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Aging is a one-way process associated with profound structural and functional changes 
in the organism. Indeed, the neuromuscular system undergoes a wide remodeling, which 
involves muscles, fascia, and the central and peripheral nervous systems. As a result, 
intrinsic features of tissues, as well as their functional and structural coupling, are affected 
and a decline in overall physical performance occurs. Evidence from the scientific literature 
demonstrates that senescence is associated with increased stiffness and reduced elasticity 
of fascia, as well as loss of skeletal muscle mass, strength, and regenerative potential. 
The interaction between muscular and fascial structures is also weakened. As for the 
nervous system, aging leads to motor cortex atrophy, reduced motor cortical excitability, 
and plasticity, thus leading to accumulation of denervated muscle fibers. As a result, the 
magnitude of force generated by the neuromuscular apparatus, its transmission along 
the myofascial chain, joint mobility, and movement coordination are impaired. In this review, 
we summarize the evidence about the deleterious effect of aging on skeletal muscle, 
fascial tissue, and the nervous system. In particular, we address the structural and 
functional changes occurring within and between these tissues and discuss the effect of 
inflammation in aging. From the clinical perspective, this article outlines promising 
approaches for analyzing the composition and the viscoelastic properties of skeletal 
muscle, such as ultrasonography and elastography, which could be applied for a better 
understanding of musculoskeletal modifications occurring with aging. Moreover, 
we describe the use of tissue manipulation techniques, such as massage, traction, 
mobilization as well as acupuncture, dry needling, and nerve block, to enhance fascial repair.
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INTRODUCTION

In animal species, aging is associated with substantial 
modifications to the molecular determinants of cells, which 
alter their morphology, activity, and functional properties. These 
events affect the characteristics of tissues and organs, thus 
resulting in overall decayed performance of the organism (Narici 
et  al., 2008; Zullo et  al., 2017). Indeed, during aging, human 
skeletal muscle, connective tissue, and the nervous system 
undergo consistent modifications, which can impair the ability 
to perform daily activities and, as a consequence, their health-
related quality of life (Netuveli et  al., 2006; Reid and Fielding, 
2012; Diehr et al., 2013). To promote healthy aging and reduce 
the burden of aging, it would be  important to define the time-
dependent alterations impairing the neuromuscular system. 
Also, sensitive, specific, and non-invasive methods to investigate 
the structural and morphological changes occurring in these 
tissues during aging are needed, and therapeutic interventions 
should be implemented. In this review, we outline the structural 
and functional changes occurring within skeletal muscle, fascial 
tissue, and nervous system during aging. Moreover, we summarize 
the evidence on the age-dependent impairment of the coupling 
between these tissues and the effect of inflammation in aging. 
Finally, we  describe some approaches for the study and the 
treatment of age-associated modifications in the neuromuscular 
system, such as imaging and ultrasound-based methods, as 
well as tissue manipulation techniques.

SKELETAL MUSCLE AND AGING

Sarcopenia, a gradual loss in muscle mass occurring in humans 
during aging, is detectable in the third decade of life and 
progressively increases with age (Janssen et  al., 2000; Narici 
and Maffulli, 2010). It has been estimated that, during aging, 
there is a 30–50% reduction in the number and 10–40% decrease 
in the size of skeletal muscle fibers, which is associated with 
a decay of muscle performance (Lexell et  al., 1988; Lexell, 
1995; Janssen et  al., 2002; Doherty, 2003). In particular, a 
reduction in skeletal muscle mass has been estimated to be 0.37 
and 0.47% per year in women and men, respectively (Mitchell 
et  al., 2012). Clinical studies in old adults have shown that 
muscle strength declines at a greater rate than muscle mass 
(Frontera et al., 2000; Goodpaster et al., 2006; Delmonico et al., 
2009). Therefore, factors other than muscle mass must also 
contribute to the decay of muscle performance in aging.

In humans, three isoforms (type I, IIa, and IIx) of the myosin 
heavy chain (MHC) are present, with different combinations 
and proportions in individual muscles (Schiaffino and Reggiani, 
1994, 1996). Each isoform has specific molecular features, which 
in turn, determine muscle characteristics (Trappe, 2009). There 
is evidence that the composition of the contractile apparatus of 
muscle, i.e., the isoforms of the MHC, varies with aging (Trappe, 
2009). In the vastus lateralis of old adults, the percentage of 
muscle fibers expressing both MHC types I  (MHC-I) and IIa 
(MHC-IIa) and MHC-IIa and IIx (MHC-IIx) is higher, and the 
percentage of muscle fibers expressing only MHC-I and MHC-IIa 

is lower than those of young adults (Klitgaard et  al., 1990). 
Moreover, in the sternocleidomastoid muscle (SCM) of old, 
compared to young, adults, the proportion of slow-twitch fibers 
is higher, the share of hybrid MHC-IIa/MHC-IIx fibers is reduced, 
the proportion of fast-twitch fibers with MHC-IIa and IIx is 
lower, and the proportion of fibers with the isoform MHC-IIx 
is reduced (Meznaric et  al., 2018). This leads to a shift toward 
a slower phenotype of muscle fibers and suggests that aging 
induces the replacement of fast-twitch with slow-twitch motor 
units (Meznaric et  al., 2018). Interestingly, the age-dependent 
decrease in the number and size of muscle fibers involves mainly 
type II, but not type I muscle fibers (Larsson, 1978; Lexell et  al., 
1988; Lexell, 1995; Martel et  al., 2006; Snijders et  al., 2009).

As for fiber structure, it has been demonstrated that pennation 
angles in the vastus lateralis muscle diminish with advancing 
age in women (Kubo et al., 2003). Such architectural modification 
results in a reduced number of parallel fibers and negatively 
impacts on muscle force generation (Thom et al., 2007). Moreover, 
besides changes in structural proteins, alteration of contractile 
and metabolic proteins, as well as calcium-handling proteins 
of skeletal muscle cells also take place in the elderly (Godard 
et  al., 2002; Thompson, 2002). The impairment of excitation-
contraction coupling, the increase of intermuscular adipose 
tissue, the alteration of intramuscular adipose tissue, and the 
amount of extracellular water relative to muscle volume with 
aging could also promote the decline in muscle performance 
(Rice et  al., 1989; Yamada et  al., 2010; Marcus et  al., 2012; 
Beavers et al., 2013; Hausman et al., 2014; Tieland et al., 2018).

As for muscle function, data from studies in animal models 
and humans demonstrated that the strength and the shortening 
velocity of muscle fibers decrease with advancing age (Lauretani 
et  al., 1985; Frontera et  al., 2000; Thompson, 2002; D’Antona 
et  al., 2003; Miljkovic et  al., 2015; Del Campo et  al., 2018). 
A study in a large cohort of adults demonstrated a significant 
reduction in isometric, concentric, and eccentric peak torque 
in the extensor muscles of the knee in old, compared to young, 
adults (Lindle et  al., 1997). Also, a 16.6–40.9% reduction in 
muscular strength has been estimated by comparing young 
adults (<40 years) with old one (>40 years) (Keller and Engelhardt, 
2014). A research employing magnetic resonance imaging (MRI) 
has demonstrated that maximum voluntary contraction, when 
normalized to the anatomical cross-sectional area of muscle, 
is lower in the elderly than healthy young adults (Morse et  al., 
2005). Although several pieces of evidence have been accumulated 
on the functional decline of skeletal muscle during aging, this 
issue is still disputed (Lexell et  al., 1988; Trappe et  al., 2003; 
Short et al., 2005a; Canepari et al., 2010). Indeed, some studies 
report that the power of human muscle fibers, normalized  
for cell size, does not change with age (Trappe et  al., 2003;  
Malisoux et  al., 2007; Raue et  al., 2009).

The wide remodeling of skeletal muscle occurring with age 
also influences its mechanical properties. Kocur and colleagues 
demonstrated that stiffness and tone of the upper trapezius 
(UT) and SCM increase with age, and elasticity decreases (Kocur 
et  al., 2017). On the contrary, the viscoelastic  
features of these muscles during movement are not significantly  
affected (Kocur et  al., 2017). The analysis of muscle tone and 
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mechanical properties of rectus femoris and biceps brachii 
muscles in old and young adults revealed that aging is associated 
with an increase of muscle tone, and stiffness, and a decrease 
in elasticity (Agyapong-Badu et  al., 2016). Also, the 
sternocleidomasteoid and upper trapezius muscles undergo a 
decrease in elasticity and an increase in stiffness in women in 
a seated position (Kocur et  al., 2019). These parameters varied 
about 1.5% per year, and, among all the possible etiologic 
factors analyzed (BMI, age, and head posture), only aging was 
found to be a major correlate (Kocur et al., 2019). Neuromuscular 
performance is also impaired with aging, as demonstrated in 
a study that evaluated both the time needed to perform specific 
muscular activities and muscular functional features (Haus et al., 
2007b). The authors showed that the time to climb stairs, rise 
from a chair, and walk a set distance significantly increased 
and the quadriceps muscle volume, strength, and power 
significantly decreased in aged adults (Haus et al., 2007b). These 
alterations did not match changes in intramuscular endomysial 
collagen nor in enzymatically-mediated collagen cross-linking, 
which remained constant, but matched a 200% increase in the 
advanced glycation end-product (AGE), pentosidine (Haus et al., 
2007b). The accumulation of AGEs in the intramuscular 
connective tissue, probably due to age-dependent decrease in 
collagen turnover, is associated with the formation of 
non-enzymatically-mediated collagen cross-linking (Verzijl et al., 
2000; Haus et  al., 2007b). This observation led the authors to 
hypothesize that the accumulation of AGEs in the intramuscular 
connective tissue of old adults might be  responsible for the 
increase in muscle tissue stiffness and decrease in passive 
viscoelastic properties, thus impairing muscle function.

Skeletal muscle is highly responsive to activity, i.e., it remodels 
and adapts its metabolism and structure to meet the body’s 
needs (Thompson, 2002; Potthoff et  al., 2007). Aging affects 
the architecture and the function of the skeletal muscle, but 
there are conflicting reports about the level of muscular adaptive 
capacity in the elderly (Rogers and Evans, 1993; Kim and 
Thompson, 2013; Gheller et  al., 2016). However, based on 
some pieces of evidence, aged skeletal muscle still maintains 
a certain degree of plasticity; therefore, it can undergo structural 
and functional changes in response to physiological stimuli 
(Joanisse et  al., 2017). In particular, exercise training has been 
demonstrated to stimulate skeletal muscle fiber hypertrophy 
and increase mitochondrial oxidative capacity in aged humans 
and animal models, resulting in increased muscle mass and 
strength (Frontera et al., 1988; Joseph et al., 2016; White et al., 
2016; Joanisse et  al., 2017; Kim et  al., 2017). At the same 
time, inactivity induces a decrease in skeletal muscle mass, 
and strength independently of age, but the recovery after 
immobility is impaired in aged humans and animal models 
(Zhang et  al., 2018a,b; Oikawa et  al., 2019).

At the molecular level, reactive oxygen species (ROS) and 
PGC-1alpha signaling, as well as the autophagic machinery, 
have been suggested as important determinants contributing 
to metabolic adaption and remodeling of skeletal muscle after 
physical activity (Ferraro et  al., 2014). Skeletal muscle fibers 
during their activity produce ROS, mainly due to the activity 
of mitochondria, NADPH oxidase, xanthine oxidase, and 

phospholipase A2 (Szentesi et  al., 2019). In turn, ROS activate 
several signaling pathways, which are pivotal for different cellular 
processes, such as proliferation, protein synthesis and degradation, 
ROS detoxification, and muscle fiber contraction (McDonagh, 
2016). ROS, at physiological levels, have a crucial role in the 
activation of adaptive responses to exercise in skeletal muscle 
cells (Ji, 2015). Indeed, mitochondrial biogenesis, antioxidant 
activity, inflammation, protein turnover, apoptosis, and autophagy 
are upregulated. The principal molecular elements of these 
signaling cascades are NF-kB, MAPK, and PGC-1alpha. When 
the levels of ROS greatly exceed the cellular antioxidant capacity, 
deleterious oxidative modifications occur to the structures and 
the molecules of the skeletal muscle fibers, thus impairing 
their function. Aging is associated with increased levels of 
oxidative stress in the skeletal muscle tissue, which is the 
accumulation of reactive oxygen and nitrogen species. As a 
result, the skeletal muscle undergoes structural and functional 
modifications, which reduce muscle mass, strength, and function 
(Ji, 2015). Indeed, satellite cells become dysfunctional, the rate 
of protein breakdown prevails over that of protein synthesis, 
muscle fibers activate apoptotic processes, intracellular calcium 
homeostasis is altered, and excitation-contraction coupling is 
impaired (Szentesi et  al., 2019). Studies in humans and mice 
showed that mitochondria of aged skeletal muscles have impaired 
mitochondrial NADH redox potential and reduced oxidative 
capacity (Conley et  al., 2000; Claflin et  al., 2015; Nelson et  al., 
2019). As a consequence, aged muscles accumulate oxidized 
proteins, and mitochondrial dysfunction, which, in turn, lead 
to increased ROS production and oxidative damage in the 
cells (Short et al., 2005b; Cerullo et al., 2012; Bratic and Larsson, 
2013; Gomes et  al., 2017). Besides, other cellular antioxidant 
enzymes, such as catalase, glutathione transferase, and superoxide 
dismutase, are also significantly reduced in skeletal muscle 
fibers of old adults, and exercise-activated redox signaling 
pathways are weakened (Cerullo et  al., 2012; Ji, 2015). A 
proteomic study in mice demonstrated that aging is correlated 
with reduced levels of redox-sensitive proteins involved in the 
energy metabolism of skeletal muscle fibers, thus affecting the 
cellular responses to oxidants (McDonagh et  al., 2014). These 
data were also supported by a recent study in humans, which 
showed that sarcopenia is associated with altered expression 
of genes regulating mitochondrial energy production in skeletal 
muscle (Migliavacca et  al., 2019). Indeed, the PGC-1alpha/
ERRalpha signaling, oxidative phosphorylation, and proteostasis 
are downregulated. As a result, mitochondria are dysfunctional 
and their number is reduced, thus further exposing skeletal 
muscle fibers to oxidative damage (Migliavacca et  al., 2019).

Experimental studies indicate a negative effect of aging also 
on skeletal muscle plasticity, which is the potential of this tissue 
to modify its structural and functional features in response to 
environmental changes (Verdijk et  al., 2007; Jee and Kim, 2017; 
Suetta, 2017). The regrowth response to physical inactivity-induced 
atrophy is also hindered in aged muscles (Pisot et  al., 2016).

As for the regenerative potential of skeletal muscle  
during aging, it has been reported that satellite cells, the  
quiescent adult stem cells of skeletal muscle, gradually lose 
their potential to regenerate skeletal muscle with advancing age 
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(Yin et al., 2013; Sousa-Victor et al., 2014; Joanisse et al., 2016). 
Indeed, experimental evidence from studies in both humans 
and animal models suggests that aging is associated with a 
reduction in satellite cell self-renewal and myogenic competences, 
and possibly a decrease in their number, thus resulting in an 
impaired regeneration of skeletal muscle tissue (Corbu et  al., 
2010; Sousa-Victor et  al., 2014; Brack and Muñoz-Cánoves, 
2016; Joanisse et  al., 2016). At the molecular level, aging drives 
a dysregulation of important molecular signaling pathways, such 
as FGF2/Sprouty1, Notch, p38 MAPK, JAK-STAT3, and 
p16(INK4a) in satellite cells, and impairs the microenvironment 
feeding and regulating the muscle stem cell niche (Sousa-Victor 
et al., 2014; Parker, 2015; Snijders et al., 2015; Brack and Muñoz-
Cánoves, 2016; Joanisse and Parise, 2016; Stearns-Reider et  al., 
2017; Etienne et  al., 2020; Levi et  al., 2020).

To counteract the impairment of skeletal muscle with aging, 
three main approaches have been pursued: physical activity, 
antioxidant dietary supplementation, and regenerative medicine 
therapies. Some pieces of evidence showed that regular exercise 
can reduce the detrimental effects of aging on skeletal muscle. 
In particular, it has been reported, both in humans and animal 
models, that regular physical activity can attenuate the 
age-dependent decrease in the number of mitochondria and 
proteins involved in the excitation-contraction coupling, thus 
delaying the impairment in muscle function (Zampieri et  al., 
2015; Csernoch et  al., 2017). Physical inactivity also damages 
the structure and function of skeletal muscle fibers. Moreover, 
in old adults, besides a weakened ROS scavenging system, dietary 
intake of antioxidants is often reduced (Damiano et  al., 2019). 
In this context, data from studies in humans and animal models 
indicate that muscular activity and/or dietary supplementation 
with antioxidant compounds, such as l-ascorbic acid, tocopherols, 
carotenoids, flavonoids, or polyphenols, exert some beneficial 
effects on age-related skeletal muscle decline (Cesari et al., 2004; 
Pierno et  al., 2014; Anton et  al., 2015; Cartee et  al., 2016; Jee 
and Kim 2017; Muhammad and Allam, 2018; Damiano et  al., 
2019). However, it should be  taken into account that the effects 
of physical exercise and/or dietary supplementation with 
antioxidants on skeletal muscle aging are still debated due to 
discordant results (Marcell, 2003; Ji, 2015; Cartee et  al., 2016; 
Flack et  al., 2016; White et  al., 2016; Distefano and 
Goodpaster, 2018; Damiano et  al., 2019; Szentesi et  al., 2019).

In the last decades, thanks to the progress of regenerative 
medicine, new approaches for improving skeletal muscle 
regeneration in humans have been developed. Indeed, cell therapies 
based on the delivery of myogenic stem cells have been largely 
used also in preclinical studies. Several sources of myogenic 
cells have been employed, so far: satellite cells, muscle-derived 
stem cells, myoblasts, mesoangioblasts, hTERT-immortalized 
muscle precursor cells, pericytes, CD133+ cells, hematopoietic 
stem cells, mesenchymal stem cells, perivascular stem cells, 
interstitial cells, pluripotent stem cells isolated from the dental 
pulp, embryonic stem cells, and induced pluripotent stem cells 
(iPSCs) (Hall et  al., 2017; Del Carmen Ortuño-Costela et  al., 
2019; Marg et  al., 2019; Mueller and Bloch, 2019). As a result, 
the delivery of these myogenic cells led to some improvements 
in muscle function and regeneration in mammalian animal 

models (Rao et  al., 2018; Mueller and Bloch, 2019). To enhance 
the effectiveness of these regenerative therapies, bioactive molecules, 
such as TGF-β, IGF-I, fibrin, keratine, as well as ECM-based 
bioscaffolds, have been combined with myogenic cells (Brown 
et  al., 2012; Dziki et  al., 2016; Fuoco et  al., 2016; Jiao et  al., 
2018; Pollot et  al., 2018; Mueller and Bloch, 2019). However, 
we are still far from effective treatments to use in clinical practice 
for skeletal muscle regeneration due to the difficulties associated 
with cell preparation, the limited engraftment of myogenic cells, 
the incomplete differentiation of myogenic cells in situ, the partial 
integration with host cells, and tumorigenic risk of immortalized 
cells. In the context of pharmacological intervention, many 
different drugs have been tested for improving muscle regeneration. 
Indeed, anti-inflammatory drugs have been used for blocking 
the anti-regenerative effect of chronic inflammation, hormones, 
and growth factors for stimulating cell growth; urocortin II for 
stimulating muscle fiber growth pathways; and myostatin for 
activating satellite cells. Indeed, urocortin II and myostatin showed 
an interesting potential for improving muscle hypertrophy  
and hindering the age-dependent loss of muscle tissue in  
animal models (Hinkle et  al., 2003; Rodriguez et  al., 2014; 
Cohen et  al., 2015; Naranjo et  al., 2017; Saul et  al., 2019).

CONNECTIVE TISSUE AND AGING

Besides its influence on skeletal muscle, aging also results in 
modification of cells and extracellular matrix of myofascia and 
tendons (Barros et  al., 2002; Haus et  al., 2007a; Trappe, 2009; 
Kragstrup et  al., 2011). Muscular fascia is composed of many 
different molecules, such as structural proteins (collagens, laminins, 
fibronectin, vitronectin, tenascin, and elastin), growth factors 
(TGFs and IGFs) glycosaminoglycans, proteoglycans, 
metalloproteinases, cytokines, and water (Eyre et al., 1984; Reiser 
et  al., 1992; McCormick, 1999). Fascia, due to its structure and 
composition, has elastic, viscoelastic and plastic properties that 
strongly influence the biomechanical features of the locomotory 
apparatus, as demonstrated both in humans and animal models 
(Kovanen et  al., 1988; Goldspink et  al., 1994; Kjaer, 2004; Avila 
Gonzalez et  al., 2018; Blottner et  al., 2019; Schleip et  al., 2019). 
Muscular connective tissue changes with advancing age, as 
reported also in studies in animal models. In particular, its 
thickness and the amount of collagen cross-linking increase, 
and its elasticity decreases (Alnaqeeb et al., 1984; Gosselin et al., 
1998; Ducomps et  al., 2003; Wilke et  al., 2019; Etienne et  al., 
2020). Additionally, the composition of the muscular connective 
tissue varies; as an example, the amount of collagen type IV 
rises, and that of type VI reduces (Etienne et  al., 2020; Levi 
et  al., 2020). As a result, the extracellular matrix becomes  
more rigid and muscles increase their stiffness, thus resulting 
in impaired muscle function (Alnaqeeb et  al., 1984; Kovanen 
et  al., 1984; Gosselin et  al., 1998; Willems et  al., 2001; 
Ducomps et  al., 2003; Etienne et  al., 2020).

Studies in humans and animal models showed that with 
advancing age the basal lamina becomes thicker and destructured, 
and the content of collagen type IV, laminin, and the antimyogenic 
cytokine, osteopontin, increases in skeletal muscle, thus hindering 
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its regenerative potential (Kovanen et  al., 1988; Grzelkowska-
Kowalczyk, 2016). Moreover, a decrease in the number of fibroblasts 
and stem cells in tendon during aging has been also reported 
in humans and animal models (Squier and Magnes, 1983; 
Nakagawa et  al., 1994; Zhou et  al., 2010; Ruzzini et  al., 2013).

A recent study by Wilke and collaborators demonstrated that 
aging is associated with variation in the thickness of the fascia. 
Indeed, the age-related modifications are specific for different 
body sites. Fascial thickness of the lower limb decreases with 
age (−12.3–25.8%), whereas fascia of the low back region increases 
(+40.0–76.7%) (Wilke et  al., 2019). These changes in connective 
tissue have been suggested to reduce joint flexibility (Wilke et al., 
2019). Moreover, the amount of intramuscular connective tissue 
in the gastrocnemius muscle of elderly adults is reportedly higher 
than that of young adults (Csapo et al., 2014). Although connective 
tissue content may change with aging, the amount of cross-
linking of intramuscular collagen remains stable, according to 
the results of a study in the vastus lateralis of young and old 
adults (Haus et  al., 2007a). Aging results also in a reduction 
in water content within tendon, as reported in the Achilles 
tendon of old rabbits (Ippolito et al., 1980), an increase in cross-
links between tendon fibrils and a decrease in collagen content 
and density (Vogel, 1978; Haut et  al., 1992; Couppe et  al., 2009; 
Svensson et  al., 2015). Reducing sugars can link to amino acids 
of collagen fibers and generate AGEs, which accumulate throughout  
life and result in increased tissue stiffness and strength  
(Bank et  al., 1999; DeGroot et  al., 2001; Suzuki et  al., 2008).

In addition, reduced elasticity and increased stiffness of aged 
musculoskeletal system can also be  caused by degeneration of 
connective tissue, which leads to reduced joint mobility in the 
elderly (Kocur et  al., 2019). At the molecular level, it has been 
reported that Wnt signaling, the expression of metalloproteinase 
(MMP) and tissue inhibitor of metalloproteinase genes, which 
regulate ECM degradation and remodeling, change with 
advancing age (Phillip et  al., 2015; Birch, 2018; de Sousa Neto 
et  al., 2018). Barros and colleagues demonstrated that elastic 
fibers of the cervical interspinous ligaments undergo 
fragmentation and degeneration, and oxytalan fibers, which 
confer resistance to the tissue, degrade during aging (Barros 
et  al., 2002). As a consequence, ligaments are more susceptible 
to ruptures following mechanical stress (Barros et  al., 2002).

Despite age-related modifications of connective tissue, the 
effect of these changes on the mechanical properties of tendons, 
such as strength, stiffness, and elasticity, is still debated, due 
to conflicting reports (Svensson et  al., 2015). Interestingly, a 
recent pilot study demonstrated that acute resistance exercise 
differentially affected young and old adults in the context of 
metalloproteinase gene expression (Wessner et al., 2019). These 
results support the evidence of stimulus-dependent ECM 
remodeling in the elderly.

COUPLING BETWEEN FASCIA, 
SKELETAL MUSCLE AND AGING

Muscles and fascia cooperate for the correct functioning of the 
locomotory apparatus. Their intimate relationship makes the 

performance of movement strictly dependent on the status of 
both of them. As an example, appropriate preparation of fascial 
structures by a warm-up and stretching protocols is essential 
for optimal results and minimal risk of injury in physical exercises 
(Yahia et  al., 1993; Mattieni et  al., 2009; Wang et  al., 2009). 
The structural and molecular changes of skeletal muscle and 
fascia with advancing age influence the transmission of force 
in the locomotory system (Wilke et  al., 2018). Intramuscular 
fascia connects different muscle fibers and muscle bundles within 
the muscle to form the force-generating structure connected to 
the bone (Turrina et  al., 2013). Indeed, studies in rats showed 
that the force generated by muscle fiber contraction is transmitted 
both longitudinally and laterally, through the intramuscular fascia, 
to the surrounding muscle fibers, till the tendon and the bones 
(Huijing and Jaspers, 2005). Moreover, molecular features, 
structure, and orientation of fascial fibers determine how force 
is transmitted and transferred through connective tissue to other 
surrounding elements (Stecco et al., 2013; Wilke et  al., 2018). 
In humans, recent data showed that the length of muscle fascicles 
is affected by the coupling between muscle and fascia (Pamuk 
et al., 2016; Karakuzu et al., 2017). Indeed, heterogeneous fascicle 
strains have been detected in the medial gastrocnemius muscle 
following submaximal plantar flexion activity or knee extension. 
This result has been explained by epimuscular force transmission 
(Pamuk et  al., 2016; Karakuzu et  al., 2017). Intermuscular 
mechanical interactions also have important implications in 
patients affected by cerebral palsy (CP), who suffer from motor 
disability. It has been suggested that the co-activation of 
antagonistic muscles of the knee, which causes the limited joint 
motion in CP patients, is due to altered force transmission 
through myofascial structures (Kaya et  al., 2019, 2020). This 
makes fascia a key structural and functional element of the 
contractile apparatus of muscle. As a consequence, the mechanical 
features of the entire muscle cannot be  merely described as the 
sum of the isolated fascia and muscle fibers.

The fluid component of fascia assists in the hydrostat function 
of the tissue and dissipates energy, whereas the elastic component, 
made by fibrous protein structures, can store and release elastic 
energy (Huijing et  al., 2003; Özkaya et  al., 2017). Besides the 
capacity of fascial components to generate force by myofibroblast 
contraction, fascia can also modulate its composition and 
structure in response to biomechanical stimulation, thus allowing 
its adaptation over time to meet the body’s needs (Blottner 
et  al., 2019). Several studies have demonstrated that muscles 
located in anatomically separate body regions can exchange 
tensional stress through a tight link and cooperation with 
fascial structures, thus contributing to the accomplishment of 
locomotory tasks and movement proprioception (Vleeming 
et al., 2014; Blottner et al., 2019). In the anatomical compartment 
comprised between leg and trunk, this complex architecture 
has been described as a myofascial force transmission chain 
(Myers, 2013; Wilke et  al., 2016).

Data collected so far suggest that myofascial force transmission 
is extremely relevant during muscle lengthening, such as in 
eccentric contractions and stretching activity (Yucesoy et al., 2005; 
Huijing, 2009; Yucesoy, 2010; Wilke et  al., 2018). Indeed, the 
presence of intermuscular mechanical interactions in the lower 
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leg muscles under passive joint motion has been clearly demonstrated 
by several ultrasound-based studies (Bojsen-Møller et  al., 2010; 
Tian et  al., 2012; Le Sant et  al., 2017; Ateş et  al., 2018).

Some pieces of evidence indicate that the close interaction 
between muscular and fascial structures and the physical 
continuity of connective tissue along the myofascial chain 
weakens with age, thus reducing the magnitude of mechanical 
force transmission (Wilke et  al., 2019). In this context, it 
has been shown that alteration in myofascial force 
transmission can influence the effects of nonlocal exercises, 
as the self-myofascial release of the plantar fascia on 
hamstring extensibility (Wilke et  al., 2019). Fascial tissue 
can densify and develop fibrosis with age, thus reducing 
muscular force production and joint range of motion (Pavan 
et  al., 2014; Zhang and Gao, 2014). Moreover, decreased 
physical mobility occurring in the elderly could be partially 
explained by increased stiffness and reduced elasticity of 
the extracellular matrix due to dehydration and increased 
collagen content (Sölch, 2015). Indeed, during aging, the 
connective tissue of patellar tendon increases fiber  
cross-links and reduces collagen content, and Achilles  
tendon and plantar fascia diminish their connecting fibers 
(Snow et  al., 1995; Couppe et  al., 2009).

CONNECTIVE TISSUE, INFLAMMATION, 
AND AGING

A key feature of aging tissue is, also, the so-called inflammaging, 
which describes a low-grade chronic systemic inflammation 
in the absence of overt infection. This “sterile” inflammation 
is a highly significant risk factor for morbidity and mortality 
in elderly people. Chronic inflammation influences tissue 
functions via several mechanisms: persistent production of 
reactive molecules by infiltrating leucocytes might damage 
structural elements of tissues; production of cytokines might 
modulate inflammatory responses and alter phenotypes of 
nearby cells (Franceschi and Campisi, 2014). Most of the 
inflammatory responses take place in the extracellular matrix, 
which can interact with immune cells and change their functions, 
thereby influencing tissue regeneration. Although early 
inflammation after tissue damage is important for remodeling 
and adaptations, decreased inflammation seems to be associated 
with improved tissue regeneration and gains of muscle strength 
(Zügel et  al., 2018).

MOTOR SYSTEM AND AGING

As for the effect of aging on the motors system, data  
showed that atrophy of the motor cortex, modifications of 
neurotransmission, reduced motor cortical excitability, and 
plasticity occur in the nervous system. These changes also 
result in impaired muscle performance (Tieland et al., 2018). 
Alterations in nervous system structure and function contribute 
to a decline in skeletal muscle efficiency with age, via a 
reduction in motor coordination and muscle strength.  

Loss of neural processes impairs the control and activity of 
skeletal muscle fibers. Indeed, the occurrence of age-related 
reduction in descending drive and an increase in the threshold 
of excitability of the corticospinal tract has been reported 
by studies in humans (Rossini et  al., 1992; Clark and Taylor, 
2011; Unhjem et  al., 2015). As demonstrated in mouse and 
rat models, aging is also associated with a decline in 
reinnervation of muscle fibers, accumulation of denervated 
fibers, and muscle atrophy. This phenomenon is probably 
caused by a reduced neurotrophil-mediated axonal sprouting 
following denervation (Aare et  al., 2016). Moreover, aging 
leads to motor unit remodeling, which leads to an alteration 
in the fiber type composition, i.e., the replacement of type 
II with type I  muscle fibers (Thompson, 2002). Reduction 
in the number of motor units is associated with the decay 
of muscle size and function in aged mice (Sheth et  al., 
2018). Aging also results in impaired movement coordination, 
due to a decreased control of motor output, as demonstrated 
in the first dorsal interosseous muscle of elderly subjects 
during submaximal contractions (Galganski et  al., 1993). 
Old adults, have 40% reduction in the total number of motor 
units, 50% enlargement of remaining motor units (low- and 
moderate-threshold motor units), and an increase in fiber 
density (Piasecki et  al., 2016). Also, differences in inter-joint 
coordination during squat jumps have been found between 
young and old adults (Argaud et  al., 2019). A study 
investigating neuromuscular coordination demonstrated a 
loss and reorganization of muscular patterns in old adults 
(Vernooij et  al., 2016).

Neuromuscular junctions (NMJs) are affected by detrimental 
modifications in their activity and conformation during aging 
(Li et  al., 2018). Studies in animal models showed that the 
structural integrity of NMJs is affected by aging. The area of 
the motor nerve terminal and that of post-synaptic folds is 
reduced and both nerve terminals and the post-synaptic cluster 
of acetylcholine receptors (AChRs) undergo fragmentation. 
Moreover, in aged rodent it has been reported an increase 
in the branching of nerve terminals, and extra-junctional 
AChRs, and a reduction in myofibre nerve supply (Kreko-
Pierce and Eaton, 2018). Interestingly, the degree of 
age-dependent degeneration of NMJs shows a certain variability 
between different muscles and even within the same muscle 
or the motor unit (Taetzsch and Valdez, 2018). The cause of 
this NMJs degeneration is still a matter of study, but some 
pieces of evidence indicate that impaired autophagic pathway 
and agrin signaling might cause NMJ decline (Li et  al., 2018). 
Data from animal models showed that aged NMJs have a 
reduced number of mitochondria and accumulate morphological 
abnormal mitochondria and oxidative damage in the presynaptic 
plaque (Gonzalez-Freire et al., 2014). Also, it has been reported 
that aging is associated with altered expression of neurotrophin 
genes in the neuromuscular system. In particular, 
neurotrophin-3, neurotrophin-4, and brain-derived neurotrophic 
factors are downregulated and glial cell-derived neurotrophic 
factor is upregulated in aged rodent muscles (Kreko-Pierce 
and Eaton, 2018). The effect of aging on neuromuscular junction 
transmissions is still debated, due to conflicting results  
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(Piasecki et al., 2016; Willadt et al., 2016). The results collected 
so far demonstrate that age-dependent changes in the nervous 
system could promote an impairment in skeletal muscle function 
(Piasecki et  al., 2016). However, in the perspective of healthy 
aging, several studies in mice demonstrated that the deleterious 
effects of aging on the structure and function of NMJs can 
regress due to physical exercise (Fahim, 1997; Valdez et al., 2010; 
Nishimune et  al., 2012; Cheng et  al., 2013).

IMAGING AND ULTRASOUND METHODS 
IN THE ELDERLY

From the clinical perspective, it is crucial to identify all the 
alterations that occur in the myofascial tissue with aging. 
Technological advancements allowed the development of 
high-resolution instruments for the morphological 
characterization of myofascia tissue and the assessment of 
factors that influence the “contractile quality” of skeletal 
muscle. Conventional imaging methods, such as MRI, the 
current “gold standard” for the analysis of muscle size, 
computed tomography (CT), and dual-energy X-ray 
absorptiometry (DXA), provide precise measures of muscle 
mass but are suboptimal in reflecting the composition of 
myofascial tissue. For instance, Hounsfield units in CT images 
(Engel et  al., 2018) or MRI signal intensity can be  used to 
evaluate the composition of the skeletal muscle (Carlier et al., 
2016). However, it is difficult to obtain these values for 
many community-dwelling older people because of the need 
for special equipment and the relatively high measurement 
burden (time, cost, and radiation exposure) and the lack of 
standardization of measurements (Lee et  al., 2019). Recently, 
ultrasound attenuation and echo intensity have emerged as 
potentially useful indicators of muscle composition. 
Ultrasonography is non-invasive, easily accessible, and relatively 
inexpensive compared with other imaging systems such as 
CT. Several groups of researchers have used ultrasound echo 
intensity as an index of skeletal muscle composition; whereby, 
increased amounts of intramuscular fat and fibrosis that 
occur with pathological aging result in increasing echo-
reflection and a brighter ultrasound image (Reimers et  al., 
1993; Pillen et  al., 2009; Watanabe et  al., 2018). Although 
such measures have also been related to muscle strength 
and functional performance in elderly populations in some 
studies (Fukumoto et  al., 2012; Watanabe et  al., 2013; Lopez 
et  al., 2017), they provide only indirect measures of the 
contractile quality of skeletal muscle in vivo. Several alternative 
ultrasound-based methods have recently been developed to 
quantify the contractile quality of muscle during dynamic 
contraction. Elastographic methods are increasingly used to 
assess the viscoelastic properties of muscle in aging but, as 
with echo-based measures, their widespread implementation 
in clinical and research settings is currently limited by low 
reproducibility (Zaidman et  al., 2012; Alfuraih et  al., 2018). 
Although other emerging ultrasound-based approaches 
including speckle-tracking (Frich et al., 2019), tissue Doppler 
imaging (Eranki et al., 2013), and axial transmission techniques 

(Wearing et al., 2016) arguably provide more direct measures 
of the contractile quality of the muscle-tendon unit in vivo, 
these techniques also suffer from limitations, including 
susceptibility to decorrelation (speckle tracking), user 
intervention (feature-based tracking), and dependence on 
insonation angle (tissue Doppler) (Sikdar et  al., 2014). 
Nonetheless, ultrasound-based measures appear to be promising 
approaches for quantifying contractile properties of 
myofascial tissues and have the potential to enhance our 
understanding of musculoskeletal function with aging 
and pathology.

MANIPULATION TECHNIQUES AND 
FASCIA REPAIR

Over the course of a lifetime, fascia can be  injured due 
to excessive or prolonged loading, traumatic events, strenuous 
physical activity, and surgical procedures. As a consequence 
of damage, repair mechanisms are activated to restore the 
original structural and functional features of the tissue (Zullo 
et al., 2017). Impairment of this process can cause a reduction 
in the performance of the locomotory apparatus and 
musculoskeletal disorders (Zuegel et  al., 2018). Therefore, 
strategies improving myofascial regeneration are pivotal. A 
broad range of tissue manipulation techniques has been 
proposed to enhance fascial repair. A study in the treatment 
of tension-type headache suggests a combination of soft 
tissue techniques and neural mobilization to be  most 
promising in relieving myofascial-induced pain and 
dysfunction (Ferragut-Garcias et  al., 2017). The authors 
highlight the importance of the treatment stimulus to 
mechanically stimulate nerve and fascia. Indeed, a study 
performed on people suffering from delayed-onset muscle 
soreness showed that the sensitivity of high-threshold 
mechanosensitive receptors is a predictor of pain and motor 
impairment (Fleckenstein et  al., 2017). Thus, approaches 
modulating the activity of these receptors may be  helpful 
for functional recovery. This is in line with recent clinical 
data showing that hands-on based conservative treatments 
can be  effective in relieving pain in injured athletes 
(Fleckenstein and Banzer, 2019). These treatments include 
nerve block, injection, ultrasound and laser therapies, 
manipulation, mobilization, massage, and traction, as well 
as acupuncture and dry needling. However, it is not clear 
whether aging influences the effect of these treatments. 
There is evidence that multimodal rehabilitation, including 
classic massage, transcutaneous electrical nerve stimulation, 
and ultrasound therapy improves pain and function in older 
women (aged >60) suffering from back pain (Cichon et  al., 
2019). A systematic review found limited evidence of pain-
reducing effects of physical therapy (three studies, two of 
them applying soft tissue treatments) among older adults 
with dementia (Coronado et  al., 2019). In summary, we  can 
only hypothesize that the fascial tissue of elderly people  
is susceptible to soft tissue stimuli, but its effect has  
to be  determined.
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CONCLUSIONS

Aging is associated with metabolic, structural, and functional 
modifications of cells, tissues, and organs, which lead to a 
gradual decline in psycho-physical performance. In particular, 
the locomotory apparatus loses its effectiveness, due to the 
molecular and cellular changes occurring in the myofascia, 
the skeletal muscle tissue, the nervous system, and their 
structural and functional coupling. Genetics, epigenetics, 
environment, diseases, lifestyle, nutrition, and injuries also have 
a prominent role in tissue remodeling occurring with aging 
(Jee and Kim, 2017). Thanks to recent scientific progress, many 
phenomena and mechanisms associated with aging have been 
defined, but still much remains to be  investigated. From the 
perspective of healthy aging, it is crucial to identify and hinder 
all the age-dependent modifications through specific strategies 
targeting etiologic factors, and also psycho-social issues. Indeed, 
ultrasound-based techniques can provide a detailed 
morphological characterization of skeletal muscle and connective 
tissue, thus allowing a specific analysis of the detrimental 
changes occurring in the myofascia with aging. Moreover, tissue 

manipulation techniques might contribute to improving 
myofascial regeneration in the elderly. Physical activity has 
been also suggested as an effective strategy for counteracting 
the deleterious consequences of aging, given that skeletal muscle 
plasticity might be  only partially lost in elderly individuals 
(Distefano and Goodpaster, 2018). However, this issue is still 
debated, due to contradictory results. Nevertheless, the constant 
progress in technology and biomedical research holds great 
promise for fighting the burden of aging by targeted 
therapeutic interventions.
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