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Human physiological signals are inherently rhythmic and have a hallmark feature in that

even distant intrasignal measurements are related to each other. This relationship is

termed long-range correlation and has been recognized as an indicator of the optimal

state of the observed physiological systems, among which the locomotor system. Loss

of long-range correlations has been found as a result of aging as well as disease,

which can be evaluated with detrended fluctuation analysis (DFA). Recently, DFA and

the scaling exponent α have been employed for understanding the degeneration of

temporal regulation of human walking biorhythms in, for example, Parkinson disease

(PD). However, heterogeneous evidence on scaling exponent α values reported in the

literature across different population groups has put into question what constitutes a

healthy physiological pattern. Therefore, the purpose of this systematic review was to

investigate the functional thresholds of scaling exponent α in young vs. older adults,

as well as between patients with PD and age-matched asymptomatic controls. Aging

and PD exhibited a negative effect size (i.e., led to decreased long-range correlations)

of −0.20 and −0.53, respectively. Our meta-analysis based on 14 studies provides

evidence that a mean scaling exponent α threshold of 0.86 [2 standard error (0.76, 0.96)]

is able to optimally discriminate temporal organization of stride interval between young

and old, whereas 0.82 (0.72, 0.92) differentiates patients with PD and age-matched

asymptomatic controls. The optimal thresholds presented in this review together with the

consensus guidelines for using DFA might allow a more sensitive and reliable application

of this metric for understanding human walking physiology than has been achieved

to date.

Keywords: fractal fluctuations, fractal temporal structures, gait variability, stride interval variability, detrended
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INTRODUCTION

Walking is regulated and coordinated through spinal and
supraspinal sensorimotor networks allowing humans to adapt
to both intrinsic and extrinsic challenges and perturbations
(Dingwell et al., 2010; Takakusaki, 2017). During this regulation
to achieve stable walking, natural fluctuations are present
between strides in both the temporal (e.g., stride interval)
and spatial (e.g., step width) domains (Hausdorff, 2005, 2007).
These stride-to-stride fluctuations during walking have been
characterized using approaches that evaluate not only the
overall magnitude (Hausdorff et al., 2001; Konig et al., 2016a),
but also the temporal organization of this walking variability
(Hausdorff, 2007; Stergiou and Decker, 2011). Parameters that
are used to evaluate the magnitude of walking variability are
highly useful [e.g., standard deviation (SD) values have shown
potential diagnostic and prognostic applications in a number
of pathologies; (Hausdorff, 2005, 2009; Stergiou and Decker,
2011; Konig et al., 2016a,b; Ravi et al., 2019)], but do not
provide information on how walking behavior evolves over time
(West, 1990; Lipsitz and Goldberger, 1992). Nevertheless, a large
number of studies that have evaluated the temporal organization
of walking variability support the hypothesis that stride-to-stride
fluctuations in the duration of gait cycles (synonymous with the
stride interval, also sometimes termed “stride time”) exhibit long-
range correlations; that is, at any instance of walking, one-stride
interval is correlated to stride intervals at relatively distant time
points (Hausdorff et al., 1995; Griffin et al., 2000; Hu et al., 2004).
While these long-range correlations are independent of the size
of the window, or “scale” of observation, the decay of these
correlations can be modeled as a power law (West and Griffin,
1999). Furthermore, the rate of decay can be quantified using
scaling exponents that analytically characterize the presence of a
temporal organization within an observed time series (Peng et al.,
1995a; West and Griffin, 1999).

Detrended fluctuation analysis (DFA) allows a
characterization of the nature of long-range correlations in
the stride interval of walking (Pierrynowski et al., 2005; Bashan
et al., 2008; Damouras et al., 2010; Choi et al., 2015; Marmelat
et al., 2018). The scaling exponent α calculated using this method
is robust against non-stationarity, artifacts, and related missing
data (Chen et al., 2002; Ma et al., 2010). Importantly, however,
it allows the temporal organization of walking variability to
be characterized accurately within relatively short time series
consisting of only a few hundred or more strides (Delignieres
et al., 2006; Almurad and Delignieres, 2016; Kuznetsov and
Rhea, 2017). Scaling exponent α also exhibits good intraday and
interday reliability (Pierrynowski et al., 2005; Choi et al., 2015).
As a result, this method has become favored compared to other
approaches for evaluating temporal organization of walking
variability. Notably, the scaling exponent α is not significantly
correlated with the magnitude of walking variability, and the
two approaches might therefore elucidate different physiological
control mechanisms (Hausdorff, 2007, 2009; Uchitomi et al.,
2013; Ota et al., 2014). In the absence of long-range correlations,
such as a fully random time series, the scaling exponent α

approaches the value of 0.5. Values lower than 0.5 indicate

“antipersistent” behavior (e.g., large stride-to-stride fluctuations
tend to be followed by smaller fluctuations, and vice versa). While
antipersistent behavior has been reported in cases of healthy
cardiac dynamics (Bartsch et al., 2005), it is not commonly
observed in natural or pathological walking patterns. Values
higher than 0.5 indicate “persistent” behavior (e.g., large stride-
to-stride fluctuations tend to be followed by larger fluctuations,
and small stride-to-stride fluctuations by smaller). Previous
research indicates that stride intervals during walking exhibit an
organized behavior and hence generally present persistent long-
range correlations, although the exact length of correlations and
the mechanisms behind this behavior continue to be discussed
(Hausdorff et al., 1995, 1996; West and Scafetta, 2003; Hausdorff,
2007).

Some argue that the presence of long-range correlations is
indicative of deterministic regulation of stride intervals, hence
reflecting stable but flexible walking behavior (ability to adapt to
changing task demands), which is observed in healthy individuals
(Stergiou and Decker, 2011; Manor and Lipsitz, 2013; Terrier
and Deriaz, 2013; Chien et al., 2015; Warlop et al., 2016;
Ducharme et al., 2019). As a result, a scaling exponent α

of ∼1 has traditionally been interpreted to represent healthy
movement patterns (Hausdorff, 2007, 2009; Gow et al., 2017).
Movement disorders due to aging and neurological diseases, for
example, Parkinson disease [PD (Frenkel-Toledo et al., 2005;
Hausdorff, 2009; Marmelat et al., 2018), but also Huntington’s
disease (Hausdorff et al., 1997), as well as cognitive decline
(Lamoth et al., 2011)], are associated with a loss of persistence
(Damouras et al., 2010; Stergiou and Decker, 2011; Ota et al.,
2014; Li et al., 2019) and hence lower scaling exponent α

values (nearer to 0.5). The implication is that neural pathologies
might adversely influence mechanisms that regulate the nature of
long-range correlations in walking. Because of their functional
significance, it is not surprising that such long-range power-
law correlations have also been observed in other physiological
processes including cardiac, respiratory, and neural rhythms, as
well as their deterioration with pathologies (Peng et al., 1995a;
Bartsch et al., 2005; Ivanov et al., 2009; Werner, 2010). However,
the literature also suggests that differences in the values of
scaling exponent α between cohorts (e.g., young vs. older adults,
or between patients with PD and age-matched asymptomatic
controls) are often small (overall cohort differences in scaling
exponent α = ∼0.05). In this respect, a clear characterization
of the relative values of α between populations with differing
neurological statuses is needed. In addition, the interpretation of
the scaling exponent α in human movement research remains
ambiguous as considerable diversity in α values has been
reported across similar population groups (Hausdorff et al.,
1997; Kobsar et al., 2014; Kosse et al., 2016; Dotov et al., 2017;
Marmelat et al., 2018). Importantly, it remains unknown whether
the implementation of DFA could be critical in driving such
inconsistency. As a result, the prognostic value of the scaling
exponent α for characterizing differences in movement patterns,
not only between healthy and pathology, but also due to aging,
remains to be established.

Consequently, the following questions arise: (1) Can the
value of the scaling exponent α truly reflect the “health” of a
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group and/or an individual? (2) If so, what are the optimal
thresholds of the scaling exponent α that distinguish young from
asymptomatic elderly and from pathological walking patterns?
And (3) what methodological techniques are required in order
to provide reliable scaling exponent α estimates? With the aim
to provide science-based evidence for establishing the usage
of scaling exponent α in clinical settings, this study directly
addresses these issues by undertaking a systematic review and
meta-analysis of the literature to understand the thresholds in
scaling exponent α for discriminating young vs. older adults,
as well as between patients with PD [as a neuromuscular
pathology of clinical interest with a relatively well-studied
population (Hausdorff, 2009; Moon et al., 2016)] and age-
matched asymptomatic controls.

METHODS

Publication Search and Selection
A systematic search of the literature was conducted in April
2019 using the databases PubMed, ISI Web of Knowledge,
EBSCO, and EMBASE for peer-reviewed articles. Our aim was
to comprehensively identify studies reporting the effects of aging
and PD on the temporal organization of walking variability. The
inclusion criteria for the studies were as follows: (1) Population
(without Intervention) and Comparison—cohort of old vs.
younger adults, or a cohort of patients with PD vs. age-matched
asymptomatic controls, (2) Outcome—stride interval dynamics
expressed byDFA scaling exponent α, and (3) Task—walking on a
treadmill or overground at a comfortable or self-selected walking
speed. The search string was made specific to each database
and was constructed using Boolean operators so that an “AND”
combination of terms specified the task (e.g., walk∗), outcome
(e.g., DFA), and population (e.g., old∗). Within these categories,
synonyms as well as additional terms were specified using the
“OR” operator, while a “NOT” condition was used to exclude
publications involving, for example, animals, children, and so
on. The search was additionally limited to original research
articles published after the year 1980. The complete search
string is provided in the electronic Supplementary Material,
Supplementary Methods 1. The review protocol was registered
in PROSPERO (registration no. CRD42018110108).

One of the authors (D.K.R.) performed the literature search
and screened the studies at each stage of the review. The study
was performed according to the guidelines provided by the
Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA flowchart, Figure 1). The literature search
identified 6,989 potentially relevant articles. After the removal
of duplicates (n = 676) and articles rejected based on title or
abstract (n = 6,161), 152 articles were included for full text
screening. During this process, 138 articles were further excluded
because of our inclusion/exclusion criteria (see Supplementary
Material, Supplementary Methods 2). Finally, 14 studies were
included in the review and meta-analysis (Table 1). Screening of
all articles was performed within the EPPI-Reviewer 4 software
(EPPI-Centre, UCL Institute of Education, University of London,
London, UK).

Study Quality Assessment
The MINORS tool (Slim et al., 2003) was used for assessing
the risk of bias for the included studies. Two authors (D.K.R.
and N.B.S.) independently assessed each study as having a high,
unclear, or low risk of bias (scored from 0 to 2, respectively,
with a maximum score of 18) on all the items included in the
original checklist (except three items: “Unbiased assessment of
the study endpoint,” “Follow-up period appropriate to the aim of
the study,” and “Loss to follow-up less than 5%” were considered
not relevant and hence excluded). Disagreements were resolved
through consensus, resulting in an agreed risk-of-bias score
(Table S1).

Optimal Thresholds
In order to assess the effect of age and pathology on the scaling
exponent α of the stride interval of walking and later to determine
the thresholds between populations, means and SDs of the scaling
exponent α were extracted from each manuscript. In studies
in which the standard error of the mean or 95% confidence
intervals (CIs) were presented instead of SD, these values were
translated into SD according to the recommendations provided
by Cochrane (Higgins and Green, 2011). An effect size (ES; the
difference between the means of the two groups over the pooled
SD), corrected for sample size to provide Hedges’ g (Lipsey
and Wilson, 2001), was evaluated for each study to express
the difference between cohorts in a standardized manner. The
results from all studies were then combined by calculating a
pooled ES using the standard error as a weighting factor (in
order to minimize the risk of overestimation). Heterogeneity was
assessed using Cochran’sQ and I2 statistics. In order to determine
the upper threshold discriminating healthy asymptomatic from
pathological gait, all studies that matched the sign of the pooled
ES were selected (Konig et al., 2016a; Ravi et al., 2019). We
then applied a mixed-effects binary logistic regression analysis
(BLR) in order to assess how the scaling exponent α differentiates
the temporal organization of walking variability of young vs.
older adults and patients with PD vs. age-matched asymptomatic
controls. Briefly, we modeled the log odds of the binary outcome
(0 for healthy, 1 for pathological) as a linear combination of
the predictor variable (scaling exponent α) and the study index
(random effects). The logistic model is given by:

log(
pi

1− pi
) = B0 + B1∗xi + Ui (1)

where pi is the probability that the observation belonged to
a particular cohort given the predictor variable, xi (scaling
exponent α), and the study index, Ui; B0, and B1, are coefficient
estimates of the regression model estimated using maximum
likelihood. The quality of the classification of our model was
assessed using the receiver operating characteristic (ROC) curve
obtained by representing sensitivity vs. specificity for all possible
values of the cutoff point between pathology and healthy. Here,
sensitivity (true-positive rate) was defined as the probability
of correctly classifying an outcome as pathological, whereas
specificity (true-negative rate) was the probability of correctly
classifying an outcome as healthy. We then identified the
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FIGURE 1 | PRISMA flowchart.

optimum cutoff probability point Popt , as the point minimizing
the Euclidean distance between the ROC curve and the (1,1)
coordinate on the ROC plane (Zweig and Campbell, 1993) and
used an inverse binary logistic regression function (2) in order to
assess the optimal threshold value xopt given by:

xopt =

(

log
Popt

(1−Popt)
− B0

)

B1
(2)

The standard error (SE) of the estimated thresholds was
evaluated using the delta method involving a first-order Taylor
approximation (Venables and Ripley, 2010), as given by:

SE
(

xopt
)

=

√

[

a b
]

∗

[

var (B0) cov (B0,B1)
cov (B0,B1) var (B1)

]

∗

[

a
b

]

(3)

where

a =
∂xopt

∂B0
= −

1

B1

b =
∂xopt

∂B1
= −

xopt

B1

All analyses were conducted in MATLAB 2016b (The
MathWorks Inc., Natick, MA, USA) and R (v3.4.1; The R
Foundation for Statistical Computing, Vienna, Austria).

Methodological Choices and Other Study
Characteristics
In addition to means and SDs of the scaling exponent α, we
extracted the following data from each manuscript: technology
used to collect the three-dimensional (3D) kinematics data,
sampling rate, experimental setup (overground vs. treadmill),
trial duration, length of time series, sample size, window
sizes, magnitude of stride interval variability, and PD-related
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TABLE 1 | Characteristics of studies included in the review.

Study ID Author Date Technology Sampling

rate

(Hz)

Experimental

setup

Trial

duration

(min)

Cohort Sample

size

Age (y) Box

size

N PD

state*

PD

score**

1 Marmelat 2018 Footswitches 1,942 Overground 15 Healthy young 15 23 (1.69) 10–N/8 512

1 Marmelat 2018 Footswitches 1,942 Overground 15 Healthy old 14 67.71 (5.92) 11–N/8 512

1 Marmelat 2018 Footswitches 1,942 Overground 15 Patients with PD 13 71.31 (6.12) 12–N/8 512 ON 1.64

(0.69)

2 Dotov 2017 IMU 128 Overground 3 Patients with PD 19 60.8 (10.6) 4–N/4 120–195 ON 2 (1–3)

2 Dotov 2017 IMU 128 Overground 3 Healthy old 19 60.8 (10.6) 4–N/4 120–195

3 Stout 2016 Motion capture 200 Treadmill 15 Healthy young 10 25.2 (1.5) 16–N/9 652

3 Stout 2016 Motion capture 200 Treadmill 15 Healthy old 10 59.6 (10.7) 16–N/9 719

4 Kosse 2016 iPod touch 88–92 Overground 3 Healthy young 29 28 (7) 17–N/7 —

4 Kosse 2016 iPod touch 88–92 Overground 3 Healthy old 30 62 (8) 17–N/7 —

5 Chien 2015 Motion capture 100 Treadmill 5 Healthy young 10 27 (4) 4–N/4 200

5 Chien 2015 Motion capture 100 Treadmill 5 Healthy old 7 70 (10) 4–N/4 200

6 Ota 2014 Foot switches 100 Overground 2–4 Patients with PD 45 69.8 (8.2) 10–N/2 154 ON 1–3

6 Ota 2014 Foot switches 100 Overground 2–4 Healthy old 17 70.2 (2.8) 10–N/2 154

7 Kobsar 2014 IMU 100 Overground 10 Healthy young 41 24 (3) 4–N/2 1,000

7 Kobsar 2014 IMU 100 Overground 10 Healthy old 41 76 (5) 4–N/2 1,024

8 Kaipust 2013 Motion capture 100 Treadmill 6 Healthy young 27 25.7 (3.0) — 151

8 Kaipust 2013 Motion capture 100 Treadmill 6 Healthy old 27 71.4 (4.4) — 151

9 Bartsch 2007 Foot switches 100 Overground 2 Healthy old 24 64.3 (1.3) N/10 s length ∼120

9 Bartsch 2007 Foot switches 100 Overground 2 Patients with PD 29 67 (1.3) N/10 s length ∼120 ON —

10 Warlop 2006 IMU 512 Overground 10 Patients with PD 20 65.3 (9.6) 10–N/2 512 ON 2 (1–3)

10 Warlop 2006 IMU 512 Overground 10 Healthy old 15 60.1 (13.3) 10–N/2 512

11 Toledo 2005 Foot switches 100 Overground 2 Patients with PD 36 61.2 (9.0) — — —

11 Toledo 2005 Foot switches 100 Overground 2 Healthy old 30 57.7 (7.0) — —

12 Malatesta 2003 Foot switches 100 Treadmill 6 Healthy old 10 65.3 (2.5) 10–20 —

12 Malatesta 2003 Foot switches 100 Treadmill 6 Healthy young 10 24.6 (2.6) 10–20 —

13 Hausdorff 2000 Foot switches 300 Overground 5 Patients with PD 15 47 (29–71) 10–20 — ON 1–4

13 Hausdorff 2000 Foot switches 300 Overground 5 Healthy old 16 67 (44–80) 10–20 —

14 Hausdorff 1997 Foot switches 300 Overground 6 Healthy old 10 75.7 (3.2) 10–20 316

14 Hausdorff 1997 Foot switches 300 Overground 6 Healthy young 22 24.6 (1.9) 10–20 315

Reported as mean (standard deviation) or median (lower limit–higher limit).

“—” indicates not reported.

*Medication state.

**Hoehn and Yahr scale.
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FIGURE 2 | Forest plot: young adults vs. older adults.

demographics (disease stage, medication). The information
extracted from the articles is presented in the Table 1.

RESULTS

Fourteen studies were identified as eligible for inclusion in this
review. Of these 14, seven investigated the effects of aging on
the scaling exponent α of the stride interval of walking, six
investigated the effects of PD, and one study investigated both
the effects of aging and PD. Ten studies used overground walking
for their experimental protocol, and four used a treadmill-based
walking protocol. The walking patterns were assessed using
footswitches (seven studies), inertial measurement units (three
studies), motion capture systems (three studies), and off-the-shelf
smart devices (one study). Most importantly, only four studies
included 512 strides or more in their analysis, which is what has
previously been reported as required for the reliable assessment
of the scaling exponent α using DFA (Delignieres et al., 2006).
Study averages for all population groups indicate persistent long-
range correlations (i.e., 0.5 < α < 1) in the stride interval of
walking. The articles included for the meta-analysis presented
varying risk of bias and were of mixed methodological quality.
Mean quality score was 13.07 ± 1.28 (range, 11–15) against a
maximum score of 18. The summary of the methodological score
for each question and studies is provided in Table S1.

Effect of Aging on Scaling Exponent α

The eight studies addressing effects of aging included a total of
149 older adults [cohort average age, 68.5 ± 6.0 years (mean ±

SD)] and 164 young adults (25.3 ± 1.6 years). Meta-analysis of
the studies produced an overall ES of −0.20, with older adults
having generally lower levels of the scaling exponent α compared
to their younger counterparts [cohort average α old, 0.77 (0.15)

vs. young: 0.79 (0.13)] and individual ES ranging from −1.26, to
zero, to 1.14 (Figure 2). Based on the studies that exhibited an
ES aligned with the overall ES [n = 5; average α old, 0.77 (0.12)
vs. young: 0.84 (0.09); Table 2], BLR revealed an area under the
curve (AUC) of 0.76, a sensitivity of 0.80, and a specificity of 0.60
(Figures S1, S2). Here, inverse regression revealed the optimal
threshold (−2 SE, +2 SE) of physiological scaling exponent α of
the stride interval of walking to be 0.86 (0.76, 0.96). Substantial
inconsistency was observed across studies (I2 = 79%, Q =

32.69). Compared to the scaling exponent α, the magnitude of
variability of the stride interval also had a low mean ES (Hedges’
g: 0.38, indicating increased levels of variability in older subjects,
Table 2).

Effect of PD on Scaling Exponent α

The systematic search revealed seven studies that included a total
of 177 patients with PD (cohort average age, 63.2± 8.2 years) and
135 healthy controls (64.0 ± 5.0 years). All the studies (except
one study that did not report values) tested patients in the ON-
medication state. Disease severity was most commonly evaluated
using the Hoehn and Yahr scale (Hoehn and Yahr, 1967) (four
studies recruited patients in the range 1–3 and one study
recruited between 1 and 4). The overall ES was−0.53, whereas
the individual ES ranged from [0.34 to −1.59] (Figure 3),
with considerable inconsistency across trial results (I2 = 62%,
Q = 15.63). Patients with PD generally exhibited less persistent
fluctuations in stride interval of walking compared to age-
matched asymptomatic controls [cohort average α patients with
PD, 0.74 (0.14) vs. healthy asymptomatic, 0.81 (0.14)]. Binary
logistic regression analysis based on the studies that exhibited an
ES aligned with the overall ES [n = 6; average α patients with
PD, 0.75 (0.13) vs. healthy asymptomatic, 0.83 (0.13); Table 3]
revealed an AUC of 0.79, a sensitivity of 0.83, and a specificity
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TABLE 2 | Effect size comparisons: young adults vs. older adults.

References DFA scaling exponent α of stride

interval Mean (SD)

Hedges’ g

effect size

Stride interval variability in % CV

Mean (SD)

Hedges’ g

effect size

Young adults Older adults Young adults Older adults

Marmelat et al. (2018) 0.89 (0.09) 0.87 (0.16) −0.15 1.76 (0.46) 1.71 (0.49) −0.10

Stout et al. (2016) 0.86 (0.06) 0.85 (0.1) −0.12 — — —

Kosse et al. (2016) 0.7 (0.17) 0.7 (0.15) 0.00 3.3 (1.45) 3.4 (1.94) 0.06

Chien et al. (2015) 0.76 (0.07) 0.69 (0.08) −0.90 2.02 (0.72) 2.93 (1.49) 0.79

Kobsar et al. (2014) 0.83 (0.1) 0.76 (0.13) −0.60 2.15 (0.71) 2.60 (0.91) 0.55

Kaipust et al. (2013) 0.6 (0.2) 0.85 (0.23) 1.14 — — —

Hausdorff et al. (2000) 0.78 (0.17) 0.78 (0.22) 0.00 1.40 (0.30) 1.93 (0.39) 1.46

Hausdorff et al. (1997) 0.87 (0.15) 0.68 (0.14) −1.26 1.96 (0.4) 2.0 (0.7) 0.08

“—” indicates not reported.

FIGURE 3 | Forest plot: patients with Parkinson disease vs. age-matched asymptomatic controls.

of 0.67 (Figures S3, S4). Inverse regression revealed the higher
bound of physiological scaling exponent α of stride interval of
walking to be 0.82 (0.72, 0.92). The magnitude of variability
of stride interval had a large mean Hedges’ g (1.28, Table 3)
compared to the scaling exponent α.

DISCUSSION

The assessment of long-range correlations in the stride-to-
stride fluctuations during walking using DFA has become
a popular methodology to study movement deficits due to
aging as well as degenerative neurological disorders such as
PD (Hausdorff et al., 2000; Malatesta et al., 2003; Baltadjieva
et al., 2006; Delignieres et al., 2006; Hausdorff, 2007, 2009). In
this context, it remains unclear whether the scaling exponent
α provided by DFA is able to reflect the health of an
individual by determining the nature of long-range correlations
within their walking patterns. The main goal of this study

was to document the strength of scaling exponent α for
investigating age- and pathology-related differences, but also
critically review the methodological aspects associated with
DFA analysis of human walking data. As such, we aimed to
establish current consensus on the application of DFA applied to
human walking data and enable improved homogeneity across
interstudy comparisons.

Through meta-analysis of the systematically identified review
data, our current study has enabled the derivation of optimal
thresholds for the scaling exponent α, 0.86 (0.76, 0.96), and 0.82
(0.72, 0.92), which discriminate age- and PD-related influences
on the nature of long-range correlations of stride interval
of walking. Optimal thresholds allow the cross-fertilization of
data from a large number of studies to create a benchmark
for the temporal organization of movement variability, against
which individual or group performances can be compared.
Such thresholds would allow the possible use of the scaling
exponent α and the DFA algorithm to complement traditional
biomarkers of walking to characterize health, age, and pathology
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TABLE 3 | Effect size comparisons: patients with Parkinson disease vs. age-matched asymptomatic controls.

Refernces DFA scaling exponent α of stride

interval Mean (SD)

Hedges’ g

effect size

Stride interval variability in % CV

Mean (SD)

Hedges’ g

effect size

Healthy controls Patients with PD Healthy controls Patients with PD

Marmelat et al. (2018) 0.87 (0.16) 0.77 (0.12) −0.68 1.71 (0.49) 2.20 (0.85) 0.69

Dotov et al. (2017) 0.64 (0.17) 0.7 (0.18) 0.34 1.06 (0.30) 1.40 (0.70) 0.62

Ota et al. (2014) 0.83 (0.24) 0.78 (0.19) −0.24 — — —

Bartsch et al. (2007) 0.92 (0.15) 0.84 (0.11) −0.61 — — —

Warlop et al. (2006) 0.78 (0.07) 0.66 (0.17) −0.86 1.91 (0.54) 2.88 (1.34) 0.88

Frenkel-Toledo et al. (2005) 0.69 (0.12) 0.64 (0.13) −0.39 1.94 (0.36) 2.24 (0.74) 0.50

Hausdorff et al. (2000) 0.91 (0.05) 0.82 (0.06) −1.59 2.3 (0.1) 4.4 (0.6) 4.83

“—” indicates not reported.

related functional status. Such a framework also allows new
reference points (for the first time based on physiological
boundaries) to be introduced for the scaling exponent α

to replace the traditional theoretically anticipated extreme
possibilities of uncorrelated white noise (α = 0.5, understood
as pathological) and 1/f pink noise (α = 1, understood
as healthy), with a clear practical approach for guiding the
interpretation of DFA metrics. Examination of group differences
revealed more effective identification of PD-related vs. age-
related differences using the scaling exponent α, even though
the overall ESs appear to be modest in both groups (−0.53 vs.
−0.2). However, the observed ESs may have additional practical
or clinical value (when interpreted contextually, Durlak, 2009;
Gow et al., 2017) due to the metric’s non-linearity, and future
studies are therefore needed to associate persistence of walking
behavior with functionality of the locomotor system (Manor
and Lipsitz, 2013; Harrison and Stergiou, 2015; Ducharme
et al., 2019). Nevertheless, the modest ESs identified partly
highlight issues with relative consistency of scaling exponent
α values reported across population groups (confirmed by
Cochran’s Q and I2 statistics). This is plausibly attributable
to the heterogeneity in population demographics of pooled
studies. The source of this heterogeneity could be assigned
to the severity of disease [the walking patterns of patients
with PD with only mild symptoms seem to not deviate
considerably from age-matched asymptomatic controls but still
show slightly higher α values than patients with advanced
PD (Bartsch et al., 2007; Ota et al., 2014)], levels of physical
activity [physically active older adults might not differ greatly
from healthy young adult performance (Stout et al., 2016;
Ducharme et al., 2019)], or fall risk, as well as fear of
falling status [older adults who have not experienced a fall
vs. those who have fallen previously (Herman et al., 2005;
Hausdorff, 2007; Li et al., 2019)]. These issues notwithstanding,
a reduction in methodological inconsistencies could contribute
to increasing the reliability of DFA analyses. Here, our review
highlights that the observed differences in scaling exponent α

values across population groups could also be an artifact of
methodological differences between studies (see Table 1). As
a result, an understanding of how the methodological choices
including experimental setup (e.g., duration of walking trial

or data series length), choice of input parameters (e.g., range
of scales), and environmental constraints (e.g., overground vs.
treadmill walking) could affect scaling exponent α need to
be achieved.

Given N, the length of a time series, the DFA algorithm fits
a power law to the time series’ detrended average fluctuations,
F(n), across different window sizes (or scales), n, and scaling
exponent α is then determined as the slope of log F(n) vs. log
n (refer to Hausdorff et al., 1995; Peng et al., 1995b; Goldberger
et al., 2002; Damouras et al., 2010, for methodological details
of DFA). Here, DFA has been shown to be dependent on N (a
ubiquitous constraint in analyzing most physiological signals)
and ensuring reliable estimation of DFA requires at least 500
to 600 strides (Delignieres et al., 2006; Damouras et al., 2010;
Almurad and Delignieres, 2016). Although critical, it is generally
challenging to acquire such long, continuous, walking datasets,
particularly in pathological populations or older adults. Because
the required time (generally upward of 15min; Marmelat and
Meidinger, 2019) can lead to fatigue inmany clinical populations,
support structures such as handrails are often used for safety,
which have also been shown to alter DFA (Chang et al.,
2009). A feasible alternative here is the use of a safety harness
system (without body weight support) that does not influence
the scaling exponent α of different spatiotemporal parameters
during walking (Stout et al., 2016). Another approach that has
been recently tested to mitigate the issue of short data series
(but also used traditionally while handling outliers; Hausdorff
et al., 1997; Herman et al., 2005; Gow et al., 2017) involves
concatenating discontinuous sets of time series (Orter et al.,
2019). It has been shown that, for positively correlated signals
(1.5 > α > 0.5), such concatenation does not affect the scaling
behavior on average (Chen et al., 2002; Gow et al., 2017), but
the scaling exponent itself might not be consistent (Kirchner
et al., 2014; Marmelat et al., 2018). Bartsch et al. (2007) proposed
a modified DFA method to obtain reliable scaling exponent α

values in short time series, but such approaches require further
investigation, especially in light of a new study showing that
scaling exponent α values from shorter walking trials (e.g.,
3min) do not sufficiently capture the fluctuation dynamics of
longer time series (Marmelat and Meidinger, 2019). Pursuing
this issue in more detail, Kuznetsov and Rhea (2017) proposed a
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simulation framework to estimate experimental power (number
of subjects – number of trials per subject) a priori, which
shows promise in identifying reliable differences between
groups with relatively short (N ∼ 200) time series of stride
interval of walking. In summary, although the aforementioned
approaches are encouraging, further studies are needed to
systematically test their validity against longer continuous
walking trials.

Apart from the data length, it is also expected that the choice
of window sizes can affect the estimation of scaling exponent α

(Manor and Lipsitz, 2013). This input parameter “n” must be
fixed and is generally limited to a range of window sizes, within
which the linear relationship between F(n) and n is most stable.
Previous studies examining this aspect have recommended the
use of 16 to N/9 window size (Damouras et al., 2010), but other
sizes have also been utilized (Franz et al., 2015; Gow et al., 2017;
Marmelat et al., 2018). Another aspect—the sampling frequency
of the 3D kinematics data—can also have a considerable
impact on scaling exponent α (a lower sampling frequency
may reduce the strength of long-range correlations). Here, it
has been demonstrated that sampling at ∼120Hz is sufficient
to reliably capture the subtle variations in gait cycle duration
using scaling exponent α (Liddy et al., 2019). Walking speed
may also shape the nature of long-range correlations in walking.
In this respect, a reduced strength of long-range correlations
at preferred locomotion speeds (quadratic relationship between
walking speed and scaling exponent α) might reflect enhanced
stability and adaptability (Jordan et al., 2007; Bollens et al., 2012;
Chien et al., 2015).

Much of the available evidence regarding the temporal
organization of walking variability has focused on time series
of stride intervals. While persistence in stride intervals may
effectively contain useful characteristics associated with the
health of the neural system for regulating rhythmic movements,
it is currently unknown if similar characteristics exist in terms
of long-range correlations in other spatiotemporal parameters
of walking and which aspects of neural deficits they represent.
Previous studies have shown that step width (Kaipust et al., 2012;
Stout et al., 2016; Franz et al., 2017), stride length (Dingwell
and Cusumano, 2010; Roerdink et al., 2015), and even toe
clearance (Khandoker et al., 2008) all exhibit persistent long-
range correlations. However, perturbations [e.g., walking under
environmental constraints such as in a narrow space (Dotov et al.,
2016), on a treadmill (Frenkel-Toledo et al., 2005; Warlop et al.,
2006; Hollman et al., 2016), paced by a metronome (Roerdink
et al., 2015), or while holding handrails (Chang et al., 2009)] have
been shown to influence the nature of long-range correlations
in these walking parameters. During periodic cued walking (i.e.,
being paced using, e.g., a metronome), long-range correlations
in stride interval of walking have been shown to change from a
persistent to antipersistent or random-like temporal organization
(Hausdorff et al., 1996; Terrier et al., 2005; Delignieres and Torre,
2009; Kaipust et al., 2013; Marmelat et al., 2014; Roerdink et al.,
2015). Similarly, treadmill walking induced antipersistency in
stride speed but not in the stride interval and stride length
time series (Dingwell and Cusumano, 2010; Terrier and Deriaz,
2012; Roerdink et al., 2015). In this respect, it has become

apparent that first principle models, describing the physiological
implications for long-range correlations in walking patterns, are
needed to elucidate the observed differences between population
and parameter groups. Some studies have paralleled the nature of
persistence (and its adaptations with aging and pathology) to the
level of “tightness” of regulation by neural systems (Dingwell and
Cusumano, 2010; Roerdink et al., 2015, 2019). On these grounds,
antipersistence in stride speed during treadmill walking is said to
reflect “tight” regulation (rapid corrections of any deviations due
to internal or external perturbations).

A proper understanding of the relationship between the
scaling exponent α during walking and the health of an individual
is of paramount importance. Human walking is continuously
regulated by central and peripheral neural resources that
are involved in the coordination of musculoskeletal systems
(Takakusaki, 2017; Ravi et al., 2019). Long-range correlations
are conventionally considered to reflect functional interactions
among these systems operating at different spatiotemporal scales
within the body (Hausdorff et al., 1995, 1997; Goldberger
et al., 2002; Herman et al., 2005; Hausdorff, 2007). Long-
range correlations have also been recognized as an indicator
of the optimal state of motor performance (1/f or pink noise,
aligned with the theoretical framework of optimal movement
variability; Stergiou and Decker, 2011; Harrison and Stergiou,
2015; Cavanaugh et al., 2017), whereas the loss of such
correlations with aging and disease is thought to reduce the
adaptive capabilities of the individual (a split-belt walking
study by Ducharme et al., 2019) confirms these impressions).
Within this framework, at one extreme, an absence of long-
range correlations (i.e., white noise, α close to 0.5) indicates
unconstrained variability and instability in motor performance.
At the other extreme (i.e., brown noise, α = 1.5), overly
persistent behavior indicates inflexibility and rigidity, reducing
the capacity for motor function to flexibly adapt to the
demands of the situation (Harrison and Stergiou, 2015). That
said, a number of issues also have been raised regarding
the application of DFA analyses to human walking. Maraun
et al. (2004) argued that the algorithm is highly susceptible
to false positives. Similarly, Bryce and colleagues questioned
the bias introduced to the estimation of scaling exponents by
the algorithm (Bryce and Sprague, 2012). Departing from the
original methodology of DFA introduced by Peng et al. (1995b),
variants including multifractal DFA (which provides a spectrum
of scaling exponents; Kantelhardt et al., 2002; Ihlen, 2012;
Ihlen and Vereijken, 2013; Cavanaugh et al., 2017), unbiased
DFA, and evenly spaced DFA (lower variability of estimation of
scaling exponent α; Almurad and Delignieres, 2016; Yuan et al.,
2018) have also recently been introduced. However, in order to
gain a deeper understanding of their applicability, it is critical
that the compilation of evidence on scaling exponent α across
population groups is strictly tied to the particular algorithm used
in their estimation.

One aspect of critical importance in the collection of
reliable data seems to be adherence to standard methodology.
However, the studies presented in this review of the literature
exhibit heterogeneity on several key parameters. To facilitate
standardization across studies, we therefore present guidelines
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and recommendations to ensure studies are able to achieve
sufficient levels of reliability in the calculation, reporting, and
interpretation of scaling exponent α using DFA.

Recommendations for Calculating,
Reporting, and Interpreting Scaling
Exponent α Using DFA for Human Walking
Data
The following recommendations are derived from the
qualitative analysis performed within this systematic review
(see Methodological Choices and Other Study Characteristics,
Table 1) and represent literature-endorsed practices (signified
as†), as well as empirical evidence. Our aim in reporting these
recommendations is to provide comprehensive guidelines for the
practical usage of DFA for understanding the fractal dynamics of
human walking.

A. Calculation

1) †Experimental setup: In general, investigators should devote
sufficient time to understand how certain constraints within
their study design (e.g., use of walking aids, harness support
etc.) influence the dynamics of human walking and their
associated study hypotheses.

2) †Power and sample size estimation: It is critical that power
calculations precede gait variability experiments in order to
ensure that DFA scaling exponent α is able to differentiate
between cohorts. These calculations should identify the
number of subjects and trials required to detect a minimum
difference in scaling exponent α ∼ 0.10 (2 times the
standard error identified in this review) between subjects
and trials. Because the number of trials evaluation is usually
neglected, it is important in a repeated-measures type of
statistical study design to clearly establish if different strategies
between subjects exist, which may instead require a single
subject analysis.

3) †Resolution of data: It is recommended that segment
kinematics should be collected at ≥120Hz in order to
reliably capture the subtle variations in the dynamics of
human walking.

4) Linear filtering/smoothing of the raw data: Avoid filtering
the kinematic data where possible (or at least only consider
with caution) in order to capture the true dynamics of
human walking.

5) †Length of time series: It is recommended that DFA
is applied to walking time series of at least 500 to
600 strides captured under continuous and near
straight-line walking.

6) †Window sizes (or scales): Window sizes of 16 to N/9 are
suggested as the range to calculate the slope of log F(n) vs.
log n, where “N” is the time series length and “n” is the
window size.

7) Removal of outliers from discrete time series: Use of a
median filter is recommended as long as the procedure does
not remove data points that reflect the intrinsic dynamics of
the system.

8) †Order of DFA detrending: Typically, a second-order
detrending procedure should be employed in the
determination of DFA scaling exponent α. Higher-order
detrending may be required to eliminate crossovers arising
from trends in the data.

9) †Evenly-spaced vs. logarithmically spaced DFA: To reduce
the variability involved in estimating the scaling exponent α,
derivation of α should occur from an evenly spaced DFA plot,
rather than from a logarithmically spaced DFA plot.

10) Calculating fit (R2) of exponent α: so that the veracity of the
exponent can be understood.

B. Reporting

11) Reproducibility: In addition to the main outcome (mean
± SD of the scaling exponent α), a summary of all the
study information necessary to allow a comparative analysis
should be readily accessible to the research community.
This includes methodological choices made in the study (e.g.,
length of time series, range of window lengths), population
demographics (severity scores of pathology population,
e.g., UPDRS or Hoehn and Yahr scale for subjects with
PD, physical activity scores in case of healthy adults),
and other potentially confounding factors (medications,
experimental setup). In regard to the experimental setup,
a variety of factors that can influence α should be
reported, including clothes and shoes worn in subject testing,
surface of support and compliance estimates where possible,
ambient noise and temperature conditions, and time of day
of testing.

C. Interpretation

12) Optimal movement variability: Detrended fluctuation
analysis evidence of persistent long-range correlations
theoretically indicates that α ∼ 1.0 signifies an optimal
state of adaptability in motor performance, whereas α ∼

0.5 suggests unconstrained variability and unstable motor
performance. Here, it remains unclear whether optimal
values are task specific. In this respect, further study is
required before a full understanding of the optimal values
can be obtained.

13) †Screening using optimal thresholds: A scaling exponent α

threshold of 0.86 (CI, 0.76–0.96) and 0.82 (CI, 0.72–0.92)
practically discriminates movement performance between
age- and PD-related influences regarding the nature of long-
range correlations of stride interval of walking.

These recommendations have been collated based on current
consensus and empirical evidence and may require revision,
enhancement, and/or additions in future as the field of fractal
physiology advances.

CONCLUSIONS

The technical and conceptual advances in the methods for
analyzing the temporal organization of walking variability have
shed light on the complexity of human walking behavior,
with DFA methodology playing a key role. However, a general
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lack of interpretability of both the concept and associated
metrics have precluded DFA from providing health-related
persistence information on walking. In response to the aims
set out in this systematic review and meta-analysis, we
have been able to provide evidence that (1) DFA scaling
exponent α is only modestly associated with age and PD-
related group differences (ES, −0.2 and −0.53, respectively).
Here, the DFA metric likely represents a specific characteristic
of motor function within the neurophysiological system, thus
contributing toward a holistic perspective on individual health.
(2) The optimal thresholds for the scaling exponent α =

0.86 (0.76, 0.96) and 0.82 (0.72, 0.92) differentiating age-
and pathology-related adaptations, respectively, on walking
behavior might now allow a more sensitive and practical
application of this metric for understanding temporal regulation
of stride interval of walking, and (3) further methodological
clarifications regarding DFA would enable the usability of this
method in clinical and research settings. In this respect, the
reliability of this metric can be enhanced by adhering to the
recommendations regarding methodological details provided in
this article.
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