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In electrophysiology, many methods have been proposed for the analysis of action

potential firing frequencies. The aim of this study was to present an algorithm developed

for a continuous wavelet transform that enables the filtering out of frequencies

contributing to the shapes of action potentials (spikes), whilst retaining the frequencies

that encode the periodicity of spike trains. The continuous wavelet transform allows us to

decompose a signal into its constituent frequencies. A signal with a single event, such as

a spike, is composed of frequencies that characterize the shape of the spike. A signal with

two spikes will also be composed of frequencies characterizing the shape of the action

potential, but in addition will include a substantial portion of its power at the frequency

corresponding to the time-difference between the two spikes. This is achieved by clipping

peaks from the wavelet amplitudes that are narrower than a given minimum number

of phase cycles. We present some application examples in both synthetic signals and

electrophysiological recordings. This new approach can provide a major new analytical

tool for analysis of electrophysiological signals.

Keywords: artifact removal, non-harmonic model, action potential, wavelet transform, time-frequency analysis

1. INTRODUCTION

In electrophysiology, non-stationary quasiperiodic time series signals are common. The continuous
wavelet transform (Mallat, 2008) is a useful tool for analysing such signals. It decomposes a time
domain signal x(t) into the time-scale domain w(t, s), by cross-correlating x(t) with a wavelet
function ψs(t) that contains an intrinsic frequency fs inversely proportional to scale s and localized
about time t = 0. Intuitively, w(t, s) is a measure of the strength of oscillation of x(t) at a frequency
fs within a neighborhood at time t of duration proportional to s.

The wavelet transform is ideally suited to measuring the time-varying frequencies of smoothly
oscillating signals. However, in many cases, signals could be described as more “spiky” than
“smooth.” A spiky signal is characterized by short-duration changes in amplitude separated by
much longer quiescent periods, where each short-duration change is considered an event of interest
and referred to as a “spike.” For such signals, even though the wavelet transform does capture the
frequency at which the spikes occur, it also produces harmonic artifacts that capture the higher
frequency changes characterizing the shape of each individual spike.

The conventional approach for measuring the frequency of spiky events is to identify
the events via peak-detection (e.g., Nenadic and Burdick, 2005) and report the intervals
between adjacent-in-time events. The main advantage of such an approach is that the precise
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locations-in-time of each event are found, and so the precise
intervals between events can be obtained. In some application
domains, such as spike sorting (Lewicki, 1998), event times as
well as the event shapes need to be identified so that the signal
can be decomposed into its additive component signals based on
the shapes of events, and then the event frequencies calculated
for each signal separately. Precise event times also allow for the
inference of parameters of non-periodic activity, for example,
the instantaneous rate of a Poisson point process (Adams et al.,
2009). In such cases, the algorithm presented in this paper would
be of limited use.

The algorithm presented here (in Algorithm 1), which we call
“mesaclip,” does not identify individual events. Rather it clips
amplitudes from the time-scale representation of a signal that
span a period of time too short to contribute to multiple events.
This is done by removing amplitudes from the result of a wavelet
transform that are shorter than k cycles, where k is the algorithm’s
only parameter and k = 2 is an excellent default.

It should be noted that the purpose is not to remove spike
data from the original time-domain signal, such as described
in Ehrentreich and Sümmchen (2001) or Veneri et al. (2011).
Retaining the spikes is essential to recovering the frequency of
those events. An input spike event will have a transient “peaked”
response at higher frequencies, and it is this response that is
clipped, while the event’s contribution to lower frequencies is
retained, exposing the frequency of a train of such events.

A motivation for using the wavelet transform in conjunction
withmesaclip, over peak detection, is the ability to reveal multiple
simultaneous frequencies in a signal, such as the frequency of
recurring bouts of events. Also, the phase of the signal at each
frequency is retained, allowing for the phase-difference to be
calculated against a second signal via the cross wavelet transform,
a technique useful for computing interactions between two or
more signals (Torrence and Webster, 1999; Bloomfield et al.,
2004; Grinsted et al., 2004).

A recent approach, called de-shape, for removing the influence
of the wave-shape from the time-frequency response is presented
in Lin et al. (2018). It appears to have similar qualitative results
to the algorithm presented in this paper. There, the short-time
Fourier transform (STFT) is multiplied by the inverse short-time
cepstral transform (iSTCT). The STFT contains the harmonic
series, that is, integer multiples of the fundamental frequency,
and the iSTCT contains a sub-harmonic series, which are integer
divisions of the fundamental frequency. Multiplying the two
removes the harmonics and retains the fundamental frequency.

This paper is organized as follows: section 2 gives a brief
overview of the wavelet transform, section 3 describes the
mesaclip algorithm that is the main contribution of this paper,
section 4 presents results on real and synthetic signals, section
5 is a discussion of the results, limitations, and advantages, and
section 6 concludes the paper.

2. WAVELET TRANSFORM

The wavelet transform converts a signal from the time-domain to
the time-frequency domain, such that for each point in time there

is a decomposition of the signal around that point in time into its
constituent frequencies. More precisely, the transform converts
to a time-scale domain, but appropriate mapping from scale to
frequency can be chosen.

For computing the wavelet transform on an input signal x(t) ∈
R, we choose a wavelet basis functionψ(t) ∈ C and set of positive
time scales S = {s1, . . . sL}. An admissible wavelet function is one
which has zero mean and its Fourier transform is continuously
differentiable (Farge, 1992), with an extra desirable property that
it be localized in both time and frequency. For each scale, a
wavelet is constructed by effectively stretching in time the wavelet
basis function by that scale, while normalizing to unit energy (1).

ψs(t) =
1
√
s
ψ

(

t

s

)

(1)

ws(t) = (x ⋆ ψs)(t) (2)

To compute the transform, for each scale s ∈ S, we compute the
cross-correlation of the signal with the wavelet (2). A finite set of
scales is explicitly chosen here, since the algorithm presented in
this paper operates on each scale independently, and to formalize
this we’ve moved the scale argument into a subscript w(t, s) →
ws(t). The resulting output is a time-scale representation of the
signal, which can be mapped to a time-frequency representation
by the reciprocal function f = c/s, for frequency f , scale s, and a
ψ-dependent constant factor c. See Torrence and Compo (1998)
or Mallat (2008) for an introduction to wavelet analysis.

Another way to map from scales to frequencies is via
synchrosqueezing (Daubechies et al., 2011). Synchrosqueezing
calculates the frequency not as a function of the scale but
by redistributing the wavelet amplitudes based on the time-
derivative of the phase (i.e., instantaneous frequency). This
approach is included in the examples presented in this paper,
although it is applied as a post-process to the mesaclip algorithm,
that is, the redistribution of amplitudes occurs after they have
been clipped.

3. MESACLIP

The result of the wavelet transform, for a scale s ∈ S, can be
written in polar-form as w(t) = r(t)eiφ(t) for some time-varying
amplitude r ∈ R

≥0 and phase φ ∈ R (omitting explicit scale
identification for brevity). An unwrapped phase φ is assumed,

and that φ is non-decreasing dφ(t)
dt
≥ 0. If the phase is not non-

decreasing, then we set negative instantaneous frequencies to 0,
thereby enforcing monotonicity.

A difference in phase from time t1 to time t2 of φ(t2) −
φ(t1) = 2πk means there are k cycles over that time interval
in the signal at the given scale s. A substantially high peak in r
over this time-range suggests a substantially strong oscillation. If
the width of such a peak is localized over a short phase-range,
φ(t2) − φ(t1) < 2πk, then the peak spans fewer than k cycles.
If we clip the amplitude of all peaks that are narrower-in-phase
than some given constant 2πk, down to an amplitude such that
the tops of resulting plateaus are of width 2πk, then we will
have effectively removed amplitudes contributing to oscillations
shorter than k cycles.
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FIGURE 1 | Given γ = 3, the top subplot shows the amplitude in (5) for a range of βs, with a clear minimum at the optimal β∗ = 1.58174. The four bottom plots show

time-domain versions of the Morse wavelet for a selection of βs, where gray outlines the amplitude envelope, and blue and orange curves represent the real and

imaginary components of the wavelet.

To illustrate the idea of clipping formally, consider a function
g(ϕ) = r(φ−1(ϕ)) that maps from phases to amplitudes1. We can
wrap additional scaffolding around g with

g(ϕ) = max
{

h
∣

∣ (∃[a, b] ⊂∅ R)(∀ϕ′ ∈ [a, b])
[

ϕ ∈ [a, b] ∧ r(φ−1(ϕ′)) ≥ h
]}

, (3)

which, for a given phase ϕ, finds the largest h such that there
exists at least one non-empty phase interval [a, b] containing ϕ
and where the amplitude at all elements of [a, b] is no less than h.
Although (3) appears redundant, it allows us to now append the
extra condition b − a ≥ κ , which specifies a minimum width κ
for each interval, resulting in the function

gκ (ϕ) = max
{

h
∣

∣ (∃[a, b] ⊂∅ R)(∀ϕ′ ∈ [a, b])
[

ϕ ∈ [a, b] ∧ r(φ−1(ϕ′)) ≥ h ∧ b− a ≥ κ
]}

. (4)

For κ = 2πk, the function g2πk(ϕ) corresponds to one where the
tops of narrow high peaks have been clipped away leaving lower
plateaus of width no less than k cycles. Note, it is the peaks in the
wavelet amplitudes that are clipped, not the spikes in the original
time-domain signal.

A critical component of the algorithm is an appropriate choice
of wavelet function. We use the Morse wavelet, which generalizes
many conventional wavelet functions (Lilly and Olhede, 2012),
and remains analytic even for highly time-localized instances.
It admits two parameters, β and γ . We use a value of γ =
3 as it results in wavelets that are symmetric in frequency
space and has a small Heisenberg area (Lilly and Olhede, 2009).
We choose the value β = β∗ heuristically, where the value
β∗ = 1.58174 minimizes (practically zeroes) the amplitude of
the first harmonic of the wavelet transform of a Dirac comb,
halfway between two successive Dirac delta functions. Since
the discrete-time Fourier transform of a Dirac delta function

1Such a mapping does not exist in general due to instantaneous frequencies of 0,

but we can work around this by treating φ−1(ϕ′) as a fiber and later replacing

r(φ−1(ϕ′)) ≥ h with {t ∈ φ−1(ϕ′) | r(t) ≥ h} 6= ∅.

is 1, then β∗ can be calculated (5) by numerically minimizing,
at the middle time sample n = N/2, the absolute value of
the inverse discrete Fourier transform of the frequency-domain
Morse wavelet basis function 9β ,γ scaled to a peak frequency
of 2Hz,

β∗ = argmin
β

∣

∣ FFT−1
(√

s9β ,γ (sω)
)

[n]
∣

∣ (5)

9β ,γ (ω) = 2 (eγ /β)β/γ ωβe−ω
γ

(6)

s =
ωβ ,γ

2π

1

2
(7)

ωβ ,γ = (β/γ )1/γ (8)

where ω represents an array of N frequencies from 0 to
2π(N − 1) radians. Figure 1 shows the amplitude in (5) for
β ranging from 0.5 to 16, with a clear minimum at β =
1.58174.

Now that a general description of the desired effect has
been outlined, the following introduces the algorithm in detail.
Mesaclip takes two real-valued arrays r and φ, and a real-valued
scalar parameter κ . In the context of our problem domain, the
parameter will be set to κ = 2πk, where k represents a number
of cycles. The array r contains the wavelet amplitudes and φ
contains their unwrapped non-decreasing phases, for any given
scale. The algorithm works by iterating over peaks in r, and
for each peak expanding a range of indexes represented by the
pair of inclusive end-indexes (a, b), reinitialized each time we
advance to a new peak index. Either the range expands to a
sufficient width, φ[b] − φ[a] ≥ κ , such that it can be clipped
with r[a . . . b]← min(r[a], r[b]), or a trough is reached at one of
the range’s ends in which case either the range can be combined
with a previous range or it is pushed onto a stack of previous
ranges for later combination. Once all peaks have been processed
in this way, the peaks located at any remaining ranges on the
stack are clipped. See Algorithm 1 for extra detail including
edge cases. The time-complexity of mesaclip is O(n), and it has
practically negligible impact on the performance of the overall
wavelet analysis.
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Algorithm 1:MESACLIP(r,φ, κ).

input/output: r ∈ R
N , values representing amplitudes to clip in-place

input : φ ∈ R
N , non-decreasing locations of each sample, representing phases for testing against κ

parameters : κ > 0, clip peaks narrower than a difference of κ in φ
1 if φ[N]− φ[1] < κ then

2 r[1 . . .N]← min(r[1 . . .N])
3 return

4 create an empty stack
5 for each peak index i in r, in order of increasing indexes do
6 (a, b)← (i, i)
7 loop

8 if φ[b]− φ[a] ≥ κ then
9 r[a . . . b]← min(r[a], r[b])
10 break

11 if a > 1 and r[a] is a trough then

12 if stack top == ( , a) then
13 (t, )← pop stack
14 r[t]← min(r[t], r[a])
15 a← t
16 continue

17 else

18 push (a, b) onto stack
19 break

20 if b < N and r[b] is a trough then

21 push (a, b) onto stack
22 break

23 if a == 1 then b← b+ 1
24 else if b == N then a← a− 1
25 else if r[a− 1] > r[b+ 1] then a← a− 1
26 else b← b+ 1

27 for each remaining item (a, b) on the stack do

28 r[a . . . b]← min(r[a], r[b])

If sufficient plateau
width achieved

else if reached
trough at left end
of range

else if reached
trough at right end
of range

else
expand range

Combine
ranges

Figure 2 depicts some key moments in the execution of
mesaclip, where the values of φ are uniformly increasing for the
purpose of simplifying the illustration, but in practice they would
correspond to a non-uniformly increasing phase.

4. RESULTS

To illustrate the effect of the mesaclip approach compared to a
conventional wavelet transform approach, Figure 3 shows three
artificial signals (a-c) and one real EMG signal recorded from
smooth-muscle (d). A Python implementation is available at
https://github.com/lwiklendt/mesaclip.

We also compared the mesaclip approach to simple spike-
detection based on threshold crossing, which we refer to as
“peak.” The peak method works by first deciding on a threshold
voltage level. Each interval of time with contiguous samples
above the threshold is considered a peak. The spike time is given
by the time of the maximum voltage within that peak interval.
Figure 4 shows a comparison between these two approaches
applied to EMG data recorded from rodent smooth muscle.

To explore how the mesaclip approach compares to the peak
approach, we simulated signals of varying degrees of signal-
to-noise ratio (SNR) and spike regularity. To generate each
signal, we randomly sampled spike trains where the inverse of
each inter-spike-interval (ISI) was drawn from the log-normal
distribution with µ = log2(8) and σ ∈

{

1, 12 ,
1
4 ,

1
8 ,

1
16

}

. Each
spike train was then rasterized into a signal with 0 where
no spike occurred and 1 where a spike occurred. The signal
was then Gaussian-smoothed with a width of σ = 0.01 to
simulate membrane potential bumps, and a single time-sample
spike was added with a noisy height drawn from 1/ (1+ ex)
with x ∼ N (0, 1) to simulate spike-height variability. Pink
noise (1/f ) was added with varying degrees of SNR. For
each level of regularity and SNR, 1,000 spike train signals
were generated. The second and third rows of Figure 5 show
examples of the spike trains and the generated signals, with
the top row showing the histogram of inverse ISIs from all
spike trains.

For each signal, the mesaclip algorithm was run and the global
wavelet spectrum calculated by averaging the squared amplitudes
over time. Although k = 2 is recommended, k = 4 and
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FIGURE 2 | Execution of mesaclip on an example input with 4 peaks, with parameter κ = 12, and for φ a uniformly increasing array of indexes giving horizontal

locations left-to-right, and r plotted as the height. Dots represent the 47 individual array elements in φ and r. Sub-captions reference the algorithm line-numbers in

bold. Light-gray represents the original input r, and dark-gray represents the current state of the clipped r. Green represents the current range “(a,b),” and magenta

represents ranges on the stack. (A) First peak reached a trough on the right-end of its range, and is placed on the stack (20–21). (B) Second peak achieved the

sufficient width, and is clipped (8–9). (C) Third peak reached a trough on the right-end of its range, and is placed on the stack (20–21). (D) Fourth peak reached a

trough on the left-end of its range (11), and a touching range is found on top of the stack (12) …. (E) …so the two ranges are combined (13–15) into a single range,

which then continues to expand in the (7) loop. (F) The combined range of the third and fourth peaks finally reaches the sufficient width, and is clipped (8–9). (G) All

peaks have now been processed, terminating the (5) for-loop and moving on to (27). (H) Each range remaining on the stack is clipped (27–28).

k = 8 have also been shown. Concurrently, the peak approach
for 3-levels of threshold (with proportions 0.3, 0.5, and 0.7)
between the signal’s mean and its maximum were calculated,
and the histogram of the inverse ISIs calculated over the same
frequency domain as for the mesaclip approach. Figure 5 shows
examples of the spike signals and the two frequency estimation
approaches, and Figure 6 shows a comparison of errors in the
frequency estimation.

5. DISCUSSION

The mesaclip algorithm depends on the highly time-localized
wavelet described in section 3, which results in a necessarily
poorer frequency localization due to Heisenberg uncertainty
(Mallat, 2008). This limitation should be taken into account
with regard to the characteristics of the signal to be analyzed

when deciding whether to use mesaclip, or if using mesaclip
whether to apply a post-processing step to refine the frequency
distribution. An analogy would be if one were to average inter-
spike-intervals (ISIs) over successive time-blocks. Fewer but
longer blocks would result in a tighter distribution of average
ISIs, whereas a greater number of shorter blocks would result
in a wider distribution of average ISIs. One could use a post-
processing step to combine multiple smaller blocks to refine the
averages. However, such a refinement algorithm is not covered in
this paper.

The results in section 4 show how well the proposed
mesaclip approach works on a variety of signals without any
parameter tuning, compared to the peak approach which is
highly dependent on the arbitrary choice of threshold. In
particular, Figure 5 shows that the mesaclip approach works
well on various signal-to-noise ratios and does not suffer from
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FIGURE 3 | Signals are shown in black above each of the four subplots. The middle boxes depict the wavelet amplitudes for a conventional Morse (β = 12, γ = 3)

wavelet transform approach. The bottom boxes show the amplitudes for the mesaclip approach with k = 2 and a Morse (β = 1.58174, γ = 3) wavelet.

Synchrosqueezing is applied in both approaches as a post-process. The global wavelet spectrum is drawn to the right of each box, with horizontal red dotted lines

annotating true frequency properties of the signal. (A) A constant 1Hz signal gradually morphing from smooth oscillation to a spiky signal. Harmonic artifacts at 2, 3

Hz, and higher creep into the conventional wavelet approach, but are missing in the mesaclip approach. (B) A bursting spiky signal, showing mesaclip removes

harmonic artifacts while retaining both spiking and bursting frequencies. (C) A thresholded chirp gradually increasing from 1 to 10 Hz, showing mesaclip can handle a

varying frequency. (D) A signal obtained from a real EMG recording of smooth muscle. The positive and negated negative components are transformed separately and

their results are summed. The horizontal red dotted line corresponds to the frequency obtained by inverting the average inter-spike-interval of the 12 clear spikes. The

conventional approach suffers from harmonic artifacts not present in the mesaclip approach.

the subharmonic artifacts that the peak approach does on the
simulated data. The subharmonic artifacts are due to noisy spike
heights randomly falling below the chosen threshold.

Since phases are retained in the mesaclip approach, one
can compute the phase-difference between two signals. Another
potential approach for detecting phase-differences between two
spike trains is to apply cross-correlation. However, cross-
correlation is a global measure that can reveal phase-differences
only in stationary signals. To apply to non-stationary signals a
windowing function and choice of window size is needed. An
appropriate window size depends on estimating the time scale at

which the stationarity breaks down. Also, consider that phase-
differences can be frequency dependent. That is, two spike trains
may be offset by some phase and occur in bursts offset by a
different phase that could even have opposite sign. Additionally,
both subharmonic and harmonic artifacts are present in auto and
cross-correlations. Accounting for all these problems and free
parameters leads to a cumbersome and potentially error-prone
use of cross-correlation.

The principle difference between the mesaclip and peak
approaches is that the mesaclip approach is essentially an
amplitude-integrated or area-under-the-curve (AUC) approach
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FIGURE 4 | A comparison of the mesaclip method and peak-detection on EMG data from the rodent smooth-muscle, with individual recordings shown in tri-panels

(A–I). In each tri-panel, on the left is shown the signal of voltages from which baseline drift has been removed, and on the right are drawn results of the two

approaches, where the lower corresponds to the mesaclip approach and the upper the peak approach. The result of mesaclip approach is a squared-amplitude

(y-axis) per frequency (x-axis). The peak approach requires a threshold at which to identify peaks in the signal, which is represented on the y-axis going from the

bottom representing the signal mean to the top representing the signal maximum. Three example thresholds of 0.3 (blue), 0.5 (orange), and 0.7 (green) are drawn

highlighting those proportions of the mean-to-max level. The intensity of black represents the count of instantaneous frequencies (inverse inter-spike-intervals) scaled

to the maximum per threshold. A slight Gaussian smoothing over frequency (σ = 0.06 log Hz) was performed on the results for better visualization.

and the peak approach is an amplitude-threshold approach. The
AUC of any particular spike is particularly small, and so the
spikes themselves have a small contribution to the result, and

we rely on the underlying membrane-potential to inform the
frequencies. If the underlying membrane-potential is a poor
representation of the activity one wishes to observe, for example,
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FIGURE 5 | Artificial spike-trains of varying degrees of regularity (columns) and noise were generated. The top three rows show, from the top, the distribution of true

instantaneous frequencies from all spike trains, a rasterization of true spikes from 100 spike-train examples, and a single spike train signal for each of the 5

signal-to-noise ratios (SNR). The lower half of the figure shows, for each SNR per row, the distribution of frequency values for each estimation method as bands of

95% bootstrap confidence intervals over the 1,000 generated spike trains. The values for the mesaclip approach are the time-averaged squared wavelet amplitudes,

and for the peak approach are the histogram counts, each normalized to a sum of 1.
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FIGURE 6 | Errors in estimating various parameters of the frequency distribution of artificial spike signals, plotted over a range of signal-to-noise ratios (SNR).

Columns represent different degrees of variability, corresponding to those in Figure 5. Four pairs of rows show different parameters of estimation, where ArgMax finds

the frequency with maximum value, and the Median, Mean, and Variance, correspond to those estimates of frequency weighted by the values. The SNRs of (0, 0.1,

0.29, 1, 2.9) from Figure 5 are identified with vertical dotted lines. Errors are shown as root-mean-squared (RMS) in the upper of each row-pair, and since the error

may be biased based on the approach, the lower row of each pair is divided by the SNR = 0 error. Bands are shown as 95% bootstrap confidence intervals of 1,000

spike train signals.
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if there is a relatively low-amplitude but high-powered oscillating
artifact together with high-amplitude but low-powered spikes,
then with the mesaclip approach the oscillating artifact will
drown-out the spikes. In this case, if the oscillating artifact cannot
be filtered out then a peak approach should be considered instead.
If the spikes are very clear (as in Figure 3D), then the peak
approach is simpler and may be sufficient.

6. CONCLUSION

An algorithm for the removal of high-frequency artifacts from
the amplitudes of a wavelet transform was presented. The
artifacts are a result of non-sinusoidal oscillations characterized
as spikes of short duration or sharp edges, separated by longer
intervals. The algorithm removes these artifacts by inspecting
the phase differences of wavelet amplitudes and clipping their
amplitudes when the phase differences are shorter than a
specified number of cycles. This results in a considerable
proportion of the remaining amplitudes pertaining to the
intervals between spikes, allowing clearer identification of the
frequencies at which events occur.

The proposed approach: (1) contains no free parameters
beyond k which is application-dependent, recording-
independent, and due to the excellent default k = 2 could
be considered to have no free parameters; (2) allows one to
obtain phase differences at each frequency; (3) the time-window
over which the signal’s instantaneous information is integrated is

optimal for each frequency; (4) is not susceptible to subharmonic
artifacts; (5) the potential problem of harmonic artifacts have
now been solved with the presented mesaclip algorithm.
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