046903,
and GO: 0005976, which correspond to cellular polysaccharide
metabolic process, secretion, and polysaccharide metabolic
process, respectively (Supplementary Table S3). The top GO
term of cellular component was GO: 0005964, corresponding to
phosphorylase kinase complex (Supplementary Table S4). The
most significantly enriched GO term of molecular function was
GO: 0004908, which was annotated to interleukin-1 receptor
activity (Supplementary Table S5). Secondly, KEGG enrichment
analysis was applied to discover the signaling pathways involved
in these optimal genes. In this part, we found the insulin
signaling pathway (hsa04910) was the top enriched KEGG
pathway (Supplementary Table S6).

Analysis of Gene Interaction Networks
To investigate the correlation of optimal genes, we applied gene
interaction analysis on 134 features/genes to construct gene
interaction networks. Proteins encoded by such classes of genes
were input into a STRING database (Szklarczyk et al., 2018),
mining interaction relationship. Although part of the genes
showed no association with other genes, we found an interaction
network consisting of dozens of genes and predicted three hub
genes, including IL1R1, TLR2, and TLR4 (Figure 4), which may
interact with each other to play a non-negligible role in the
progression of MI.

IL1R1, TLR2, and TLR4 showed promising associations
with MI. It was reported that the knockout of IL1R1 caused
a reduction of leukocyte production after MI, leading to a
decreased inflammation with better outcome (Sager et al., 2015).
In another mice study, the up-regulated IL1R1 at 7 days post-MI
prolonged the inflammation by suppressing neutrophil apoptosis
(Iyer et al., 2015).

TLR2 plays a fundamental role in the activation of
innate immunity (Binder et al., 2002). There are usually
high levels of cytokines that result in inflammation in
MI patients; TLR2 served as a key receptor to activate the
corresponding pathways (Pagano et al., 2012). The experimental
data indicated that circulatory TLR2 is relevant to different
manifestations of myocardial I/R injury (Arslan et al., 2010).
And the inhibition of TLR2 has beneficial effects on I/R
injury in a murine model of MI (Arslan et al., 2009). TLR2
is the key receptor which can induce the inflammation
after MI, therefore many MI-related genes show close
interactions with TLR2.

TLR4 regulates the cytokines after cardiac damage (Arslan
et al., 2010). Activation of TLR4 was related to myocytic
inflammatory reaction in MI patients 14 days after onset,
suggesting that TLR4 signaling plays a role in the progress after
MI (Satoh et al., 2006).

DISCUSSION

Optimal Genes Associated With
Classification of MI
Using the feature selection, 134 genes were extracted and
exhibited an excellent performance in our prediction model
of SVM, suggesting that these genes may participate in the
progression of MI. Here, we took some of the selected genes as
examples to give a detailed discussion to validate the relevance
of a given gene in distinguishing different pathological phases of
MI. Through a literature review, several experimental evidences
or analysis results have been found to confirm the reliability
of our prediction.

DLGAP1-AS1
The top ranked feature identified by our computational analysis
turned out to be DLGAP1-AS1, an RNA gene which is affiliated
with the lncRNA class. A recent publication has reported that
high expression of lncRNA DLGAP1-AS1 was detected in rats
with acute ischemia-reperfusion (I/R) injury. And decreased
DLGAP1-AS1 can alleviate vascular endothelial cell injury via
PI3K pathway (Shen et al., 2020). The cause of I/R injury is
mainly attributed to the reperfusion of the MI area, and vascular
endothelial cells are the key defense with the occurrence of I/R
injury (Carden and Granger, 2000; Causey et al., 2012). So, it
came to the inference that down-regulated DLGAP1-AS1 serves
as the protective regulator to mediate vascular endothelial cells
in preventing I/R injury after the MI. This builds relevance for
the alteration in DLGAP1-AS1 expression in the progression of
MI. Besides that, gene DLGAP1 showed significant differential
expression in Flk-1 knockout mice under the treatment of heart
perfusion (Thirunavukkarasu et al., 2008). Flk-1 is one of the
most important receptors that trigger cardioprotective signals
and plays a crucial role in I/R injury (Shalaby et al., 1995; Addya
et al., 2005), as DLGAP1-AS1 can target DLGAP1 and regulate
its expression. This finding provided further support to suggest
DLGAP1-AS1 was closely related to the progression of MI.

PYGL
The following ranked gene was Glycogen Phosphorylase L
(PYGL), which encodes a homodimeric protein that is involved
in galactose metabolism (Tomihira et al., 2004). Early research
has mentioned the application of glycogen phosphorylase in the
diagnosis of myocardial ischemic injury and infarction (Krause
et al., 1996; Mair, 1998). Recently, PYGL was reported to display
an up-regulated expression in an acute MI cohort compared
to normal controls (Zhang et al., 2017). Another study has
demonstrated that up-regulated PYGL may induce the RIP1-
dependent necrosis after I/R injury, implying that PYGL is
associated with the subsequent progress after AMI and I/R injury
(Oerlemans et al., 2012). This evidence proves our prediction
results were reasonable.

MEGF9
MEGF9 was also identified as an important gene related to the
classification of MI. MEGF9 is a protein coding gene and is
associated with Fiedler’s Myocarditis disease. Some studies have
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FIGURE 4 | Gene networks containing IL1R1, TLR2, TLR4, and other related genes. These gene interactions were extracted from the protein-protein interaction
network reported in a STRING database and plotted by the online drawing tool of STRING. IL1R1, TLR2, and TLR4 were located in the center positions and were
hub genes.

observed differentially expressed MEGF9 and identified it as the
key gene involved in AMI and MI (Cheng et al., 2017; Qiu and
Liu, 2019). As demonstrated by genome-wide linkage analysis in
autosomal dominant congenital heart defects, the risk region in
chromosome 9q was found and MEGF9 turned out to be one
of the candidate genes in this position. However, no mutations
were found in this gene through the sequence analysis, suggesting
that MEGF9 may play its role by post-transcriptional regulation
instead of at the genome level (Van De Meerakker et al., 2011).
Hence, the specific expression pattern could be a signature for
diagnosing MI and even distinguishing different phases of MI.

PHC2
Next, another gene called PHC2, which is associated with the
metabolism of proteins, was selected by our computational
analysis. PHC2 was reported as one of the differentially expressed
genes in patients with MI compared to controls by bioinformatics
screening (Wu et al., 2018). Another study also confirmed the key
role of PHC2 in the pathogenesis of MI through protein-protein
interaction network analysis (Qiu and Liu, 2019). These results
implied that PHC2 may act as a hub gene which can mediate some
other genes’ interaction and regulate downstream pathways, and
then influence the progress of MI. Our analysis highlighted the
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importance of PHC2, pointing out that this specific gene may be
applied as a marker for the prediction of recurrent MI.

Through literature review and reasonable inference, the
selected genes mentioned above were all found to play crucial
roles in the progress of MI and show the discriminative ability
to indicate the pathological degree of disease. It validated the
reliability of our prediction model. Considering the length
limitation of the article, we can’t give extended descriptions
of all 134 selected genes. We believed that these 134 selected
genes were meaningful during the development of MI and
its subsequent progression, and they will contribute to the
research of molecular mechanism and provide benefits for the
therapy of disease.

Gene Ontology Enrichment Analysis
Given that the selected 134 genes were deemed as important
features for the classification of different phases of MI, we
performed GO and KEGG functional enrichment analysis to
explore the key biological processes or pathways during the
progress of disease. As shown in Supplementary Tables S3–S6,
we analyzed the enriched GO terms and KEGG pathways which
showed statistical significance. A detailed discussion was given
about the linkage between certain functional sets and MI.

Based on the enrichment results of 134 selected genes, we
found some GO biological process terms with high scores
turned out to be involved in the polysaccharide metabolic
process, including GO: 0044264 and GO: 0005976. As early
as 1965, scientists have noticed the important role of glucose
load in MI (Cohen and Shafrir, 1965). Recent studies reported
that certain polysaccharide compounds can affect myocardial
injury via regulating the inflammation response (Li et al., 2011;
Lim et al., 2016). As demonstrated by experiments on rat,
the polysaccharide extract from Momordica charantia down-
regulated the expression of NF-kappaB and ameliorated oxidative
stress and inflammation, which caused a cardioprotective effect
against MI (Raish, 2017). Polysaccharide metabolism plays an
important role during the progression of MI, so the biological
processes related to polysaccharide metabolism are meaningful
and can be used to indicate the progression of disease based on
its specific pattern.

Apart from GO terms that belong to biological processes, we
found these 134 genes are also enriched in a cellular components
term GO: 0005964 with the highest probability. GO: 0005964
refers to phosphorylase kinase complex. For cardiomyocytes,
the storage of glycogen is important during the emergency
situation. Increasing Ca2+ concentration in cytosol can induce
glycogenolysis by the activation of phosphorylase kinase, which
can alleviate myocardial damage during MI or cardiac surgery
(Raish, 2017). In fact, some phosphorylases have been applied
in the diagnosis of myocardial ischemic injury and infarction
since the serum level of phosphorylase showed a signature
with the diseases (Krause et al., 1996). It is reasonable for
the MI-related genes to be enriched in such GO term that
would mean the phosphorylase play a crucial role during the
progression of MI.

The most enriched GO terms of molecular function turned
out to be interleukin-1 (IL-1)-related functions including GO:

0004908 and GO: 0019966, which represent IL-1 receptor activity
and IL-1 binding, respectively. An interleukin-1 receptor gene
ST2 was increased in the serum after MI, suggesting that this
gene may participate in innate immunity during myocardial
injury (Weinberg et al., 2002). What’s more, ST2 was reported
to be able to predict the clinical outcome in AMI due to its
role in cardiac pathophysiology (Shimpo et al., 2004). Many
publications have observed the elevated serum level of IL-1
receptor in patients with AMI (Shibata et al., 1997; Balbay
et al., 2001). These findings proved the important role of IL-1
in the progression of MI, and confirmed the relation between
selected genes and MI.

KEGG Pathways Enrichment Analysis
The KEGG pathways enrichment analysis provided various
pathway results. Among these, the highest enriched pathway
turned out to be hsa04910, which is an insulin signaling pathway.
Increased insulin can promote the metabolism of glucose to
maintain the balance of blood glucose. The connection between
abnormal insulin signaling and heart disease has already been
reported, in that diabetes mellitus significantly increased the
risk of ischemic heart disease (Miettinen et al., 1998). Insulin
can protect cardiomyocytes from apoptosis through activating
downstream pathways such as PI3K and Akt (Yao et al., 2014).
It was reported that impaired insulin signaling will cause the
dysfunction of mitochondria after MI due to the reduced glucose
transport and oxygen content (Sena et al., 2009). Thus, the insulin
signaling pathway is important during the progression of MI and
influences the pathological degree of disease.

CONCLUSION

Taken together, the gene features yielded by our model showed
strong relevance to the pathological progression of MI, suggesting
their discriminative ability in the classification of different phases
of disease. This validated the reliability of our machine learning
model and proved that it can be used as a novel approach to
predict the status of MI patients. Our work will contribute to
the precise diagnosis and help to decide on the optimal treatment
for each patient with MI. In addition, the genes identified by our
analysis provided new understanding about the pathogenesis of
MI and established a solid foundation for future research.
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