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Gastrointestinal (GI) vagal afferents convey sensory signals from the GI tract to the
brain. Numerous subtypes of GI vagal afferent have been identified but their individual
roles in gut function and feeding regulation are unclear. In the past decade, technical
approaches to selectively target vagal afferent subtypes and to assess their function
has significantly progressed. This review examines the classification of GI vagal afferent
subtypes and discusses the current available techniques to study vagal afferents.
Investigating the distribution of GI vagal afferent subtypes and understanding how to
access and modulate individual populations are essential to dissect their fundamental
roles in the gut-brain axis.
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INTRODUCTION

The vagus nerve provides bidirectional communication between the gut and the brain. The vagus
nerve comprises of both sensory and motor neurons with the number of afferent fibres out-
numbering the efferent fibres by about 9 to 1 (Agostoni et al., 1957). Vagal sensory pathways
facilitate signal transmission from the visceral endings in the gut through the vagal ganglia, where
the cell bodies are located, and terminate in the brainstem. Visceral projection of vagal afferents
is highly prevalent in the upper gastrointestinal (GI) tract and the density is gradually decreased
further down the gut (Berthoud and Neuhuber, 2000). Instead, the lower GI tract is densely
innervated by spinal afferents whose cell bodies lie in the dorsal root ganglia (DRG) (Spencer
et al., 2016b). The GI vagal afferent cell bodies are located in the nodose ganglia (NG), originating

Abbreviations: AAV: adeno-associated virus; AgRP: Agouti-related protein; BAC: bacterial artificial chromosome;
CAP: capsaicin; CCK: cholecystokinin; CCKR: cholecystokinin receptor; CCK-SAP: cholecystokinin-saporin; ChR2:
channelrhodopsin-2; CNO: clozapine-N-oxide; CNS: central nervous system; DMV: dorsal motor nucleus of the vagus;
DREADDs: designer receptors activated by designer drugs; dsDNA: double stranded DNA; ECC: enterochromaffin cells;
EEC: enteroendocrine cells; ENs: enteric neurons; GECI: genetically encoded calcium indicator; GETI: genetically encoded
neurotransmitter release indicator; GI: gastrointestinal; GLP1R: glucagon-like peptide 1 receptor; GPCR: G-protein coupled
receptor; GPR65: G-protein receptor 65; HSV: herpes simplex virus; ICC: interstitial cells of Cajal; IGLE: intraganglionic
laminar endings; IMA: intramuscular arrays; mRNA: messenger RNA; NG: nodose ganglia; NpHR: Natromonas pharaonis
halorhodopsin; NTS: nucleus tractus solitarius; PNS: peripheral nervous system; PRV: pseudorabies virus; RABV: rabies virus;
RNAi: RNA interference; SDA: subdiaphragmatic vagal deafferentation; SDV: subdiaphragmatic vagotomy; siRNA: small
interfering RNA; ssRNA: single stranded RNA; TRPA1: transient receptor potential ankyrin 1; TRPM8: transient receptor
potential subfamily M member 8; TRPV1: transient receptor potential vanilloid 1; VAN: vagal afferent neurons; VGLUT:
vesicular glutamate transporter.
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from the epibranchial placode (Baker and Bronner-Fraser, 2001).
The predominant function of this traffic is to transmit innocuous
signals evoked by food related stimuli in the GI tract. In addition,
a small number of jugular vagal afferents, with cell bodies
in the jugular ganglia, also project to GI regions (Yu et al.,
2005). The jugular neurons are derived from the neural crest,
the same cell source as spinal afferent neurons. They share
similarities in gene expression of somatosensory markers (Kupari
et al., 2019), suggesting a possible similar function of jugular
neurons and spinal afferents. Furthermore, vagal afferents also
form direct monosynaptic connexions (Rinaman et al., 1989)
and indirect interactions (via second order neurons) (Grabauskas
and Owyang, 2017) with the efferent fibres in the nucleus
tractus solitarius (NTS) to regulate the vago-vagal reflex. Vagal
efferents, with the cell bodies located in the dorsal motor nucleus
of the vagus (DMV), relay signals from the brain to the gut
coordinating motor responses to maintain digestive function
(Rogers et al., 1995).

GI vagal afferents play an important role in the regulation
of food intake and GI function, orchestrating both physiological
and behavioural aspects of food intake in order to ensure
energy requirements are maintained. The peripheral afferent
endings are specialised to detect mechanical and chemical stimuli
evoked within the GI tract in response to food intake. These
signals are transmitted to the brainstem and processed before
being relayed to different regions of the brain, involved in
physiological and behavioural function, or reflexing back to
the GI tract to impact on gut motility and enzyme secretion
(Travagli and Anselmi, 2016; Browning et al., 2017; Han
et al., 2018; Suarez et al., 2018; Waise et al., 2018). It is
known that there are numerous subtypes of GI vagal afferent
depending on morphology and response to food related stimuli
(Berthoud and Powley, 1992; Page et al., 2002). However,
their individual role in feeding regulation and GI function is
unclear. Identification of the role of specific subtypes of GI
vagal afferent will provide critical information for the targeted
treatment of disease.

This review will examine the different classifications of GI
vagal afferents and discuss the current advances in technology
that can improve understanding of the specific role these
subclasses of GI vagal afferent play in gut function and
appetite regulation.

THE CURIOUS CASE OF VAGAL
AFFERENT SUBTYPES

GI vagal afferent subtypes have been previously classified
based on their characteristics, such as the embryonic
origins, conductance velocity, anatomical and morphological
organisation, response to primary stimuli, as well as defined
molecular markers (Figure 1 and Table 1). In recent years, gene
expression profiles (Egerod et al., 2018; Kupari et al., 2019) and
neural circuits (Williams et al., 2016; Han et al., 2018; Kaelberer
et al., 2018) have been introduced as new ways to categorise vagal
afferent subtypes (Figure 2). Although all of these approaches
aim to associate GI vagal afferents to their physiological and

behavioural function, each classification has limitations when it
comes to in vivo studies.

Vagal Afferent Neuroanatomy
Neuroanatomically, vagal afferents are often classified based
on their ganglion of origins and conductance velocity. The
former differentiates vagal afferents into jugular and nodose
neurons, achieved by injecting neural tracers or performing
immunostaining. However, this approach appears to be difficult
since there are no molecular markers identified to be selectively
expressed in the cell bodies of either the nodose or jugular ganglia.
Furthermore, anatomical structure in certain animal models, i.e.,
mouse, limits the accuracy of separation at the level of the vagal
ganglia since it is difficult to anatomically distinguish nodose and
jugular ganglia (Nassenstein et al., 2010; Surdenikova et al., 2012).
In a recent study, Kupari et al. (2019) distinguished nodose and
jugular neurons based on the expression of Phox2b and Prdm12,
respectively. This study suggests that vagal ganglia consist of
85% of nodose neurons and 15% of jugular neurons, of which
eighteen subtypes of nodose neuron and six subtypes of jugular
neuron have been identified (Kupari et al., 2019). Although a
role for each subtype has been proposed in this study, based on
the key molecular markers expressed, the physiological function
of these subtypes requires further confirmation in vitro and
in vivo.

Defining vagal afferent subtypes based on their signal
transmission speed classifies vagal afferent neurons (VAN) into
myelinated, fast conducting A-fibres, moderately myelinated,
medium conducting B-fibres and unmyelinated, slow conducting
C-fibres. This classification follows Erlanger-Gasser rules of
afferent and efferent fibres based on their electrophysiological
characteristics (Erlanger and Gasser, 1930). In addition, a
secondary approach evaluating microscopic cellular structures
(e.g., cell shape and surface characteristic) has also been
established to identify nodose A- and C-fibre neurons in culture
(Lu et al., 2013). However, it seems to be impractical for
in vivo usage. Vagal A-fibres convey afferent visceral information
and motor input, vagal B-fibres carry parasympathetic input,
while vagal C-fibres deliver afferent visceral information (Ruffoli
et al., 2011). Vagal afferent A- and C-fibres project to the GI
tract, although, the ratio of composition may vary depending
on the region of the GI tract innervated. For instance, the
oesophagus is innervated by A- and C-fibre to a similar
degree while subdiaphragmatic GI organs are predominantly
innervated by C-fibres (Yu et al., 2005; Grabauskas and
Owyang, 2017). Intriguingly, conductance velocity does not
appear to be directly related to vagal afferent function with
the location of innervation possibly acting as the main
determinant of vagal afferent function (Page et al., 2002; Yu
et al., 2005). Furthermore, the threshold of activation of vagal
afferent fibres has also been associated with their physiological
function. Low threshold activation is related to non-nociceptive
function, such as in mechanosensitive tension and mucosal
receptors (Page et al., 2002), whilst high threshold activation
is linked to nociceptive-like characteristic, such as nodose
C-fibres and jugular A-/C-fibres innervating the oesophagus
(Yu et al., 2005).
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FIGURE 1 | Overview of GI vagal afferents in the gut-brain axis. An illustration of GI vagal afferents neuroanatomy and primary sensory responses in the viscera.
NTS: nucleus tractus solitarius, AP: area postrema, NG: nodose ganglia, EEC: enteroendocrine cells, ECC: enterochromaffin cells, 5-HT: 5-hydroxytriptamine, SM:
submucosal, CM: circular muscle, MP: myenteric plexus, LM: longitudinal muscle, IMA: intramuscular arrays, TM: tension-mucosal afferents, MA: mucosal afferents,
IGLE: intraganglionic laminar endings.

Morphology of Vagal Afferent Visceral
Endings
A more specific vagal afferent classification has been made based
on morphological specialisation of vagal afferent endings in the
gut wall. This approach distinguishes vagal afferent populations
into three subtypes, namely the intraganglionic laminar endings
(IGLEs), intramuscular arrays (IMAs) and mucosal afferents
(Berthoud and Powley, 1992).

IGLEs have been found in the myenteric plexus, forming
fine laminar or aggregate puncta surrounding the myenteric
ganglia (Fox et al., 2001a). These IGLEs have been shown
to be distributed, without any obvious regional specialisation,
across the GI tract (Berthoud et al., 1997). In contrast, IMAs
are located in discrete locations, such as the longitudinal
(longitudinal IMA) and circular (circular IMA) muscle sheets
in the sphincter regions and the stomach (Powley et al., 2012,
2013, 2014, 2016). Circular IMAs are predominant in the lesser
curvature while longitudinal IMAs are abundant in the greater
curvature region of the stomach (Powley et al., 2016). Despite
the telodendria-like classical structure, IMA nerve endings also
display specialisations, such as modification of arbours, density,
and depth of nerve ending penetration, in particular regions

of the GI tract. For instance, IMAs that innervate the pyloric
sphincter form an annulus ring (Powley et al., 2014), whilst a
shorter and denser IMA population has been observed in the sling
and clasp of the lower esophageal sphincter (Powley et al., 2013,
2016).

The mucosal layer of the gut wall is also innervated by
vagal projections known as mucosal afferents. These endings
penetrate into the lamina propria where they may have contact
with epithelial cells but not to the luminal content (Wank
and Neuhuber, 2001; Powley et al., 2011). Similar to IMAs,
mucosal afferents display specialised substructures with regards
to its innervated organs. For instance, four classes of mucosal
afferent endings have been identified in the upper cervical
oesophagus of the rats (Wank and Neuhuber, 2001). In the
small intestine, studies in rats have revealed two distinct
substructures innervating the crypts and villi of the proximal
small intestine, respectively (Berthoud et al., 1995; Powley et al.,
2011; Serlin and Fox, 2020). Whilst these previous studies
examined distinct regions of the small intestine, accounting
for only about 1-2% of the whole length, a recent study
by Serlin and Fox described these endings quantitatively and
qualitatively for the entire length of the mouse small intestine
(Serlin and Fox, 2020). Furthermore, a mucosal afferent ending
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TABLE 1 | Summary of GI vagal afferents classification.

Characteristics Oesophagus Stomach Small Intestine References

Embryonic origins

Neural crest-derived + − − Yu et al., 2005; Surdenikova et al.,
2012; Trancikova et al., 2018

Placode-derived + + +

Conductance velocity Aδ- and C-fibre C-fibre C-fibre Page and Blackshaw, 1998; Yu
et al., 2005

Visceral endings

Muscle layer

IGLE +++ +++ ++

IMA LES Pyloric sphincter Scarce Rodrigo et al., 1970, 1975a,b;
Pedrosa et al., 1976; Berthoud and
Powley, 1992; Fox et al., 2000;
Powley, 2000; Powley and Phillips,
2011; Powley et al., 2011, 2012,
2013, 2014, 2016

Mucosal afferents + + +

Mucosal-muscle afferents + N/A N/A

Brainstem endings

Nucleus tractus solitarius NTS centralis NTS medialis, NTS
gelatinosus

NTS commisuralis Travagli and Anselmi, 2016

Area postrema N/A + + Han et al., 2018

Primary response to stimuli

Mechanosensitive Tension receptor, Mucosal
receptor, Tension-mucosal

receptor

Tension receptor, Mucosal
receptor

Tension receptor Page and Blackshaw, 1998; Page
et al., 2002

Chemosensitive Osmolarity, pH Osmolarity, pH Nutrient Powley and Phillips, 2004; Williams
et al., 2016

Thermosensitive + + + El Ouazzani and Mei, 1982; El
Ouazzani, 1984; Lennerz et al.,
2007; Jänig, 2018

Genetic markers

Mucosal afferents N/A Sst/Gpr65, Calca Glpr1R, Vip/Uts2b, Gpr65 Bai et al., 2019

IGLE N/A GLP1R Oxtr

IMA N/A Calca N/A

Physiological function Baroreceptors, Nociceptors Mechanosensing Nutrient sensing Yu et al., 2005; Kollarik et al.,
2010b; Williams et al., 2016; Han
et al., 2018; Kaelberer et al., 2018

specialisation was also observed in the antral gland of the stomach
(Powley et al., 2011).

Ending specialisation and the existence of distinct
substructures in different regions of the GI tract suggest a
specific vagal afferent function. However, it is difficult to prove
this premise in vivo since separation of each ending is required.
To date, muscular and mucosal afferents can be distinguished
using a differential retrograde tracing methodology (Young
et al., 2008), however, no technical approach has been developed
to selectively trace IGLEs or IMAs. A study has established
G-protein coupled receptor (GPCR) profiles of GI vagal afferents
in the muscular and mucosal layer of the gut wall (Egerod et al.,
2018). Although IGLEs and IMAs were not clearly distinguished
in this study, two subtypes of vagal afferents, with distinct
GPCR profiles, were described in the muscular layer (Egerod
et al., 2018). In addition, Bai et al. (2019) has recently profiled
and characterised GI vagal afferents based on the correlation
between the morphology of the afferent endings and genetic

marker expression that revealed distinct populations of IGLE
in the stomach (Glp1R+), IGLE in the small intestine (Oxtr+),
mucosal afferents in the pyloric antrum (Sst+/Gpr65+), mucosal
afferents in the lesser curvature of the corpus (Calca+), IMAs
near gastric antrum and large intestine (Calca+), mucosal
endings in the small intestine (Gpr65+), and mucosal afferents
in the intestinal villi (Vip+/Uts2b+). Therefore, there is potential
for this knowledge to be adapted to develop a molecular-based
targeting approach to differentiate the physiological roles of
distinct vagal afferents population in the GI tract.

Although the focus of this review is vagal afferent innervation,
spinal afferents also project to the upper GI tract. Eight distinct
ending subtypes have been identified in the stomach after
injection of dextran biotin in DRG T8 – T12 (Spencer et al.,
2016a). However, their individual functions are still unclear.
Spinal afferents are predominantly known for their function in
sensing noxious stimuli. Nevertheless, these fibres also detect
innocuous mechanical and chemical stimuli that may account
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FIGURE 2 | Landmark events of classification and technical advances to study GI vagal afferents. An overview of progress in understanding GI vagal afferents
function and technical development to target vagal afferent subtypes. SDV: subdiaphragmatic vagotomy, CAP: capsaicin, TRPV1: transient receptor potential
vanilloid 1, IGLE: intraganglionic laminar endings, IMA: intramuscular arrays, SDA: subdiaphragmatic deafferentation, TR: tension receptor, MR: mucosal receptor,
TMR: tension-mucosal receptor, NT-4: neurotrophin-4, HSV129: herpes simplex virus strain 129, AAV: adeno-associated virus, GLP1R: glucagon like peptide 1
receptor, GPR65: G-coupled protein receptor 65, siRNA: small interfering RNA, CCK-SAP: cholecystokinin-saporin, AAVrg: adeno-associated virus retrograde, GETI:
genetically encoded transmitter indicator, GECI: genetically encoded calcium indicator.

to gut physiology (Schwartz and Gebhart, 2014; Spencer et al.,
2014). Furthermore, it is possible that spinal afferents contribute
to appetite regulation, with a study suggesting the involvement
of spinal afferents in hypoglycemic detection in the portal vein
(Fujita and Donovan, 2005). Further studies are required to
establish whether gastric spinal afferents play a role in food
intake regulation.

Physiological Functions of Vagal Afferent
Vagal afferent endings in the GI tract serve as
receptive fields towards various type of stimuli, such
as mechanical, chemical and thermal. Based on the
response, GI vagal afferents are classified into three major
classes, namely mechanoreceptors, chemoreceptors and
thermoreceptors.

Vagal Afferent Mechanoreceptors
Vagal mechanosensing is an important component in the
physiology of digestive function that is prominent in the
stomach. This perception is important for the maintenance
of energy homeostasis as well as gut motility and secretion,
by detecting physical changes during ingestion and digestion
of food. Vagal mechanosensors are located in the mucosal
and muscular layer of the gut wall, sensing tension and
tactile stimuli (Grundy and Scratcherd, 2011). Based on their

response to different types of mechanical stimuli, GI vagal
afferents are categorised into tension, mucosal, tension-mucosal
receptors, and stretch receptors (Phillips and Powley, 2000;
Brookes et al., 2013).

Tension receptors
Tension-sensitive vagal afferents were first described by
Iggo in 1955, termed as “in-series” tension receptors
following their response to passive distension and active
contraction of the smooth muscle (Iggo, 1955). Since then,
extensive electrophysiological studies have been conducted
to characterise these receptors in different GI organs of
various species. In general, tension receptors are identified
as slowly adapting, low threshold mechanoreceptors which
respond to circular tension and high intensity mucosal stroking
(Page and Blackshaw, 1998; Page et al., 2002). In 2000, the
first evidence correlating tension receptors to a specialised
ending structure, i.e., IGLE, was established (Zagorodnyuk
and Brookes, 2000). Genetic-based studies have shown that a
population of IGLEs in the stomach expresses glucagon-like
peptide 1 receptor (GLP1R) (Williams et al., 2016; Bai et al.,
2019). This subtype is specifically activated by mechanical
distension in vivo (Williams et al., 2016), reinforcing the
possible function of IGLEs as a mechanotransduction site.
Furthermore, a population of IGLE expressing oxytocin
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gene (Oxtr) has also been identified in the small intestine
(Bai et al., 2019).

The role of tension receptors in sensing distension has
been associated with food intake regulation. Studies in humans
have shown that mechanical stretch of the stomach limits
food intake by inducing satiation and satiety (Marciani et al.,
2001, 2015; Feinle-Bisset, 2016). In animal models, a recent
study using opto-and chemogenetic approaches in mice has
demonstrated that activation of vagal GLP1R subtypes inhibits
neurons expressing Agouti-related protein (AgRP neurons) in
the hypothalamus and limits food intake (Bai et al., 2019).
This inhibition is rapid but transient (Bai et al., 2019). Gastric
tension receptors express a variety of GI hormone receptors
and ion channels (Christie et al., 2018; Bai et al., 2019),
suggesting interactions between neural and humoral pathways in
modulating mechanosensation. For instance, Kentish et al. (2015)
proposed the role of transient receptor vanilloid 1 (TRPV1) in
gastric vagal afferent signalling, given the evidence of dampened
tension receptor mechanosensitivity in TRPV1 knockout mouse.
In addition, previous studies have shown that in high fat
diet-induced obese mice, diurnal rhythms in gastric tension
receptor mechanosensitivity are lost and accompanied by a loss
of diurnal rhythms in food intake (Kentish et al., 2013). Further,
a reduction in food intake was observed in a chronic stress mouse
model where gastric tension receptor mechanosensitivity was
increased (Li et al., 2019). To date, the mechanism underpinning
modulation of gastric tension receptors in a broader physiological
context and disease pathophysiology is unclear and remains to
be determined. In addition, it has been shown that activation of
mechanosensitive vagal Oxtr also limits food intake by inhibiting
AgRP neurons (Bai et al., 2019). Interestingly, activation of
Oxtr neurons by intestinal distension produced a rapid and
sustained inhibition of AgRP neurons and significantly reduced
food intake (Bai et al., 2019), suggesting a potential role of
intestinal mechanosensation in the central control of food intake
besides its canonical function in the intestinal brake mechanism
(Alleleyn et al., 2016). Further studies are required to investigate
the orchestration of feeding behaviour involving this subtype
alongside gastric tension receptors and humoral pathways.

Besides vagal tension receptors, there are populations of
mechanosensitive enteric neurons (ENs) that can respond to
various types of mechanical stimuli and act as largely tension or
tone-sensitive afferents (Furness et al., 2014; Page and Li, 2018),
or length-sensitive afferents that are independent of tension
or tone (Spencer and Smith, 2004; Spencer and Hu, 2020).
In contrast to IGLEs, mechanosensitive ENs are activated by
soma deformation and display no specific mechanotransduction
sites, suggesting functional specialisation of these neurons in
regulating gut motility (Kugler et al., 2015). IGLEs and ENs
are located in close proximity within the myenteric plexus,
however, no studies have reported the contribution of their
interaction in GI mechanosensitivity (Umans and Liberles, 2018).
In a broader context, several studies have proposed a role for
vagal nerve and EN interactions in disease pathophysiology, e.g.,
Parkinson’s disease (Ulusoy et al., 2017). In humans, truncal but
not selective vagotomy has been suggested to have a protective
effect towards Parkinson’s disease (Liu et al., 2017; Breen et al.,

2019). Furthermore, accumulation of α-synuclein, a hallmark of
Parkinson’s disease, has been detected in ENs (Anselmi et al.,
2018) and vagal nerves have been proposed as the key mediator
for α-synuclein transport between the ENs and the brain in mice
(Santos et al., 2019). α-synuclein was detected in the DMV and
substantia nigra (Kim et al., 2019; Van Den Berge et al., 2019) after
injection of pathologic α-synuclein into the muscular layer of
the pylorus and duodenum, suggesting gut to brain transport of
α-synuclein. Evidence suggests the involvement of vagal efferents
in the spread of α-synuclein (Phillips et al., 2008). However,
a possible role of vagal afferents in this mechanism requires
further examination, particularly given that a circuit involving
vagal afferent has been identified to connect the gut and the
dopaminergic neurons in the substantia nigra (Han et al., 2018).

A population of high threshold vagal mechanoreceptors have
also been identified in the GI tract. Whilst low threshold vagal
mechanoreceptors have been related to innocuous physiological
responses (Paintal, 1953; Iggo, 1955; Blackshaw et al., 1987; Page
et al., 2002) the specialised population of high threshold vagal
mechanoreceptors, in the oesophagus, has been associated with
nociceptive properties similar to spinal afferents (Yu et al., 2005;
Kollarik et al., 2010b). However, further studies are required
to reveal the mechanisms since distinct receptors and pathways
may be involved.

Stretch receptors
To date, the idea that tension and stretch stimuli in the GI
tract are detected by independent vagal mechanoreceptors is
still in debate. Mechanosensitive vagal afferents in the stomach
were initially described as stretch receptors (Paintal, 1954).
Tension receptor vagal afferent mechanoreceptors were generally
described as a homogenous population of tension-sensitive
afferents that detect both muscle stretch and tension (Iggo,
1955; Phillips and Powley, 2000). Stretch and tension are two
different types of forces. Stretch reflects the force needed for
muscle extension or contraction, while tension is the force given
to maintain muscle length (Phillips and Powley, 2000). The
discovery of two distinct endings in the muscle layer of the gut
wall raises the possibility of the existence of independent stretch
receptors (Berthoud and Powley, 1992), with Phillips and Powley
proposing IMAs as stretch receptors (Phillips and Powley, 2000).

Studies have shown that IMAs interact with interstitial cells
of Cajal (ICC) via synaptic connexions in the muscle layer
(ICC-IM) (Powley et al., 2008). In c-Kit and steel mutant
mice, lacking ICC-IMs, there was a selective loss of IMAs,
whereas stomach and intestinal IGLEs remained unaltered (Fox
et al., 2001b, 2002). Studies have used these mouse models to
investigate IMAs function in feeding behaviour, where changes
in meal patterns, marked by smaller meal size and increased
meal frequency, were observed in both mouse models (Fox
et al., 2002; Chi and Powley, 2003). However, there were
no changes in total daily food intake. Moreover, c-Kit mice
displayed increased sensitivity to CCK (Chi and Powley, 2003).
This evidence suggests a potential role of IMAs in short-term
feeding regulation, presumably through regulation of the gastric
accommodation reflex and gastric emptying. Indeed, ICC-IMs
are known to play a key role in the initiation and coordination of
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GI motor activity (Dickens et al., 2001). Therefore, it is plausible
that the absence of this structure may lead to the disruption
of gut motility which subsequently impacts feeding behaviour.
However, further studies are required to establish direct evidence
on this relationship in feeding behaviour. In addition, a subset
of circular muscle IMAs (collateral IMAs) projecting within
the myenteric ganglia and making contact with ENs in the
stomach has also been identified (Powley et al., 2016). Altogether
evidence suggests conjoint functions of IMAs in local and central
regulation of gut motility, IMAs might facilitate communication
between ICC-EN and ICC-central nervous system (CNS), or
IMAs may act as primary stretch receptors sending cues to the
ICCs, ENs and the CNS to regulate gut motility. However, this is
highly speculative and further investigation is required.

Mucosal receptors
In contrast to vagal afferent endings in the muscular layer, the
physiological roles of mechanosensitive mucosal afferents in the
GI tract are relatively overlooked. Mucosal afferents are fast
adapting, low threshold mechanoreceptors which are activated by
mucosal stroking (Page and Blackshaw, 1998; Page et al., 2002).
Only a few studies have focused on mucosal mechanosensation
in the last three decades, where functional roles of mucosal
mechanoreceptors were mainly determined based on in vitro
study through single fibre electrophysiology (Kentish et al., 2015)
or measured in vivo in anaesthetized animal models (Becker
and Kelly, 1983). In 1983, Becker and Kelly performed gastric
emptying measurements in conscious dogs with severed antral
mucosal afferents (Becker and Kelly, 1983). The caveat in this
approach is that the removal of the mucosal layer of the antrum
involved myotomy which disrupt the muscle layer. This could
be a confounding factor as other subtypes of vagal afferent
mechanoreceptors also innervate the muscle layer of the gastric
antrum (Powley, 2000; Bai et al., 2019). Although these studies
have suggested a role of mucosal receptors in gastric emptying,
by detecting food particle size, and in the regulation of the
vomiting vagal reflex (Becker and Kelly, 1983; Andrews and
Wood, 1988; Phillips and Powley, 2000; Kentish et al., 2015), none
have directly shown the physiological role of mucosal afferents
in vivo. Furthermore, mucosal afferents possess a diversity of
morphological substructures and the ability to detect different
types of tactile mechanical stimuli (Rodrigo et al., 1970, 1975a;
Pedrosa et al., 1976; Wank and Neuhuber, 2001), similar to
the cutaneous touch receptor characteristics (Abraira and Ginty,
2013). While this suggests that true mucosal mechanoreceptors
may act as touch receptors for the viscera, the presence of
polymodal (i.e., detect chemical and thermal stimuli) vagal
afferent populations may contradict this premise (Iggo, 1955;
Clarke and Davison, 1978; Jänig, 1996; Lennerz et al., 2007). Thus,
further studies are required to clarify this deliberation.

Tension-mucosal receptors
In addition to vagal tension and mucosal receptors, a novel
receptive field termed tension-mucosal receptor has been
observed in the oesophagus of ferret (Page and Blackshaw,
1998). A study using a similar approach was conducted in mice,
however, tension-mucosal receptors were not identified (Page

et al., 2002). This could be due to the thinness of esophageal tissue
in mice, where low intensity mucosal stroking (10 mg von Frey
hair) also evokes distension and makes differentiation of tension
and tension-mucosal receptors impossible (Page et al., 2002).
No anatomical studies have reported the structural existence of
this vagal subtype in the gut wall, although an analogue, i.e.,
mucosal-muscular receptor, has been described in the pelvic and
sacral spinal pathway of mouse (Brierley et al., 2018). Studies
have proposed that mucosal-muscular afferent endings terminate
in the mucosal and muscular layer of the gut wall (Page and
Blackshaw, 1998; Brierley et al., 2004), however, it has also been
suggested that responses to both tension and mucosal stimuli
are transduced at the subepithelial plexus (Brookes et al., 2013).
Furthermore, recent studies have characterised spinal afferents
in the GI tract and discovered that a single DRG neuron can
provide complex endings in the mucosa, myenteric ganglia and
circular muscle (Spencer et al., 2016a, 2020), suggesting that
signal transduction transmitted by a single DRG neuron could
be initiated in different layers of the gut wall. To date, the
location of the tension-mucosal vagal afferent endings, where the
transduction signal is initiated, and their roles in GI function are
inconclusive and require further investigation.

Vagal Afferent Chemoreceptors
The role of vagal afferents in gut chemosensation is crucial.
Vagal chemoreceptive fields are distributed in the mucosal lamina
propria of the gut wall. This sensory nerve detects a wide range
of chemical stimuli, such as gut hormones, nutrients, osmolarity
and pH change (Powley and Phillips, 2004). Modulation of vagal
chemoreceptor activity can occur through nutrient absorption or
increasing of mucosal permeability as in leaky gut. Since mucosal
afferents do not make direct contact with luminal content, the
chemosensing mechanisms are facilitated by the epithelial cells
of the gut wall. Early studies have identified subclasses of vagal
afferent chemoreceptors based on their activation by specific
nutrients, i.e., vagal glucoreceptors (Mei, 1978), amino acid
receptors (Jeanningros, 1982) and fatty acids receptors (Lal et al.,
2001). Furthermore, it has been shown that vagal activation is
potentially mediated by gut hormones released in the presence
of specific nutrients (Dockray, 2003, 2013; Raybould, 2010).

Recently, a novel chemosensitive vagal afferent subtype,
expressing G protein receptor 65 (GPR65), that detects intestinal
nutrients has been discovered (Williams et al., 2016). GPR65,
or T cell death-associated gene 8 (TGAD8), is a proton-sensing,
psychosine-sensitive, GPCR that detects extracellular pH change
(Wang et al., 2004; Ishii et al., 2005). GPR65 is mainly associated
with immune cells and inflammatory responses (McGuire et al.,
2009). In neurons, GPR65 are expressed in the CNS and dorsal
root ganglia neurons with physiological function associated with
pH homeostasis (McGuire et al., 2009) and pain (Huang et al.,
2007), respectively.

Vagal GPR65 has been shown to innervate the proximal
intestine villi, close to the gastroduodenal junction. Activation
of vagal GPR65 was exclusively evoked by food entry to
the duodenal bulb and resulted in inhibition of gastric
motility, limiting food entry to the small intestine (Williams
et al., 2016), but has no effect on feeding behaviour (Bai
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et al., 2019). The entrance of food into the duodenal bulb
involves tactile movement of chyme as well as osmolarity
and pH change. Serotonin has been proposed as a key
mediator of vagal GPR65 activation, given that these neurons
are responsive to serotonin but not CCK or glucagon like
peptide 1 (GLP1) (Williams et al., 2016). Serotonin has been
shown to be released from the enterochromaffin cells (ECC).
Mechanical pressure to the intestinal wall has been suggested
as a primary trigger of serotonin release (Hansen and Witte,
2008) although chemical stimuli such as pH changes can
also trigger serotonin release (Smith et al., 2006). It has
been confirmed in a recent study, that mechanical stimuli
can trigger the release of serotonin via a Piezo2-dependent
mechanism by a population of ECC cells in the small
intestine and colon (Alcaino et al., 2018). In addition to vagal
GPR65, a new subpopulation of mucosal afferents, expressing
Vip/Ust2b, was discovered to be exclusive in the intestinal villi,
where activation of this population has no effect on feeding
(Bai et al., 2019).

In the distal part of the intestine, vagal afferents have been
identified to make a synaptic connexion with enteroendocrine
cells (EECs) via a neuropod. Neuropods are axon-like, long
cytoplasmic processes that project from the basolateral side
of EECs establishing direct contact with vagal afferents,
enteric glia, and efferent fibres in the mucosal lamina propria
(Bohórquez and Liddle, 2011; Bohórquez et al., 2014, 2015;
Kaelberer and Bohorquez, 2018). With the exception of
somatostatin secreting EECs, neuropods appear to be a
general characteristic of EECs, with basal process length
varying depending on the region of the GI tract (Larsson
et al., 1979; Gustafsson et al., 2006). Neuropods were first
identified in peptide YY-expressing EECs (PYY-EECs), with a
high prevalence in the mouse ileum and colon (Bohórquez
and Liddle, 2011). A recent study has demonstrated that
infusion of sugar (i.e., sucrose) evokes glutamate mediated
vagal afferent firing, with EEC glutamate release through the
neuropod (Kaelberer et al., 2018). This study provides the
first evidence that vagal afferents and EECs establish a direct
contact in nutrient sensing transduction. However, the extent of
which this occurs and their functional significance for feeding
behaviour remain unclear.

It is generally considered that GI hormones mediate the
communication between gut epithelial cells and vagal afferents
in nutrient sensing. For instance, the presence of glucose in
the small intestine induces the release of serotonin and GLP1,
which activates vagal afferents in the intestinal mucosa, resulting
in the regulation of gastric emptying, pancreatic exocrine
and intestinal fluid secretion (Raybould, 2010). Further, CCK
release, triggered by the presence of fatty acids and amino
acids, has been shown to activate vagal afferents and induce
satiety (Dockray, 2003). The finding of a novel pathway of
communication via glutamate, occurring in the presence of
nutrients, raises a further question of how vagal afferents
are involved in satiety regulation via this route. However,
functional roles of this pathway in physiology requires further
examination. One model posits that it may occur by regulating
EEC sensitivity to nutrients. Neuropods have been suggested to

make contact with efferent fibres since post-synaptic markers
have been identified in these cells (Kaelberer et al., 2018).
Although further studies are required to reveal the downstream
pathway, this suggests that the nutrient sensing mechanism
may occur in a complex manner. The finding of EEC-vagal
afferent circuits clarifies one possible transduction mechanism
of nutrient sensing in the gut. However, whether GI hormones
are involved in this mechanism or act independently remains
to be determined.

Vagal Afferent Thermoreceptors
GI vagal afferents have been suggested to play an important role
as a visceral thermosensor (Jänig, 2018). A vagal thermoreceptor
is described as being an unmyelinated, mechano- and chemo-
insensitive neuron, located in the mucosal layer and able to sense
either cold (10-36oC) or warm (39-50oC) temperature, or both
in some cases (10-35oC and 40-50oC) (El Ouazzani and Mei,
1982; El Ouazzani, 1984). Some populations of vagal mechano-
and chemo-receptors also show thermosensitive activity in the
noxious heat or cold temperature range (Lennerz et al., 2007).
Vagal thermoreceptors are thought to have a role in detecting
temperature changes during ingestion that may contribute
to the maintenance of body thermal regulation and/or GI
protection towards noxious temperature (Jänig, 2018). However,
identifying the roles of these subtypes in vivo is hampered by
the difficulty in selectively targeting thermosensitive afferents for
electrophysiological recording.

Brainstem Projection and Neural
Circuitry of GI Vagal Afferents
GI vagal afferents and their visceral endings have been
extensively studied in terms of anatomy and their ability
to perceive different types of stimuli (Brookes et al., 2013;
Browning et al., 2017; Waise et al., 2018). However, their
central circuitry is relatively unexplored. Understanding vagal
afferent trafficking in the CNS is important since the same
type of receptive field, in the GI tract, may have different
central endings and generate different feedback responses (Waise
et al., 2018). In food intake regulation, left and right vagal
ganglia have been shown to terminate in distinct regions
of the NTS and regulate different aspects of physiology to
control food intake (Han et al., 2018). Recent studies have
examined memory control and right NG-mediated reward
circuit in food intake (Han et al., 2018; Suarez et al.,
2018). However, the role of the left NG neurons and their
central circuits, as well as interaction between neural and
humoral pathways in regulating food intake require detailed
investigation. Therefore, further studies are required to map
neural circuits of particular vagal afferent subtypes based on their
location in the gut.

ACCESSING VAGAL AFFERENT
SUBTYPES

Targeting vagal afferent subtypes has been a longstanding
challenge considering the complexity of vagal afferent anatomical
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organisation, particularly their innervation in the gut (Berthoud
and Neuhuber, 2000; Bai et al., 2019). The techniques currently
available can be classified into three major classes: surgical,
chemical and molecular-based approaches (Figure 3 and
Table 2). In this review, we will discuss the basic principles,
compare specificity and time course of study, and outline the
advantages and limitations for each technique.

Surgical-Based Approaches
Vagotomy is a surgical based approach that removes vagal
innervation by cutting the nerve fibres. Dragstedt developed
vagotomy as a treatment for peptic ulcer patients in 1943
(Dragstedt and Owens, 1943). The cutting position was
initially made on the anterior and posterior vagal trunks
using a transthoracic approach (supradiaphragmatic truncal
vagotomy) (Dragstedt and Owens, 1943). Since then it has been
continuously refined into transabdominal subdiaphragmatic
truncal vagotomy, selective vagotomy and highly selective
vagotomy (Crile, 1947; Johnston and Goligher, 1976). Peptic
ulcer symptoms were improved following supradiaphragmatic
truncal vagotomy, however, abnormalities in gastric motility,
emptying and secretion were observed (Woodward, 1987). These
phenomena have drawn interest on the importance of vagal
nerves in GI function and regulation of food intake.

In principle, vagotomy diminishes bidirectional signal traffic
between the gut and the brain since both vagal afferent and
efferent fibres are excised. Consequently, it becomes difficult
to differentiate between the sensory and motor function. In
1970, Snowdon (1970) employed subdiaphragmatic vagotomy
(SDV) in a rat model and proposed a role of vagal afferents in
peripheral control of food intake. Shortly after, determination of
vagal sensory and motor responses was conducted by measuring
gastric content and gastric emptying rate respectively, in rats that
underwent SDV (Snowdon, 1970). In 1974, Powley and Opsahl
demonstrated that SDV neutralised the effect of ventromedial
hypothalamus (VMH) lesion to induce obesity in rats but
not in genetically obese Zucker rats (Opsahl and Powley,
1974), suggesting a role for the vagus nerve in body weight
maintenance. Further examination of vagal afferent and efferent
functions was performed by comparing SDV to atropine sulphate
treatment. Atropine is an anticholinergic/antimuscarinic agent
that abolishes parasympathetic tone via competitive binding to
cholinergic or muscarinic receptors (Broadley and Kelly, 2001).
This substance is known to inhibit vagal efferent activity (Mittal
et al., 1997; Yamakawa et al., 2015). However, studies have shown
incomplete motor function blockade due to a non-cholinergic
efferent pathway (Powley et al., 1978) and unspecific efferent
inhibition in other ganglia (Feldman et al., 1979). Taken together,
determination of sensory and motor function using this approach
remains problematic.

An improved division of vagal afferent and efferent
function using a surgical approach was made in 1994 when
subdiaphragmatic vagal deafferentation (SDA) was established
in a rat model (Norgren and Smith, 1994). It is known to be
the most complete surgical-based vagal deafferentation to date.
SDA removes all subdiaphragmatic vagal afferents but leaves
50% of efferent fibres intact by severing at the intracranial vagal

afferent or efferent rootlets through a ventral approach (Norgren
and Smith, 1994). A similar technique using a dorsal approach,
developed earlier, was used to study the role of vagal afferents in
the small intestine (Walls et al., 1995).

Completeness of vagotomy can be confirmed using various
methods dependent on the type of surgery. Subsets of
physiological and anatomical parameters, such as response to
insulin, the presence of gastric stasis and impairment of the
vago-vagal reflex, were often used to validate the loss of vagal
function pre-mortem (Louis-Sylvestre, 1983). After the discovery
that the CCK satiety effect is facilitated by gastric vagal branches
(Smith et al., 1981), later studies predominantly used a CCK-
induced satiety test, administered intraperitoneally at low doses
(1 – 6 µg/kg) to validate the success of vagotomy (Moran et al.,
1997; Ferrari et al., 2005; Powley et al., 2005; Suarez et al.,
2018). In addition, a retrograde tracing protocol using true blue
has been developed to validate total and selective vagotomy
post-mortem (Powley et al., 1987). This technique provides a
complete anatomical evaluation of vagotomized vagal branches
and permits validation to the majority of abdominal vagal
branches. Furthermore, it has been reported that regeneration
may occur following vagotomy. In mice, vagal fibres reinnervate
the stomach starting at week 4 post-vagotomy and achieve
normal density at week 16 in the corpus, with the optimum
time-frame for physiological observation within 8 weeks after
vagotomy (Powley et al., 2005). On the other hand, incomplete
restoration of vagal afferent innervation in the smooth muscle of
rats was observed at 18 weeks (Phillips et al., 2000).

Both SDV and SDA are well-established techniques in rat,
however, there are less studies using these techniques in mouse
models. Mice undergoing bilateral SDV have been shown to
survive for at least two weeks post-surgery (Iwasaki et al., 2015;
Yoshii et al., 2017). However, a study has reported the lethality
of this procedure in mice due to gastric distension and pyloric
stenosis (Dezfuli et al., 2018). Heineke-Mikulicz pyloroplasty
has been used to ameliorate pyloric stenosis and increase
mouse survival (Dezfuli et al., 2018), however, this may affect
the physiological response of the animal. These contradictive
outcomes suggest individual variation of the surgical approach.

Chemical-Based Approaches
Capsaicin (CAP) is a pungent component of Capsicum which was
isolated in 1876 (Thresh, 1876). CAP has been widely used as
an analgesic due to its anti-nociceptive properties, known as the
capsaicin desensitisation phenomena (Szolcsányi, 2014). In 1977,
Jancsó discovered detrimental effects of CAP on primary sensory
neurons of neonatal and adult rats (Jancsó et al., 1977). This
study revealed the selective action of CAP in a specific population
of primary sensory neurons in the DRG and trigeminal ganglia,
referred to as CAP-sensitive sensory neurons. This finding also
demonstrated two mechanisms of action of CAP, a short-term
excitatory and a long-term neurotoxic effect (Holzer, 1991).
However, the molecular mechanism of how CAP generates these
effects was unclear at that time.

The excitatory mechanism of CAP was revealed when a
capsaicin receptor, termed vanilloid receptor subtype 1 (VR1),
was discovered in 1997 (Caterina et al., 1997). This receptor is
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FIGURE 3 | Basic principle of technical approaches to access GI vagal afferents population. An illustration of technical approaches to study vagal afferents. SDV:
subdiaphragmatic vagotomy, SDA: subdiaphragmatic deafferentation, CAP: capsaicin, TRPV1: transient receptor potential vanilloid 1,CCK-SAP:
cholecystokinin-saporin, RNAi: RNA interference, RISLE: RNAi-induced gene silencing by local electroporation, CRE: Cre recombinase, AAV: adeno-associated
virus, EnvA: envelope protein of subgroup A avian sarcoma and leukosis virus, RABV: rabies virus, HSV-1: herpes simplex virus 1, PRV: pseudorabies virus.
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TABLE 2 | Technical approaches to selectively target vagal afferent subtypes.

Techniques Specificity Advantages Limitations References

Surgical

SDV Subdiaphragmatic
vagal trunks

– Direct effect of vagal dysfunction – Eliminate both vagal
afferent and efferent;
Surgical variability;
Irreversible

Snowdon, 1970

SDA Subdiaphragmatic
vagal afferents

– Direct effect of vagal dysfunction – Unilateral efferent
ablation; Irreversible

Norgren and Smith, 1994

Chemical

Perivagal capsaicin TRPV1-expressing cells – Long regeneration period (3- 5
months)

– Damage vagal efferents;
Irreversible

Jancsó et al., 1977

Molecular

CCK-SAP CCK-expressing cells – Selectively target upper gut vagal
afferents; Requires cell uptake for
neurotoxic effect

– Injection must be made in
the nodose ganglia;
Irreversible

Diepenbroek et al., 2017

Transgenic animals Cell type specific – Stable gene expression; Allows
global or tissue specific mutation

– Creation and
maintenance are difficult;
Requires genotypic and
phenotypic validation; No
specific marker for NG
neurons

Stirling et al., 2005; Rossi et al.,
2011; Vong et al., 2011; de
Lartigue et al., 2014

siRNA Delivery vector
dependent

– Allows multiplex mRNA targeting;
Allows transient or long term gene
silencing effect

– Dose-dependent;
Efficiency dependent on
delivery method; Possible
off-target gene silencing

De Lartigue et al., 2010; Kollarik
et al., 2010a; Krieger et al., 2016

Viral tracers

Adeno-associated virus Cell specific, serotype
dependent

– Non-neurotoxic, low
immunogenicity; Stable and long
lasting gene expression; Availability
of serotypes with various directional
transport capability and tropism
• e.g., AAV1, AAV9, AAVrg
(retrograde), AAV.PHPs

– Small genome size limit
cassette size; Lead
time > 4 weeks before
phenotype observation

Tervo et al., 2016; Chan et al.,
2017; Han et al., 2018

Rabies virus Neurotropic – Fast propagation and high level of
gene expression; Low cytopathic;
Large genome size; Established
protocol to insert gene of interests;
Monosynaptic retrograde
directional transport
• e.g., SAD-1G-EGFP,
SAD-1G-EGFP (EnvA)

– Neurotoxic; Short time
course of experiments, up
to 16 days

Wickersham et al., 2007a,b; Han
et al., 2018; Kaelberer et al., 2018

Herpes simplex virus 1 Neurotropic – Fast propagation and high level of
gene expression; Anterograde
transsynaptic directional transport.
• e.g., H129-1TK-TT

– Neurotoxic; Short time
course of experiments, up
to 5 days; Delayed
retrograde transport
(HSV129)

Lo and Anderson, 2011;
Wojaczynski et al., 2015; Han et al.,
2018

Pseudorabies virus Neurotropic – Fast propagation and high level of
gene expression; Retrograde
transsynaptic directional transport.
• e.g., PRV512, PRV 614

– Neurotoxic; Short time
course of experiments, up
to 5 days

Smith et al., 2000; Banfield et al.,
2003; Han et al., 2018

now known as the transient receptor potential VR1 (TRPV1)
channel (Montell et al., 2002), a calcium permeable, non-selective
cation channel, that can be activated by numerous agents, e.g.,
noxious heat, protons, divalent cations (i.e., Mg2+ and Ba2+),
exogenous and endogenous TRPV1 agonists, animal toxins and
plant secondary metabolites (Caterina et al., 1997; Szolcsányi,
2014; Yang and Zheng, 2017; Christie et al., 2018). CAP binds
to the S3-S4 transmembrane regions of the TRPV1 channel and
stabilises TRPV1 opening via a “pull and contact” interaction of

the S4-S5 linker and vanillyl group (Yang et al., 2015), which
increases membrane permeability to cation influx and induces
depolarization in a concentration and exposure length dependent
manner (Caterina et al., 1997; Chung et al., 2008; Szolcsányi and
Sandor, 2012). Furthermore, it has been shown that long-term
exposure of capsaicin to HEK293-expressing VR1 cells, DRG and
NG neurons induces cell death (Caterina et al., 1997; Czaja et al.,
2008). Intracellular acidosis, calcium overload and mitochondrial
swelling, due to prolonged opening of TRPV1 channels, have
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been proposed as underlying mechanisms (Szolcsányi and Pinter,
2013; Chiang et al., 2015).

Systemic injection or application of CAP on vagal afferent
visceral endings have been shown to cause neurodegeneration
of GI vagal afferents and diminish their sensory signalling
(Ritter et al., 1988; Czaja et al., 2008). Commonly, peripheral
application of 1% CAP is used to induce vagal afferent
lesion in a specific GI organ (Browning et al., 2013).
Perivagal CAP has a slower regeneration speed giving a
longer experimental time-frame compared to surgical based
vagotomy. Studies in rodents have shown a regeneration period
of 3 – 5 months post CAP treatment with pronounced
loss of vagal neurons within 30 days (Czaja et al., 2008;
Gallaher et al., 2011). Since vagal afferents are not the only
cells affected by CAP, mineral oil is commonly used to
prevent unspecific lesion (Ritter et al., 1988; Patterson et al.,
2003). Despite milder intervention and the ease of application
compared to surgical based methods, result interpretation
should be considered with caution since CAP also destroys
vagal efferents in the DMV following perivagal CAP treatment
(Browning et al., 2013).

Molecular-Based Approaches
CCK-SAP
In 2017, a novel molecular-based vagal deafferentation technique
targeting upper GI tract using CCK conjugated saporin
(CCK-SAP) was established. Previously, CCK-SAP has
been demonstrated to successfully induce lesion in rostral
ventromedial medulla neurons expressing CCK receptor (Zhang
et al., 2009). More specific to this review, Diepenbroek et al.
(2017) used CCK-SAP to induce neural lesion of VAN in the NG.
It has been shown that CCK-SAP ablates ∼80% of muscular and
∼61.7% of mucosal vagal afferents in the upper GI tract of rats
and, importantly, leaves the efferent fibres intact.

Cellular selectivity of CCK-SAP action is dependent on
CCK, a regulatory peptide hormone in the GI tract, primarily
secreted by I-cells and widely known for its function as a
satiety hormone (Rehfeld, 2017). CCK consists of 33 amino
acids (AA) derived from 115 AA prepro-CCK (Deschenes
et al., 1984). Biologically active CCKs emerge in various
molecular forms, such as CCK-58, CCK-39, CCK-33, CCK-
22, sulphated and unsulphated CCK-8 and CCK-7, CCK-5
and CCK-4 (Noble et al., 1999). CCK-SAP utilises sulphated
CCK-8 (CCK8S) as conjugate, which is the predominant
structure of the biologically active CCK found in the brain
(Schneider et al., 1979).

CCK binds to CCK receptor (CCKR), a member of the GPCR
superfamily consisting of a 7 transmembrane domain, to enter
the cell. As a GPCR, CCKRs undergo endocytosis following
ligand binding, forming a coated vesicle that is transported to
the endosome where CCKRs can be recycled back to the plasma
membrane or degraded in the lysosome (Koenig and Edwardson,
1997; Weinberg and Puthenveedu, 2019). CCKRs are classified
into CCKR-A (CCK1) and CCKR-B (CCK2) based on their
affinity to sulphated and amidated CCK (Noble et al., 1999).
CCK1 has a high affinity to sulphated/amidated CCK while CCK2

exhibits no preference towards sulphated/non-sulphated CCK.
Instead, CCK2 binds to gastrin and is commonly referred to
as the gastrin receptor. CCK-SAP demonstrates no significant
difference in affinity to CCK1 and CCK2 (Diepenbroek et al.,
2017), suggesting neurotoxic effects will occur in cells expressing
both receptors. Since CCKRs are widely distributed across the
GI tract and nervous system, location of injection becomes a key
determinant of CCK-SAP selectivity.

SAP is a type I ribosome inactivating protein (RIP)
which causes cell apoptosis, when internalised, due to the
impairment of protein synthesis and DNA fragmentation
(Stirpe et al., 1983; Bergamaschi et al., 1996; Bagga et al.,
2003). Although a small amount of SAP can be internalised
via pinocytosis, a conjugate is required for an effective
internalisation and cytotoxic effect, since SAP lacks a lectin
binding site that facilitates endocytosis (Stirpe et al., 1992).
Many neurotoxins have been made by pairing SAP with various
conjugates (substance P, isolectin B4 and neuropeptide Y)
to selectively ablate neuronal cell populations in the brain
(Wiley and Kline, 2000; Wiley, 2001). Besides glycoproteins
and neuropeptides, monoclonal antibodies (OX7, 192 IgG,
and anti-dopamine beta hydroxylase) have been utilised as
conjugates to generate SAP immunotoxins (Wiley and Kline,
2000). These immunotoxins and lectin-toxins exhibit retrograde
axonal transport capability, or suicidal transport, via fast
axonal transport mediated by microtubules (Wiley and Kline,
2000). However, these properties have not been reported for
neurotoxins, including CCK-SAP.

Recent publications have demonstrated the feasibility of CCK-
SAP to be used with other techniques to target vagal afferents.
For instance, this technique was performed in combination
with viral mediated neural tracing in mice to reveal the gut-
brain axis in reward mechanisms (Han et al., 2018). Further,
CCK-SAP has also been utilised to differentiate vagal sensory
and motor signalling in memory control, whilst demonstrating
CCK-SAP superiority compared to SDA (Suarez et al., 2018).
Besides neuropsychological features, CCK-SAP provides an
option to examine vagal function in homeostatic control of
appetite. VANs express both CCKRs, with CCK1 more abundant
than CCK2 (Moriarty et al., 1997). Studies have shown CCK1
localization with receptors of orexigenic hormones (ghrelin
(Date et al., 2005; Burdyga et al., 2006b), orexin-A (Burdyga
et al., 2003) and melanin concentrating hormone (Burdyga
et al., 2006a), anorexigenic hormones (PYY (Burdyga et al.,
2008), GLP-1 (Williams et al., 2016), and leptin (Burdyga et al.,
2002; Li et al., 2011), as well as TRPV1 channels (Burdyga
et al., 2006b) and cannabinoid CB1 receptors (Burdyga et al.,
2004). Thus, lesioning CCK1-positive nodose neurons also
impairs satiety signals trafficking between the gut and the
brain mediated by these receptors. Furthermore, it is likely
that regeneration of vagal afferent fibres may occur after CCK-
SAP ablation. In the original study, the blunted effect of
CCK-induced satiety was still present 12 weeks after CCK-
SAP treatment (Diepenbroek et al., 2017), suggesting vagal
function has not recovered within this period. Given that
CCK-SAP destroys neuronal cell bodies similar to CAP, it is
possible that the regeneration process happens at a slow rate.
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However, further histological studies are required to examine the
regeneration time course.

Cre/LoxP System
The Cre/loxP system plays a vital role in technical advances of
vagal afferent targeting. Discovered in 1981, Cre is a 38 kDa,
site-specific tyrosine recombinase, isolated from bacteriophage
P1 that facilitates double stranded DNA (dsDNA) recombination
by targeting loxP, a 34 base-pair (bp) sequence, comprising
of two identical 13 bp inverted repeats, separated by a
8 bp spacer region (Sternberg and Hamilton, 1981; Hoess
et al., 1982). The mechanism of Cre-mediated recombination
will not be discussed since it has been extensively reviewed
elsewhere (Lee and Sadowski, 2003; Van Duyne, 2015).
Since position, orientation and type of loxP determine the
final outcome of Cre-mediated recombination (Hoess et al.,
1984; Abremski and Hoess, 1985), several loxP mutants
were generated to improve control of gene expression and
feasibility to insert gene of interests, such as loxRE and
loxLE (Araki et al., 1997), lox511 (Schnutgen et al., 2003),
lox2272 and loxFAS (Saunders et al., 2012). Schnutgen et al.
developed a flip excision (FLEx) switch system with lox511
which was adapted by Saunders et al. to create Cre-on
and Cre-off recombinant adeno-associated virus with lox2272
and loxFAS (Schnutgen et al., 2003; Saunders et al., 2012;
Saunders and Sabatini, 2015).

Cre has been shown to effectively facilitate DNA
recombination in prokaryotic cells (Sternberg and Hamilton,
1981), yeast (Sauer, 1987), mammalian cells (Sauer and
Henderson, 1988) and rodent models. To increase spatiotemporal
control of Cre activity, different strategies employing an inducible
system were created, e.g., tamoxifen-inducible Cre (Cre-ERT,
Cre-ERT1 and Cre-ERT2) (Feil et al., 1996, 1997) and tetracycline-
dependent Cre-expression (Tet-On/Tet-Off system) (Gossen and
Bujard, 1992; Gossen et al., 1995; Schönig et al., 2002). Tamoxifen
is a synthetic agonist of the oestrogen receptor which is converted
into its derivatives in the liver by cytochrome P450 that can be
administered via oral, subcutaneous or intraperitoneal routes at
different doses and forms (Goetz et al., 2008; Jahn et al., 2018).
On the other hand, a tetracycline analogue (doxycycline) can
be administered via oral (Saam and Gordon, 1999; Lindeberg
et al., 2002), intraperitoneal and local injections (Utomo et al.,
1999). Further, it is important to note that tamoxifen and
doxycycline may introduce confounding factors that should
be considered in designing experiment (Moullan et al., 2015;
Hammad et al., 2018).

Transgenic Animal Models
The use of transgenic animal models marked the entry of
molecular tools to study vagal afferents. In the early 2000s,
developmental studies using neutrophin-4 (NT-4) and c-Kit
mutant mice demonstrated specific aberration of vagal afferent
subtypes in the GI tract (Fox et al., 2001a,b). These mouse
models exhibit changes in meal patterns that suggest a role
of vagal afferents in short-term feeding regulation. NT-4
is a potent survival factor of CNS and peripheral nervous
system (PNS) neuronal development (Huang and Reichardt,

2001). Mice lacking NT-4 exhibit a 55% reduction in size
and number of neurons in nodose-petrosal and geniculate
sensory ganglia (Conover et al., 1995; Liu et al., 1995).
An anterograde labelling study using wheat germ agglutinin-
horseradish peroxidase (WGA-HRP) has demonstrated major
loss of IGLEs in the duodenum and ileum (90 and 81%,
respectively) while the stomach innervation remained unaltered
(Fox et al., 2001a). On the other hand, heterozygous c-Kit
mutant mice exhibit deficiency of IMA formation in the
forestomach (Fox et al., 2001b). This model is also ICC-
IM deficient (Burns et al., 1996). c-Kit is a receptor tyrosine
kinase, encoded by gene in white spotting (W) locus in
chromosome 5 in mice (Bernstein et al., 1990). Spontaneous
mutation can occur in W locus, affecting c-Kit expression and
altering embryonic development and hematopoiesis (Geissler
et al., 1988). c-Kit mutant mice were initially developed as
a macrocytic anaemia model (Russell, 1979; Chabot et al.,
1988). The absence of specific GI vagal afferent subtypes
indicates that these models may be suitable for targeting
IGLE or IMA in a particular GI organ. However, apart from
the studies above, to date no other studies have reported
use of these transgenic animals to investigate vagal afferent
function in the gut.

Later studies predominantly utilise Cre/loxP technology to
generate a more precise genetic modification in transgenic
animals. Development of Cre-driver and Cre-dependent mouse
lines are rapidly growing. However, major caveats of using
this approach are the difficulties in creating, validating and
maintaining the transgenic animal lines. Cre-driver and/or
Cre-dependent mouse lines are exposed to the possibility of
nonspecific gene expression, variability in breeding efficiency
and Cre toxicity (Heffner et al., 2012). Thus, genotypic and
phenotypic profiling are required to validate the transgenic
animal characteristics. Such information for the majority of
established transgenic mouse lines can be obtained from
databases, e.g., CrePortal1 (Heffner et al., 2012). Studies by
Fox et al. (2013) and Biddinger and Fox (2014) were the
first to use the Cre/loxP system to selectively manipulate vagal
afferents and investigate their function in feeding behaviour.
They targeted nerve growth factor genes that control vagal
sensory development in GI smooth muscle and demonstrated
changes in meal size without vagal efferent damage. This
strategy have been discussed in detail previously (Fox, 2006).
Furthermore, transgenic animal models available for anatomical
tracing for visualisation of the gut-brain axis has been
recently reviewed (Udit and Gautron, 2013). Hence, we will
focus on the frequently used Cre-driver line for parental
backgrounds to study vagal afferent function, i.e., Nav1.8-Cre,
Vglut2-Cre and Phox2b-Cre.

Nav1.8 is a tetrodotoxin resistant voltage-gated sodium
channel particularly expressed in peripheral sensory neurons
(Akopian et al., 1996). Studies have reported selectivity of
Nav1.8 expression in the small-diameter dorsal root ganglia,
trigeminal neurons and, importantly, ∼80% of NG neurons
(Stirling et al., 2005; Gautron et al., 2011). Stirling et al. (2005)

1http://www.creportal.org

Frontiers in Physiology | www.frontiersin.org 13 June 2020 | Volume 11 | Article 643

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00643 June 9, 2020 Time: 21:16 # 14

Wang et al. Targeting Gastrointestinal Vagal Afferent Subtypes

developed a heterozygous Nav1.8-Cre line mouse model which
expresses Cre recombinase under Nav1.8 promoter regulation
(Stirling et al., 2005). Genetic tracing of Nav1.8-Cre revealed
the predominant innervation of Nav1.8 neurons in the mucosa
and myenteric plexus of the stomach and small intestine, where
IGLE morphology but not IMA was observed in the muscle layer
(Gautron et al., 2011). This should be taken into consideration
if individuals are aiming to understand a specific population of
vagal afferent. Nonetheless, Nav1.8-Cre has become a versatile
parental background to generate models for understanding the
role of vagal afferents in food intake control. For instance,
global knockout of Nav1.8 was generated to investigate vagal
role in caloric intake regulation and pain sensing mechanism by
crossing Nav1.8-Cre with a mouse line carrying floxed-STOP-
DTA (Abrahamsen et al., 2008; Udit et al., 2017). Further,
de Lartigue et al. (2014) examine the role of leptin receptor
in vagal afferents by selective knockout of leptin receptor in
Nav1.8 neurons (Nav1.8/LepRfl/fl). Additionally, other transgenic
animals, such as the Nav1.8 null model (Akopian et al., 1999),
BAC-Nav1.8-Cre (Agarwal et al., 2004), and heterozygous Nav1.8
Cre-ERT2 (Zhao et al., 2006) have also been developed.

Vesicular glutamate transporter (VGLUT), a membrane-
bound protein facilitating glutamate trafficking into presynaptic
vesicles, is known as a marker for glutaminergic neurons.
There are three transporters that have been characterised so
far, namely VGLUT1 (Bellocchio et al., 2000; Takamori et al.,
2000), VGLUT2 (Aihara et al., 2000; Bai et al., 2001; Fremeau
et al., 2001) and VGLUT3 (Fremeau et al., 2002; Schafer
et al., 2002). The functional role of VGLUT2 is associated
with autonomic and sensory pathways (Varoqui et al., 2002).
In the CNS, expression of VGLUT2 mRNA is distinct to
thalamus, brainstem and deep cerebellar nuclei, and transiently
expressed in developing hippocampal neurons (Fremeau et al.,
2001, 2004). Whereas in the PNS, expression of VGLUT2
has been reported in DRG (Scherrer et al., 2010) and vagal
afferents (Tong et al., 2001; Corbett et al., 2005). There
are several VGLUT Cre-driver lines, such as BAC-VGLUT2-
Cre (Borgius et al., 2010) and Vglut2-ires-Cre (Vong et al.,
2011). These models have been used to differentiate vagal
sensory and motor neurons functions (Williams et al., 2016;
Han et al., 2018).

Paired-like homeobox 2 (Phox2) genes (e.g., Phox2a and
Phox2b), encode homeodomain transcription factors that are
essential for sympathetic, parasympathetic and ENs development
(Pattyn et al., 1999; Brunet and Pattyn, 2002). Whilst Phox2a is
responsible for neuron survival (Valarche et al., 1993), Phox2b is
vital for cranial ganglia differentiation to acquire visceral neuron
characteristics (D’Autreaux et al., 2011). Phox2b expression is
observed in the CNS (visceromotor, branchiomotor, NTS, AP,
non-adrenergic centres, and serotonergic neurons) and PNS
(epibranchial and autonomic ganglia)(D’Autreaux et al., 2011).
The absence of Phox2b resulted in the absence of other CNS
and PNS neurons, while epibranchial ganglia were still present
although atrophic (Morin et al., 1997; Pattyn et al., 1997;
D’Autreaux et al., 2011). Phox2b-Cre mouse line has been widely
used to target vagal afferents (Rossi et al., 2011; Scott et al.,
2011; Liu et al., 2014; Kaelberer et al., 2018). Characterization

of Phox2b-Cre illustrates limited Cre expression in the PNS
(Rossi et al., 2011) where cre activity was detected in NG and
second order visceral sensory neurons in the NTS but absent
in other parasympathetic and sympathetic ganglia (Liu et al.,
2014). Indeed, expression of Phox2b is known as a marker to
differentiate nodose and jugular neurons (Kupari et al., 2019).
While this provides high specificity to target nodose neurons
in vitro, alteration in other Phox2b-expressing cells in vivo can
be a confounding factor.

RNA Interference-Mediated Gene Silencing
RNA interference (RNAi) is a native regulatory mechanism that
controls gene expression via post-transcriptional gene silencing
in multicellular organisms (Fire et al., 1998; Elbashir et al.,
2001). RNAi-mediated gene silencing causes a hypomorphic
effect, a reduction but not a complete loss of phenotype. Two
small regulatory, double stranded RNAs (dsRNAs), known as
small interfering RNAs (siRNAs) and microRNAs (miRNAs),
are important for the initiation of RNAi (Carthew and
Sontheimer, 2009). A dsRNA-processing enzyme called dicer,
converts these small RNAs into shorter fragments (21-23 bp).
These short fragments bind to the Argonaute protein, forming
siRNA/miRNA-induced silencing complex (si/miRISC) that
recognises targeted gene messenger RNAs (mRNAs) and induces
degradation (Mello and Conte, 2004; Setten et al., 2019). While
miRNAs are mainly produced by the cells, the source of siRNAs
can be endogenous (noncoding dsRNAs) or exogenous (synthetic
siRNAs). Further, the mechanism of how siRNAs and miRNAs
induce RNAi is distinct. Each siRNA has a complementary
sequence of a specific mRNA that guides the binding of siRISC
precisely and initiates mRNA cleavage (Lam et al., 2015).
Conversely, miRNAs are less specific since one miRISC can
identify several different mRNAs, and induce gene silencing
via translational repression and mRNA destabilisation, followed
by mRNA cleavage (Fabian and Sonenberg, 2012; Jonas and
Izaurralde, 2015).

Synthetic siRNA has been widely used to specifically
knockdown gene expression in vagal afferents. In general,
exogenous siRNA can be introduced into the cells as siRNA
particles, or as a sequence embedded into a viral genome and
endogenously expressed by the cells as siRNA precursors. As a
foreign molecule, siRNA often requires a structural modification
or a carrier for efficient transport into the cells (Roberts et al.,
2016). Different methods, such as lipofectamine for naked siRNA
(Heldsinger et al., 2012) and magnetofection for nanoparticle-
conjugated siRNA (De Lartigue et al., 2010), have been used
to deliver siRNA particles in VAN cell cultures. In addition,
a delivery method using local electroporation (RISLE) was
developed to facilitate siRNA delivery in vivo in the brain
(Akaneya et al., 2005), and this approach has been successfully
replicated to deliver siRNA into NG (Zhou et al., 2010). A lead
time of 3-6 days is required for gene silencing to occur with
knockdown effects lasting for 2 weeks (Akaneya et al., 2005). It
is important to note that direct introduction of exogenous siRNA
particles results in a transient gene silencing effect.

Currently, viral vectors are predominantly used to deliver
siRNA precursors in a form of short-hairpin RNA (shRNA)
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in vitro and in vivo. The use of viral vectors increases transport
efficiency and provides alternatives for a stable silencing effect,
given that they utilise a natural mechanism to enter the cells
and to express their genome using the host system. Lentivirus
is predominantly used as vector to transfer siRNA (Sakuma
et al., 2012). For instance, Krieger et al. (2016) delivered
GLP1R shRNA to mouse NG, resulting in 80% silencing of
GLP1R expression using lentiviral vector measured 20 days
after injection. In vitro, lentiviral vector has been shown to
efficiently induce gene silencing in nodose neuron cell culture
with 3-4 days incubation preceding the observation (Heldsinger
et al., 2012). In addition, Kollarik et al. (2010a) used adeno-
associated virus (AAV2/8) to deliver TRPV1 shRNA into NG
from vagal afferent endings in the guinea pig oesophagus,
efficiently silencing TRPV1 expression. Besides its specificity,
siRNA-induced gene silencing provides flexibility to target
different protein isoforms by introducing a combination of
siRNAs (Wang et al., 2017). This allows simultaneous gene
silencing that could be beneficial to understand cellular pathways.
However, the silencing effect of siRNA-induced RNAi is
dose-dependent. Insufficient amounts of siRNA may lead to
inadequate silencing, whereas, excessive amounts of siRNA
may induce non-specific gene silencing that alters phenotype
(Jackson and Linsley, 2010).

Viral-Mediated Neural Tracing
Neural tracing is a classic method to map anatomical distribution
of vagal afferents from their cell bodies or axon terminals. An
important feature of neural tracing is the ability to selectively
target a specific vagal afferent population based on their location
in the gut or the brain, by injecting anterograde or retrograde
tracer. This allows a specific examination of the functional
properties of a particular vagal afferent population. A variety
of biochemical-based tracers, such as cholera toxin subunit
B, fluorogold, Phaseolus vulgaris-leucoagglutinin, WGA-HRP,
lipophilic carbocyanine dyes, and variants of dextran amines,
have been utilised to visualise the vagal gut-brain axis (Berthoud
and Powley, 1992; Neuhuber et al., 1998; Powley, 2000; Young
et al., 2008; Powley et al., 2013). In recent years, development
of neurotropic viral vectors has significantly progressed, leading
to ground breaking findings on vagal afferent subtypes and their
functions in the gut. Here, we will focus on adeno-associated
virus, rabies virus, and herpes viruses. We exclude lentivirus-
based neural tracers since they mainly target motor neurons
(Hirano et al., 2013; Sheikh et al., 2018).

Adeno-associated virus
Adeno-associated virus (AAV) is a 25 nm, non-enveloped, single
stranded DNA (ssDNA) virus, isolated from Adenovirus
preparation (Atchison et al., 1965; Balakrishnan and
Jayandharan, 2014). Recombinant AAV (rAAV) is generated
by replacing life cycle genes (i.e., Rep, Cap, and aap) (Sonntag
et al., 2010; Balakrishnan and Jayandharan, 2014) between two
T-shaped inverted terminal repeat (ITR) sequences with the
gene of interests. The total length of rAAV genome should not
exceed the wild type AAV genome (∼5 kbp) to avoid reduction
in transduction efficiency (Wu et al., 2010) although strategies to
deliver large transgene have been developed (McClements and

MacLaren, 2017). rAAVs are highly favourable neural tracers,
given their nature as a non-pathogenic, low immunogenic,
and self-replication defective virus (Weitzman and Linden,
2011) makes rAAVs less neurotoxic compared to other viral
vectors. This vector also provides stable gene expression without
transgene integration to the host genome.

Serotypes determine AAV tropism and transport directions
as neural tracers. Currently, there are 12 AAV (1-12) serotypes
with more than one hundred variants (Gao et al., 2005).
The majority of native AAV serotypes have tropisms towards
neurons at different degrees. However, AAV9 has been shown
to profoundly transduce neurons in the CNS, PNS and enteric
nervous system (Howard et al., 2008; Schuster et al., 2014).
Furthermore, several serotypes (AAV1 and AAV9) also display
anterograde transneuronal tracing properties (Zingg et al., 2017).

Characteristics of AAV can be modified using pseudotyping
or direct evolution. Pseudotyped AAV is created by combining
capsid and ITR sequences from two different AAV serotypes.
Kollarik et al. (2010a) utilised this approach to develop AAV2/8
which has an improved retrograde transport capability and
transduction efficiency in esophageal vagal afferents compared
to AAV2, AAV2/2, AAV2/7 and AAV 2/9. Denotation of
pseudotyped AAV, e.g., AAV 2/8, indicates that the virus carries
genome from AAV2 and capsid from AAV8. In 2017, a novel
method, namely Cre recombinase based AAV targeted evolution
(CREATE), was developed (Chan et al., 2017). This technique
uses a Cre/loxP system to generate a library of capsid sequences
from one AAV serotype which then undergo in vivo selection,
termed as direct evolution, to obtain the serotype with desired
characteristics. Several robust neurotrophic AAV serotypes, i.e.,
AAV9-PHPb (Chan et al., 2017), AAV9-PHPs (Chan et al., 2017),
and AAV2-retrograde (Tervo et al., 2016), have been developed
through this method. AAV9-PHPb and AAV9-PHPs developed
tropism towards CNS and PNS neurons, respectively (Chan et al.,
2017). Although it has been shown that AAV9-PHPs effectively
transduced DRG neurons, there has been no study reporting the
capability of this serotype to transduce vagal afferents. In contrast,
AAV2-retrograde (AAVrg) has shown tropism to both CNS and
PNS neurons (Tervo et al., 2016; Han et al., 2018). Developed
by Tervo et al. (2016), AAVrg has an enhanced retrograde
transport ability in neurons. A recent study has shown that
AAVrg effectively transduce vagal afferents and is transported in
a retrograde manner from the gut to the NG (Han et al., 2018).

Despite its robustness, one caveat of using AAV-based neural
tracers is that the lead time to observe phenotype or behavioural
changes takes at least 2-6 weeks after injection. This is due to a
lag time for conversion of AAV ssDNA to dsDNA and genome
instability post dsDNA conversion delaying gene expression
(Ferrari et al., 1996; Wang et al., 2007). Self-complementary AAV
(scAAV), a double stranded DNA variant of AAV, can be used to
shorten the lag time (McCarty, 2008).

Rabies virus
Rabies virus (RABV) is an enveloped, retrograde transsynaptic
neurotrophic virus from the Rhabdoviridae family, with a
12 kb negative-sense single stranded RNA genome. RABV
envelope protein, called rabies glycoprotein (RG) (Conzelmann
et al., 1990), with interaction with its receptors compulsory
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for infection and propagation to occur (Morimoto et al.,
2000; Lafon, 2005). In 2007, Wickersham et al. (2007a,b)
developed engineered RABVs, a first order retrograde neural
tracer SAD1G-EGFP and a monosynaptic retrograde neural
tracer SAD1G-EGFP(EnvA). Both engineered viruses lack RG,
which hampers their transsynaptic spread ability. SAD1G-EGFP
can infect any neurons, however, it cannot spread outside the
initially infected neuron (Wickersham et al., 2007a). This virus
has been used to map neural circuits in reward pathways that
receive vagal input (Han et al., 2018). In contrast, SAD1G-
EGFP(EnvA) express envelope protein of subgroup A avian
sarcoma and leukosis virus (EnvA) which allows specific infection
on cells expressing EnvA receptor, termed as TVA (Barnard
et al., 2006). This strategy has been adapted to target nodose
neurons in vitro and ECC expressing CCK in vivo to reveal signal
transduction between vagal afferents and neuropods in nutrient
sensing (Kaelberer et al., 2018).

RABV-based neural tracers are suitable for tracing back vagal
projection from its ending in the viscera or region of the CNS.
However, they may not be useful for studying neurons receiving
vagal inputs from the NG. RABV has a low cytopathic effect,
rapid infection in the CNS and high level of gene expression
(Wickersham et al., 2007a,b). With a relatively large genome
size and an established protocol to generate recombinant 1G
rabies (Osakada and Callaway, 2013), any gene of interest can be
inserted to achieve desired aims. However, neural tracing using
RABV-based tracers is only ideal for a short term (up to 16
days) experimental time course due to the pathogenic nature of
RABV (Wickersham et al., 2007a). Neurotoxic effects, marked
by morphological changes (e.g., blebbing) in surviving neurons
occur with prolonged incubation (Wickersham et al., 2007a).

Herpes viruses
Two classes of herpes viruses, namely herpes simplex virus-1
(HSV-1) and pseudorabies virus (PRV), are neurotropic viruses
with transneuronal spread ability and tropism to sensory and
autonomic neurons (Ugolini et al., 1989; Babic et al., 1993). Both
viruses are enveloped, have a linear dsDNA genome (HSV-1:150
kbp and PRV:140 kbp), and require interaction between envelope
protein and host cell surface to enter the cells and propagate
(Ugolini, 2010). The major difference between HSV-1 and PRV
is that only HSV-1 can infect primates (Ugolini, 2010).

Herpes viruses-based neural tracers are generally transmitted
in a retrograde direction. However, a unique HSV-1 strain,
called HSV-1 strain 129 (H129), displays transneuronal spread
in an anterograde manner (Zemanick et al., 1991; Rinaman
and Schwartz, 2004). Rinaman and Schwartz utilised H129 to
map vagal input from the stomach wall to the CNS (Rinaman
and Schwartz, 2004) while Krieger et al. (2018) revealed central
neurons receiving vagal input from left NG in controlling
brown adipose tissue thermogenesis. In 2011, a Cre-dependent
H129 recombinant, called H1291TK-TT, was generated (Lo and
Anderson, 2011). Han et al. (2018) utilised H1291TK-TT to map
vagal outputs from the right NG and discovered vagal input to
dopaminergic neurons in the substantia nigra.

PRV-based neural tracers were developed from the non-
virulent PRV strain Bartha. PRV-Bartha are distinct from other

retrograde tracer viruses given their retrograde transport occurs
exclusively from postsynaptic to presynaptic neurons (Pickard
et al., 2002). Two PRV-based tracers, PRV152 and PRV614, were
generated by inserting genes encoding GFP and RFP, respectively
(Smith et al., 2000; Banfield et al., 2003). These variants were used
to confirm the vagal (right NG)-parabrachial-nigrostriatal circuit
and its necessity in food intake regulation (Han et al., 2018).

Similar to RABV, the major concern of using HSV-1 and PRV-
based neural tracers is their neurotoxicity, resulting in a short
experimental time course of approximately 5 days (Brittle et al.,
2004; Lo and Anderson, 2011). Since the neurotoxic effect occurs
rapidly, prolonged viral incubation may induce cell death in
initially infected neurons, making observation of neural circuits
difficult. Furthermore, there is a possibility of unspecific infection
due to local spread around the injection site (Ugolini et al., 1987).
The dose of viral injection is an important factor affecting this
local spread and subsequently transneuronal transfer efficiency.
In addition, it is important to note that HSV129 can undergo a
delayed retrograde transport, approximately 3 days after initial
injection, which may confound results (Wojaczynski et al., 2015).

ASSESSING VAGAL AFFERENT
SUBTYPES FUNCTION

In vivo Modulation of Vagal Afferent
Activity
The action potential (AP) is a signature of basic forces in
neural activity, excitation and inhibition, which is essential
for neural communication. The AP relies on ionic balance
that regulates membrane potential through depolarization and
hyperpolarization. Following the basic principle of an AP,
we can modulate neural activity using genetically encoded
optogenetic or chemogenetic tools to switch on or off the signal
transmission. A recent review has discussed available optogenetic
and chemogenetic tools in neurogastroenterology, with a focus
on the enteric nervous system (Boesmans et al., 2018). In this
review, we provide an update on the current progress in GI
vagal afferents.

Optogenetic refers to the use of opsins to modulate neural
activity. Opsins are a family of seven-transmembrane,
light-sensitive proteins activated by light exposure at a
specific wavelength. Current optogenetic tools, such as
channelrhodopsins, halorhodopsins and bacteriorhodopsins
are derived from microbial opsins (type I opsins).
Channelrhodopsin-2 (ChR2) was the first opsin employed
as an optogenetic tool. ChR2 is a light-gated proton pump,
which is activated by millisecond exposure to blue light driving
depolarization and promoting neural excitation (Boyden et al.,
2005). The second generation of ChR2, hChR2(H134R), has
an improved protein expression and larger steady state current
(Nagel et al., 2005). Recent studies have utilised this variant
to directly control vagal afferent modulation in vivo. For
instance, Williams et al. (2016) activated vagal GLP1R neurons
and revealed their function in sensing gastric distension in
anaesthetized mice. In 2018, Han et al. (2018) demonstrated
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distinct roles of right and left NG in food intake in conscious
mice by triggering vagal afferent activation, identifying upper
gut vagal afferent function in reward circuits and dopamine
release via the right NG (Han et al., 2018). In addition, Bai et al.
(2019) selectively activated vagal afferent populations expressing
Glp1R as well as Oxtr, and discovered GI vagal afferents subtypes
that control feeding (Bai et al., 2019). Besides hChR2(H134R),
other improved variants of ChR2 with different kinetics, light
wavelength and exposure time are currently available for use
(Fenno et al., 2011; Yizhar et al., 2011).

In contrast, halorhodopsins (e.g., NpHR) stimulate
neuronal hyperpolarization and inhibit neuronal activity upon
yellow/green light exposure (Zhang et al., 2007). Halorhodopsins
facilitate anion influx (Cl−) into the cells and require constant
light exposure to maintain the active state (Zhang et al., 2007).
Improved variants of NpHR, such as eNpHR2.0 and eNpHR3.0,
exhibit an enhanced membrane localization, increased peak
photocurrent, and a high level of gene expression without
toxicity compared to the wild type NpHR, in mammalian cells
(Gradinaru et al., 2008, 2010). With the opposite function to
channelrhodopsins, a combination of ChR2 and NpHR creates
a on and off switch to direct neural activity. Kaelberer et al.
(2018) demonstrated this scenario using ChR2 to evoke vagal
firing, mimicking sucrose-induced vagal activation during signal
transduction in the intestine, and eNpHR3.0 to inhibit vagal
firing induced by sucrose.

Bacteriorhodopsins (e.g., Arch), in contrast to the other two
forms, are proton pumps that enable proton efflux into the
extracellular matrix, thus causing hyperpolarization and totally
diminishing neural activity (Chow et al., 2010). A major concern
with the use of bacteriorhodopsins is the possible extracellular
matrix pH alteration due to proton efflux (Chow et al., 2010).
Furthermore, a chimeric optogenetic tool, called OptoXR, has
been developed by fusing synthetic opsins and GPCRs to
facilitate interrogation of biochemical pathways through GPCR
Gs and Gq signalling pathways (Airan et al., 2009). To date, no
studies have reported the use of these opsins to investigate GI
vagal afferent roles.

The use of optogenetics requires a well-designed experimental
plan to avoid bias in result interpretation. Variation of protein
expression level and activity, side effects of light exposure and
tissue heating (Owen et al., 2019), the depth of targeted tissue
and instrumental set up can be confounding factors (Fenno
et al., 2011). Although optogenetics provides temporal control
of neural activity modulation, consideration should be made if
long-term stimulation is required. Long term potentiation may
cause alteration in neural plasticity and homeostatic adaptation
(Allen et al., 2015). Thus, it may alter phenotypes or behavioural
responses during observation. The use of slow ChR2 (Schultheis
et al., 2011) or chemogenetic can be an alternative if long-term
potentiation is required.

Chemogenetics refers to the use of designer receptors activated
by designer agonists to modulate neural activity. The majority
of chemogenetic tools are based on GPCRs. Designer receptors
activated by designer drugs (DREADDs) are the third generation
of GPCR-based chemogenetic agents, with downstream effects
mediated through classical GPCR (Gq, Gi, or Gs) (Armbruster
et al., 2007) or β-arrestin signalling pathways (Allen and Roth,

2011; Nakajima and Wess, 2012). The first DREADD family
was created based on human M3 muscarinic receptor (hM1Dq,
hM2Di, hM3Dq hM4Di, and hM5Dq) (Armbruster et al., 2007).
Gq-DREADDs cause excitatory effects on neuronal activity by
mediating calcium (Ca2+) influx, while presynaptic inhibitory
effects and silencing are obtained by Gi-DREADD activation
mediated by cAMP β/γ-GIRK signalling (Armbruster et al., 2007;
Roth, 2016). For instance, Bai et al. (2019) selectively activated
vagal afferent subtypes in the stomach and small intestine using
hM3D-Gq. On the other hand, Gs-DREADDs influence cAMP-
signalling to modulate neural activity (Guettier et al., 2009). Han
et al. (2018) used hM3D-Gs to simultaneously activate vagal
afferents innervating the upper gut in both the NG and their
targets in the brainstem.

Muscarinic receptor-based DREADDs are activated by
clozapine-N-oxide (CNO) (Armbruster et al., 2007). CNO is
an inert chemical actuator with rapid CNS penetration and
distribution in mice (Bender et al., 1994). The use of CNO
permits a longer time-course to control neural activity, as well
as simultaneous activation of cells expressing DREADD in
different locations. The ease of CNO administration (e.g., via oral
intake) also makes the DREADD-based approach less laborious
compared to optogenetics. If a strict temporal control is required,
another class of chemogenetic tool based on ligand-gated ion
channels that modulate neural activity via ionic conductance
can be used (Magnus et al., 2011; Sternson and Roth, 2014).
Furthermore, the level of basal activity, receptor desensitisation
or downregulation, and side effects due to clozapine back
metabolism should be taken into consideration when designing
chemogenetic experiments (Roth, 2016).

In addition, a thermal-driven approach termed as
thermogenetic is currently under development. Similar to
its predecessors, thermogenetics permits controlled activation or
inhibition of neuronal activity using thermal stimulus (Bernstein
et al., 2012). Molecules with inhibitory effects, e.g., Drosophila
melanogaster dynamin GTPase (Kitamoto, 2001) and excitatory
effects from the thermoTRP family (Dhaka et al., 2006), e.g.,
Drosophila melanogaster TRPA1 (Viswanath et al., 2003; Hamada
et al., 2008), rat TRPM8 (Peier et al., 2002; Peabody et al., 2009)
and snake TRPA1 (Ermakova et al., 2017), have been discovered.
Studies have demonstrated a successful thermal-induced neural
activity modulation in drosophila, zebra fish and mouse cultured
neurons, but no evidence in in vivo models have been reported
(Bath et al., 2014; Ermakova et al., 2017).

Direct Imaging of Vagal Afferent Activity
Communication between neurons occurs via a
neurotransmission process. Four classes of genetically encoded
indicators have been developed to detect four stages of
neurotransmission: pH changes during vesicle fusion (GEPI),
neurotransmitter release (GETI), voltage changes (GEVI) and
calcium entry (GECI) (Lin and Schnitzer, 2016). These indicators
use fluorescence resonance energy transfer (FRET; or single
fluorophore-based), of which fluorophore emission will be
shifted upon target recognition, allowing visualisation. Recent
findings have demonstrated the use of GETI and GECI to decrypt
GI vagal afferent signalling. GETI visualises neurotransmitter
movement from specific presynaptic to postsynaptic cells and
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vice versa (Liang et al., 2015). The current available GETIs
are glutamate indicators, such as FLIPE, SuperGluSnFR, and
iGluSnFR, which exhibit different sensitivity towards glutamate
binding (Okumoto et al., 2005; Hires et al., 2008; Marvin et al.,
2013). A single fluorophore glutamate sensor, iGluSnFR, has been
used to visualise glutamate transmission and identified synaptic
connexion between EEC and vagal afferent terminals in vitro
(Kaelberer et al., 2018). Furthermore, GECIs detect calcium,
a second messenger for neurotransmitters and membrane
depolarization in neurons, entry during an AP (Grienberger
and Konnerth, 2012). GCaMP, a family of single fluorophore
GECI, is often used for in vivo calcium imaging. For instance,
GCaMP3 (Tian et al., 2009) was used to identify vagal GLP1R
responses to gastric stretch in a non-intact vagal system in mice
(Williams et al., 2016).

In vitro Remodelling
The advancement of stem cell technology has made in vitro
remodelling at organ level possible. Stem cell-derived three
dimensional cell culture or organoids possess some of the key
characteristics at the cellular, anatomical or functional level of a
real organ (Rossi et al., 2018). The use of organoids to investigate
vagal afferent function was recently introduced. Termed as “a
gut-brain circuit in a dish”, Kaelberer et al. (2018) simulated
the development of synaptic connexions between neuropods and
vagal afferents in vitro using epithelial intestinal organoids. To
date, generation of epithelium-derived gastrointestinal organoids
for the oesophagus (DeWard et al., 2014), stomach fundus
(McCracken et al., 2017), corpus (Stange et al., 2013; Bartfeld
et al., 2015), and pyloric antrum (McCracken et al., 2014; Noguchi
et al., 2015), small intestine (Sato et al., 2009; Spence et al.,
2011), and colon (Sato et al., 2011) are possible. Epithelial
organoids permit a close investigation of synapse formation and
the interactions involving vagal afferent terminals, particularly
the mucosal endings with the gut epithelial cells. This system
provides a tool to examine mechanisms of signalling transduction
as may occur in the viscera, such as the interaction with gut
hormone secreting cells, for instance.

CONCLUSION

Recent advances in technical approaches have made selective
targeting and delineating vagal afferent function possible. It is
well established that isolating vagal afferent subtypes has been
a major challenge that hampers our progress in understanding
their function. In recent years, viral-mediated neural tracing,
combined with the use of Cre-dependent constructs and
Cre-mouse lines, has produced a highly selective approach
to target vagal afferent populations. In combination with

opto/chemogenetic, calcium imaging and behavioural analysis,
we are now able to investigate the role of vagal afferent subtypes
in vivo and map the neural circuitry. This combination of tools, in
a sequence, creates flexible yet excellent experimental frameworks
to thoroughly examine vagal afferent function. Although neural
tracing is robust, this approach may not be suitable to address
all subtypes of vagal afferent due to feasibility of site-specific
injection or the presence of sub-subtypes. In this case, the use
of transgenic animal models may be an advantage, given the
possibility of generating a new line based on the genetic profile
of vagal afferent subtypes. It is important to note that the
initial step to identify vagal afferent genetic profiles also involves
neural tracing to isolate candidate vagal afferent neurons. This
shows that integration of different techniques can boost the
development of new tools and aid the progress of understanding
vagal afferent function.

Despite the current advancement, there is still much to learn
about the role of GI vagal afferents in gut function and feeding
behaviour. One interesting question is how GI vagal afferent
subtypes interact with each other to maintain gut function or
respond to food-related signals. While the current studies mainly
focus on manipulating a single subtype, incorporation of other
site specific recombinase, such as Flp/FRT, Dre/rox and Vika/vox,
may allow us to investigate integrative function of different
populations in one mouse in the future. In fact, a study has
reported a creation of those four systems in one single reporter
mouse line (Karimova et al., 2018). Furthermore, the discovery
of an optoribogenetic candidate that allows light-driven gene
expression control (Weber et al., 2019) opens the opportunity
to manipulate endogenous expression of ion channels and
receptors. Although speculative, this could aid investigation of
the sensing mechanisms of GI vagal afferents and their plasticity
towards meal-related stimuli in vivo. With these tools, currently
in the pipeline, our understanding on GI vagal afferent function
could be greatly increased in the near future.
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