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Various external factors modulate the metabolic efficiency of mitochondria. This review
focuses on the impact of the growth factor neuregulin and its ErbB receptors
on mitochondria and their relationship with several physiopathological alterations.
Neuregulin is involved in the differentiation of heart, skeletal muscle, and the neuronal
system, among others; and its deficiency is deleterious for the health. Information
gathered over the last two decades suggests that neuregulin plays a key role in
regulating the mitochondrial oxidative machinery, which sustains cell survival and
insulin sensitivity.
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NEUREGULIN, A MEMBERS OF THE EPIDERMAL GROWTH
FACTOR FAMILY

The early 1990s saw the publication of several articles searching for the ligand of a relevant
protooncogene, c-neu, also known as ErbB2 receptor (erythroblastic leukemia viral oncogene
homolog 2 receptor) or HER2 in humans, associated with malignancy and poor prognosis in breast,
ovarian, gastric, and endometrial cancers. The authors of these reports named the hypothetical
ligand for the ErbB2 receptor, a 44–45 kD glycoprotein, in distinct ways, including heregulin (HRG)
(Holmes et al., 1992) and neu differentiation factor (NDF) (Peles et al., 1992). Several laboratories
cloned and identified other members of the family, and the common term neuregulin (NRG) was
proposed encompassing them all (Marchionni et al., 1993; Fischbach and Rosen, 1997).

NRG belongs to the epidermal growth factor (EGF) family since it contains the domain that
characterizes all the members of this family, the EGF-like domain, which allows binding to the
ErbB tyrosine kinase receptor family (Carraway and Burden, 1995; Gumà et al., 2010). NRG
subfamily members are encoded by various genes, the products of nrg-1 to 4 genes being the
most widely studied. Most of these subfamily members contain a transmembrane domain. The
bioactive EGF-like domain is located extracellularly, in the N terminus portion, and it can be
released upon proteolysis by metalloproteases (Montero et al., 2000; Ozaki et al., 2004). Such
proteases target specific sites at the NRG juxtamembrane extracellular region. Upon release, the
EGF-like domain of NRG binds to ErbB receptors. In contrast to what was expected, NRG does
not bind directly to ErbB2 receptor (Peles et al., 1993), but to ErbB3 and ErbB4 (Plowman et al.,
1993b; Carraway and Cantley, 1994; Tzahar et al., 1994). NRG binding to ErbB3 or ErbB4 triggers
preferential heterodimerization with the orphan receptor ErbB2 or, in its absence, with ErbB1

Frontiers in Physiology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 696

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.00696
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.00696
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.00696&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/articles/10.3389/fphys.2020.00696/full
http://loop.frontiersin.org/people/674433/overview
http://loop.frontiersin.org/people/645877/overview
http://loop.frontiersin.org/people/223186/overview
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00696 June 20, 2020 Time: 19:36 # 2

Gumà et al. Neuregulin Regulates Mitochondrial Metabolism

(also known as the EGF receptor, EGFR) (Carraway et al., 1994;
Alimandi et al., 1995; Graus-Porta et al., 1995; Riese et al.,
1995; Pinkas-Kramarski et al., 1996). ErbB3 is a kinase-death
receptor, whereas ErbB4 displays both binding and kinase
activity, the latter having a wider spectrum of NRG ligands
(Jones et al., 1999).

NRG is released by cells of endothelial, mesenchymal, and
neuronal origin, while ErbB receptors are located close to the
ligand, generating local autocrine, paracrine, or even juxtacrine
actions (Gumà et al., 2010). More recently, a member of the NRG
subfamily, NRG-4, has emerged as an endocrine factor, which is
addressed later.

ROLE OF NEUREGULIN AND ErbB
RECEPTORS ON CELL SURVIVAL AND
OXIDATIVE STRESS

Anthracyclines such as doxorubicin are widely used as
chemotherapeutic agents for the treatment of cancer. These
drugs induce cardiomyopathy, and there is evidence that
disturbances at the NRG/ErbB axis play a crucial role in the
development of anthracycline-dependent cardiotoxicity (Ghigo
et al., 2016). In cancers that overexpress the product of the
oncogene erbB2, therapy combines the use of anthracyclines
with ErbB2-blocking antibodies (trastuzumab or herceptin). In
such cases, the cardiotoxic effect of anthracyclines is enhanced
by ErbB2 blockage (Slamon et al., 2001; Keefe, 2002). There
is evidence indicating that NRG-1, acting on ErbB4/ErbB2
receptors, plays a critical role in heart development. In this
regard, knockout mice for NRG-1 (Meyer and Birchmeier, 1995),
ErbB4 (Gassmann et al., 1995), and ErbB2 (Lee et al., 1995) die at
mid-embryo life due to altered heart ventricular trabeculation.
The lethality observed in knockout mice led to the development
of new approaches to analyze the relevance of NRG and ErbB
receptors in adult heart. Mice with a postnatal conditional ErbB2
mutation in ventricular cardiomyocytes show a severe dilated
cardiomyopathy at the second month of age, indicating that
ErbB2 has a cardioprotective role in adulthood (Ozcelik et al.,
2002). Another strategy was based on the use of heterozygous
NRG-1 knockout mice, which show accelerated systolic failure
and higher mortality in response to doxorubicin (Liu et al., 2005).
The treatment with a bioactive recombinant NRG-1β counteracts
doxorubicin-dependent reduction of cardiomyocyte contractility
and myofilament disarray in cardiomyocytes (Sawyer et al.,
2002; Timolati et al., 2006). In this regard, NRG-1 promotes
cell survival via a phosphatidylinositol 3-kinase-dependent
mechanism that requires the activity of ErbB4/ErbB2 receptors
(Fukazawa et al., 2003; Bian et al., 2009). Overexpression of ErbB2
in heart reduces mitochondrial ROS production in response to
doxorubicin (Belmonte et al., 2015). In contrast, primary cultures
of neonatal rat ventricular myocytes exposed to anti-ErbB2
antibody for 24 h show impaired mitochondrial function and
cellular energy (Grazette et al., 2004). A single challenge of
NRG-1β triggers cellular reprogramming in cardiomyocytes not
only by improving the mitochondrial oxidative capacity and the
defense against oxidative stress, thereby enhancing cell survival,

but also by increasing the protein synthesis and the glycolytic
metabolism that contribute to cardiomyocyte hypertrophy.
These findings highlight the protective function of NRG in the
heart (Giraud et al., 2005). The observation that NRG prevents
the deleterious effects of oxidative stress is supported by previous
reports indicating that the release of this growth factor by
cardiac endothelial cells prevents cardiomyocyte apoptosis by
regulating ROS levels, in a manner that involves ErbB4 activation
(Kuramochi et al., 2004). This protective role of NRG against
oxidative stress has also been reported in other cell types such as
the neuronal PC12 cells (Goldshmit et al., 2001).

The beneficial effect of ErbB2 in differentiated tissues contrasts
with the consequences of its overexpression, which is associated
with cancer. In this context, the overexpression of ErbB2 also
targets mitochondria, although acting in such a manner that
contributes to cell transformation. Regarding ErbB2 action
on mitochondria proteins, two studies have provided valuable
insight. On the one hand, ErbB2 antagonizes apoptosis in cancer
cells by physically interacting with the mitochondrial protein p53
upregulated modulator of apoptosis (PUMA), a potent apoptosis
inducer. ErbB2 signals the phosphorylation of PUMA in tyrosine
residues promoting its degradation by the proteasome (Carpenter
et al., 2013). In addition, ErbB2 tyrosine kinase signaling induces
the phosphorylation of the mitochondrial creatine kinase 1
(MtCK1, located at the intermembrane space) on tyrosine 153
(Y153) in breast cancer cells. Y153 phosphorylation stabilizes
MtCK1 protein, thereby increasing the phosphocreatine energy
shuttle and promoting proliferation (Kurmi et al., 2018).
Moreover, studies in cancer cells and patient samples show
that when ErbB2 is overexpressed, it translocates from the
plasma membrane to mitochondria. The increase of ErbB2
in mitochondria negatively regulates mitochondrial respiration,
membrane potential, and ATP synthesis while enhancing
anaerobic glycolysis, thereby increasing lactate production (Ding
et al., 2012). Furthermore, ErbB2 induces the overexpression
of the uncoupling protein 2 (UCP2) in cancer cells. In normal
conditions, UCP2 is associated with glucose tolerance and insulin
sensitivity, as it controls the production of reactive oxygen species
(ROS) during respiration (Dalgaard, 2011, 2012). In contrast, the
UCP2 overexpression leads to the uncoupling of mitochondria,
which contributes to enhance anaerobic glycolysis in cancer cells
(Patel et al., 2013).

INVOLVEMENT OF NEUREGULIN AND
ErbB RECEPTORS IN ADAPTIVE
CHANGES TO OXIDATIVE METABOLISM

The generation of genetically modified mouse models for NRG-
1 and for ErbB receptors has allowed the observation of serious
alterations in the development of the central and peripheral
nervous system, beyond the effects on heart development
already described (Lee et al., 1995; Meyer and Birchmeier,
1995; Carraway, 1996). In response to synaptic activity, NRG-
1 is released by neuronal axons and binds to ErbB receptors
which are concentrated at the neuronal and neuromuscular post-
synaptic plates as well as at central and peripheral glial cells
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(Altiok et al., 1995; Burden and Yarden, 1997; Buonanno and
Fischbach, 2001), inducing both glia maturation and postsynaptic
plate formation (Falls et al., 1993; Marchionni et al., 1993; Chen
et al., 1994; Corfas et al., 1995; Dong et al., 1995; Goodearl et al.,
1995; Jo et al., 1995; Morrissey et al., 1995; Woldeyesus et al.,
1999; Wolpowitz et al., 2000; Yang et al., 2001). Synaptic activity
causes muscle contraction, and there are multiple evidences
indicating that NRG-1 participates in contraction events that
modulate muscle metabolism. First, muscle also expresses NRG-
1, and it is essential for the myogenesis (Kim et al., 1999;
Suarez et al., 2001), acting in an additive manner with the
insulin-like growth factor I, IGF-I (Florini et al., 1996). Second,
muscle fibers release NRG-1 in response to muscle contraction
(Lebrasseur et al., 2003; Canto et al., 2006), and the impairment
of NRG-1 action during an acute stimulus of contraction leads
to a decrease in glycogen, ATP, and phosphocreatine muscle
content (Canto et al., 2006). In this sense, it is well known that
muscle contraction has rapid effects inducing glucose uptake
in order to sustain energy reservoirs. Contraction effects on
glucose uptake take place in an additive manner to the insulin
action, by translocation of GLUT4 glucose transporters to surface
membranes (Ploug et al., 1998). Interestingly, insulin and NRG-
1 also have additive effects inducing glucose transport and the
translocation of glucose transporters to surface membranes in
muscle cells (Suarez et al., 2001; Canto et al., 2004). Third,
NRG-1 has long-term effects on muscle cells that resemble those
of muscle adaptation to exercise. Chronic effects of exercise
result in the increase in mitochondrial biogenesis (Takahashi
and Hood, 1993; Hood, 2001) and mitochondrial respiratory
activity, thus enhancing the capacity to oxidize carbohydrates and
fatty acids (Holloszy, 1967; Mole et al., 1971). This is relevant
since insulin resistance has been associated with impaired
mitochondrial activity (Mootha et al., 2003; Patti et al., 2003;
Petersen et al., 2003, 2004; Lowell and Shulman, 2005), and
exercise is indicated as a therapeutic intervention to prevent
and treat insulin resistance (Baar et al., 2002; Hawley, 2004).
In this sense, long-term treatment of muscle cells with the
bioactive recombinant NRG-1 isoform, heregulin-β1 177–244
(Hrg), induces glucose and fatty acid oxidation through an
increase in total mitochondria content and membrane potential
as well as inducing the expression of mitochondrial respiratory
chain complexes, resulting in improved insulin sensitivity (Canto
et al., 2007). These effects are a consequence of the NRG-
1 action inducing the expression of the transcription factor,
peroxisome proliferator–activated receptor β/δ (PPARβ/δ), and
the PPARγ coactivator-1α (PGC-1α) (Canto et al., 2007), both
involved in mitochondrial biogenesis and activity (Wu et al.,
1999). Current data indicate that PGC-1α induces the expression
of mitofusin 2 (MFN2) gene (Soriano et al., 2006), an outer
mitochondrial membrane protein that stimulates mitochondrial
fusion, mitochondrial oxidative activity, and, in turn, insulin
sensitivity (Bach et al., 2003; Sebastian et al., 2012). It would be
pertinent to study whether NRG-1 regulates MFN2 expression
and, consequently, whether it can modulate mitochondrial
dynamics in muscle. Recent evidences support this view. In
neonatal cardiomyocytes, submitted to hypoxia/reoxygenation
injury, Hrg contributes to cardiomyocytes survival by restoring

the expression of MFN1 and MFN2 (Zhang et al., 2020). All
together suggest that NRG-1 has a prevalent role in muscle
adaptation to an oxidative metabolism.

NEUREGULIN 4, A NEW ADIPOKINE
THAT ENHANCES BROWNING IN
ADIPOSE TISSUE

In 2014, two groups reported that NRG-4 is highly expressed
and released by adipose tissues, especially by brown adipose
tissue (BAT), thus being considered an adipokine (Rosell et al.,
2014; Wang et al., 2014). Despite this, some other tissues
such as the liver, lung, and pancreas are capable of expressing
NRG-4, although in much lower amounts. NRG-4 exerts a
plethora of effects that ultimately regulate energy metabolism
and insulin sensitivity. Despite the abundance of NRG-4 in BAT,
this protein is dispensable for defense against cold exposure-
induced hypothermia in NRG-4 null mice (Wang et al., 2014).
However, NRG-4 expression is upregulated in white adipose
tissue (WAT) upon cold exposure (Rosell et al., 2014). In
this condition, NRG-4 increases innervation by promoting
neurite growth and contributes to the transition from white to
beige adipocytes. Beige adipocytes can be differentiated from
white adipocytes by their increased thermogenic capacity. Beige
adipocytes induce uncoupling protein 1 (UCP1) expression
upon adrenergic stimulus and increase mitochondrial oxygen
consumption, thereby allowing a better control of body energy
balance and insulin sensitivity (Wu et al., 2012). Hence, NRG-4
might be a key factor for the acquisition of BAT features in WAT
depots. In this regard, there is a positive correlation between the
expression of NRG-4 and beige markers such as the UCP1, UCP3,
and Transmembrane Protein 26 (TMEM26) in human WAT
(Comas et al., 2019). Studies in 3T3-L1 adipocytes show that the
administration of NRG-4 inhibits lipogenesis and promotes the
expression of markers of beige cells such as proton/amino acid
transporter 2 (PAT2) and cluster of differentiation 137 (CD137),
as well as markers of browning. such as UCP1 and PR domain
zinc finger protein 16 (PRDM16) (Zeng et al., 2018).

Genetically modified mouse models in which NRG-4
expression is blocked or enhanced have been generated with the
aim to study the effect of this protein on adipose tissue. Initially,
it was reported that NRG-4 null mice did not show alterations
in insulin sensitivity when treated with a control diet. However,
upon treatment with a high-fat diet (HFD), these mice became
more obese and showed increased plasma triacylglycerol levels
and higher fasting blood glucose and insulin levels (Wang et al.,
2014). In this regard, NRG-4 expression is reduced in WAT in
obesity, both in mouse models and humans (Wang et al., 2014),
and adiposity negatively correlates with NRG-4 expression in
WAT, but not in BAT (Chen et al., 2017). Moreover, studies
comparing a cohort of body mass index-matched individuals
reveals that NRG-4 mRNA levels in WAT are lower in those
individuals with impaired glucose tolerance or type 2 diabetes
than in those with normal glucose tolerance (Wang et al., 2014).
In contrast, NRG-4 transgenic mice show enhanced whole
body glucose metabolism and, consequently, reduced obesity
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and insulin resistance compared to control animals (Wang
et al., 2014; Chen et al., 2017). Mice with adipose-selective
overexpression of NRG-4, treated with a HFD, show greater
oxygen consumption and energy expenditure than control
mice (Chen et al., 2017). In the same study, microarray gene
expression analysis of WAT from wild-type (WT) and NRG-4
transgenic mice revealed the upregulation of a cluster of genes
related to mitochondrial function and energy expenditure
(Chen et al., 2017).

Interestingly, NRG-4 overexpression promotes a healthier
adipokine profile during obesity. Hence, NRG-4 and
adiponectin expression change in a similar manner, while
NRG-4 overexpression counteracts the expression of
proinflammatory cytokines involved in obesity-induced adipose
tissue inflammation, such as tumor necrosis factor α (TNFα)
and interleukin 1β (IL1β) (Wang et al., 2014; Chen et al., 2017).
In turn, the expression of NRG-4 is inhibited by treatment with
the inflammatory cytokine TNFα in 3T3-L1 adipocytes (Wang
et al., 2014; Chen et al., 2017) and its expression is recovered
by inhibition of NF-κB or activation of PPARγ in these cells
(Chen et al., 2017). At the same time, the expression of the
pro-inflammatory cytokines IL1β and TNFα is upregulated in
NRG-4-deficient adipose tissue in mice (Wang et al., 2014; Chen
et al., 2017). Therefore, the reduction in NRG-4 expression that
is observed in obesity could be a consequence of the low-grade
chronic inflammatory signaling present in WAT.

More recently, the role of NRG-4 in adipose tissue
vascularization was explored since the pathological adipose tissue
expansion that occurs in obesity is often accompanied by a
reduction in blood vessels, thereby leading to hypoxia (Corvera
and Gealekman, 2014). Hypoxia exacerbates the manifestation
of an inflammatory phenotype in adipocytes (Pasarica et al.,
2009, 2010). NRG-4 triggers endothelial angiogenic functions
and angiogenesis both in vitro and in vivo (Nugroho et al., 2018a).
NRG-4 -/- mice show a reduction in blood vessels in both BAT
and WAT, but unlike the aforementioned studies (Wang et al.,
2014; Chen et al., 2017) in the work of Nugroho et al., NRG-4 -/-
mice increase in body weight and adiposity even under a normal
diet, without altering food intake when compared with WT
mice. Moreover, NRG-4 -/- mice showed reduced adiponectin
expression in WAT, reduced insulin sensitivity, impaired glucose
tolerance, and a decrease in oxygen consumption without a
decline in physical activity (Nugroho et al., 2018a). In contrast,
transgenic mice overexpressing NRG-4 in adipocytes, under
the control of the promoter aP2, and treated with a HFD,
showed enhanced expression of vascular endothelial growth
factor (VEGF) (Chen et al., 2017) which is involved in the growth
of blood vessels and increased blood vessel density (Nugroho
et al., 2018b). As previously described, NRG-4 transgenic mice
subjected to a HFD show a decrease in the expression of
inflammatory markers such as IL1β, IL6, and TNFα in WAT.
In addition, transgenic mice have a higher insulin sensitivity
and glucose tolerance than WT mice (Nugroho et al., 2018b).
Recent data indicate that NRG-1 is a hypoxia-inducible factor
1α (HIF1α) suppressor in neurons (Yoo et al., 2019). Since
adipose tissue hypoxia is one of the first physiopathological
changes in WAT in obesity and leads to HIF1α and nuclear

factor-kappa B (NF-κB) activation (Sun et al., 2011), the role of
NRG-4 in inducing vascularization, thereby preventing hypoxia,
contributes to the maintenance of a healthy metabolic profile and
absence of inflammation.

NEUREGULIN-4 TARGETS ErbB4
RECEPTOR

NRG-4 specifically binds to ErbB4 receptor (Harari et al.,
1999). ErbB4 is highly expressed in the central nervous system
(Plowman et al., 1993a,b; Zhang et al., 1997) and also in
muscle, heart, pancreas, salivary gland, and lung (Plowman
et al., 1993a; Gassmann et al., 1995; Pinkas-Kramarski et al.,
1997). Interestingly, ErbB4 is one of the genes linked to obesity
and diabetes, as shown by studies of various International
Consortiums such as the ADIPOGen and GENIE Consortiums.
ErbB4 locates in caveolar microdomains in cardiomyocytes
(Zhao et al., 1999). Upon ligand binding, ErbB4 rapidly leaves this
site in what is considered a mechanism of receptor desensitization
in the continuous presence of the ligand (Zhao et al., 1999).
Besides, it has been shown that, after stimulation with NRG-
1, ErbB4 is recruited to the lipid raft fraction of neuronal
cell membranes. This recruitment plays a critical role in NRG
signaling and in the modulation of synaptic plasticity in the brain
(Ma et al., 2003). Caveolin-1 is an essential protein component
of caveolae but cellular organelles such as mitochondria, nuclei,
and endoplasmic reticuli are also rich in caveolins. Caveolin-
1 knockout mice have cholesterol-dependent mitochondrial
dysfunction and susceptibility to apoptosis (Bosch et al., 2011).
Caravia et al. (2015) reviewed the relation between caveolin-
1 and mitochondria and suggested that this protein acts as
a “warning sign” for mitochondria. Adipocytes are rich in
caveolae, and the presence of ErbB4 in caveolin-rich membranes
suggests that NRG-4 signaling on mitochondrial metabolism
is initiated in caveolae. Although ErbB4 expression decreases
during adipogenesis (Zeng et al., 2018), the relevance of ErbB4
has been examined in adipose tissue as NRG-4 has been observed
to protect adipocytes against the effects of a HFD (Zeng et al.,
2018). Since ErbB4 null mice die at mid-embryo life due to
impaired heart development, a heart-rescued ErbB4 deletion
mouse model was generated to analyze ErbB4 involvement
in the protective effect of NRG-4 against a medium-fat diet
(Zeng et al., 2018). Mice lacking ErbB4 developed obesity,
dyslipidemia, hepatic steatosis, hyperglycemia, hyperinsulinemia,
and insulin resistance.

Severe inflammation and M1 macrophage polarization occur
in both inguinal and epididymal WAT of mice with ErbB4
deletion (Zeng et al., 2018). Previous evidence of the anti-
inflammatory role of the NRG-4/ErbB4 axis came from studies
on inflammatory bowel diseases, such as Crohn’s disease and
ulcerative colitis (Frey et al., 2009; Bernard et al., 2012; McElroy
et al., 2014; Schumacher et al., 2017). NRG-4 expression is
suppressed in inflammatory bowel disease (Bernard et al., 2012),
whereas exogenous treatment with this protein blocks enterocyte
apoptosis in rodent models of intestinal inflammation and is
therefore protective (Bernard et al., 2012; McElroy et al., 2014). In
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this regard, in vivo analysis of macrophages from a dextran sulfate
sodium (DSS)-induced colitis model in C57Bl/6 mice revealed a
dramatic reduction in NRG-4 expression due to the underlying
colonic inflammation. Exogenous treatment with NRG-4
ameliorated this inflammation, hence reducing the expression
of pro-inflammatory cytokines. In contrast, ErbB4 is selectively
overexpressed by pro-inflammatory macrophages during
inflammation, and when this receptor is activated by NRG-4,
it promotes M1 macrophages death (Schumacher et al., 2017).
This deleterious effect on macrophages involves ErbB4 cleavage
upon NRG-4 binding and intracellular fragment translocation to
mitochondria, which reduces mitochondrial membrane potential
and triggers apoptosis (Schumacher et al., 2017).

These lines of evidence point to the potential of NRG-4 as an
efficient promoter of pro-inflammatory macrophage clearance.
This function is critical to prevent chronic inflammation since
defects in such clearance can lead to auto-inflammatory diseases
and may contribute to metabolic syndrome. In all, NRG-4
secreted by WAT may play a key role in preventing inflammation,
and the decrease in its expression observed in obesity may
exacerbate inflammation driven by infiltrated macrophages.

NEUREGULIN AS AN ENDOCRINE
FACTOR THAT PROTECTS AGAINST
INSULIN RESISTANCE

Neuregulins were classically considered as local growth factors.
However, NRG-1 has been detected in plasma, and its presence
has been associated with heart, lung, and neuronal diseases,
either as a consequence of the release of NRG-1 derived of the
tissue damage or due to the overexpression of such protective
factors. Therefore, NRG-1 in plasma has been examined as a
possible diagnostic marker for various diseases that can alter
tissue integrity and thus compromise cell survival. Plasma NRG-
1 has been linked to the severity of chronic heart failure (Ky
et al., 2009) and coronary artery disease (Geisberg et al., 2011) as
well as acute lung injury, correlating with inflammation (Finigan
et al., 2013). Regarding neuronal diseases, NRG-1 is found in the
plasma of Parkinson’s disease patients and its plasma levels are
associated with those of the cerebral spinal fluid (Hama et al.,
2015). NRG-1 is also detected in the plasma of Alzheimer’s disease
patients (Chang et al., 2016) and it has been proposed as a marker
of the onset of this condition.

New evidence supports the notion that the adipokine NRG-
4 has an endocrine role, exerting metabolic effects locally
in adipose tissues, as mentioned above, but also acting on
distal tissues with special incidence on the liver (Wang et al.,
2014; Ma et al., 2016). Studies using NRG-4 null mice as
well as adipose tissue-overexpressing NRG-4 mouse models
demonstrated that NRG-4 protects against HFD-induced insulin
resistance by attenuating hepatic de novo lipogenesis (Wang
et al., 2014; Ma et al., 2016) and activating mitochondrial
fatty acid oxidation and ketogenesis (Chen et al., 2017).
Others confirmed these results using a hydrodynamic gene
transfer method to overexpress NRG-4, which targets mainly
liver and also adipose tissues, in HFD-treated obese mice

(Ma et al., 2016). In that study, overexpression of hepatic NRG-4
ameliorated chronic inflammation, improved insulin resistance,
and prevented HFD-induced weight gain and fatty liver (Ma
et al., 2016). In another study, NRG-4-overexpressing adipose-
derived mesenchymal stem cells were transplanted intravenously
into HFD-fed mice (Wang W et al., 2019). NRG-4 overexpression
ameliorated insulin resistance by attenuating hepatic steatosis.
Hepatic NRG-4 signaling is a checkpoint for the progression
of steatosis to nonalcoholic steatohepatitis (NASH). NASH
is strongly associated with obesity and metabolic syndrome
and characterized by liver inflammation and fibrosis, which
can develop into hepatocellular carcinoma (HCC). NRG-4
null mice show accelerated liver injury, fibrosis, inflammation,
and cell death in an induced-NASH condition (Guo et al.,
2017). Transgenic overexpression of NRG-4 in adipose tissues
attenuates hepatocyte death by reducing phosphorylated levels
of cJun Kinase (JNK) (Guo et al., 2017), a kinase whose
signaling induces inflammation and promotes hepatocyte
apoptosis (Seki et al., 2012). These findings highlight the
relevance of NRG-4 in sustaining insulin sensitivity by targeting
liver metabolism.

ErbB4 expression is higher in skeletal muscle than in
liver (Plowman et al., 1993a,b), thereby suggesting potential
metabolic effects of NRG in the former. In this regard, the
intraperitoneal administration of recombinant NRG, Hrg, before
a glucose tolerance test, leads to a rapid increase in glucose
utilization in liver, but not in skeletal muscle, and a significant
reduction in glycemia both in control and type 2 diabetic
rats (Lopez-Soldado et al., 2016). The lack of effects of Hrg
may be explained by the difficulty of NRG to access ErbB4 in
muscle. In skeletal muscle, ErbB4 locates in the neuromuscular
junction (Zhu et al., 1995) and in the invaginations of
surface membranes, known as transverse tubules, T-tubules,
which are rich in caveolin-3 (Ozcelik et al., 2002; Ueda
et al., 2005). Some authors reported that T-tubules open
during muscle contraction, otherwise narrowly constraining
the arrival of molecules (Wang et al., 1996); however, this
is still controversial (Ploug et al., 1998). During contraction,
muscle releases NRG-1, which acts locally, through ErbB4,
to increase glucose uptake and adapt muscle metabolism to
energy requirements (Canto et al., 2006). The addition of
external recombinant NRG does not improve the effects of
the endogenous secreted NRG in contracting muscle (Canto
et al., 2006) or in resting muscle where its effect on glucose
uptake is scarce (Suarez et al., 2001). However, the access
of circulating NRG to the liver may be favored by this
organ, being highly blood irrigated with fenestrated blood
vessels, and although hepatocytes express lower levels of ErbB4
than muscle fibers, they may be enough to mediate the
constitutive actions of NRG.

With regard to the role of NRG-4 as an endocrine factor,
the plasma levels of NRG-4 and the possible association with
obesity, type 2 diabetes and cardiovascular diseases-related to
metabolic syndrome have been examined in humans (Dai et al.,
2015; Cai et al., 2016; Jiang et al., 2016; Kang et al., 2016; Yan
et al., 2017, 2018; Tian et al., 2019; Wang R et al., 2019). However,
this relationship is still controversial. Plasma NRG-4 has been
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FIGURE 1 | Protective actions of neuregulin on different tissues. Neuregulin, acting locally or as an endocrine factor, protects against metabolic stress and
inflammation in a manner that is tightly linked to mitochondria function. Schematic art pieces used in this figure were provided by Servier Medical Art
(http://servier.com/Powerpoint-image-bank). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

reported to be decreased in obese children (Wang R et al., 2019)
and adults (Cai et al., 2016) and in patients newly diagnosed
with type 2 diabetes mellitus (Yan et al., 2017, 2018) while it
is inversely associated with subclinical cardiovascular disease in
obese adults (Jiang et al., 2016) and with the severity of coronary
artery disease (Tian et al., 2019). In contrast, other authors
described no changes in serum NRG-4 in adults with NASH
disease (Dai et al., 2015) and even increases in newly diagnosed
type 2 diabetic patients (Kang et al., 2016). All these studies were
done exclusively on samples obtained from Asian populations.

Further research covering a wider range of ethnicity and greater
number of samples is required to clarify this question.

Given the capacity of NRG to reverse alterations associated
with metabolic syndrome and cardiovascular diseases, some
studies have addressed the potential of human recombinant
NRG-1 as a therapeutic strategy (Gao et al., 2010; Jabbour
et al., 2011). In this regard, long-term treatments involving
a high dose of this recombinant protein were required due
to the short half-life of the protein. In order to stabilize
recombinant NRG, a fusion protein containing the EGF-like
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domain of human NRG-1 and the Fc domain of human IgG1 was
generated (Zhang et al., 2018). Intraperitoneal administration of
the NRG-1 fusion protein to HFD-induced obese mice led to
a lower expression of gluconeogenic enzymes in liver, thereby
resulting in lower blood glucose and thus improved insulin
sensitivity. Interestingly, the administration of NRG-1 fusion
protein to obese mice induced the depolarization of hypothalamic
POMC neurons and increased their firing rate, hence stimulating
satiety and thus a reduction in food intake (Zhang et al.,
2018). The administration of this fusion protein also increased
the expression of the hepatokine fibroblast growth factor 21
(FGF21), which is involved in whole body energy homeostasis
(Owen et al., 2015; Zhang et al., 2018), although NRG-1 effects
were independent of the increase in FGF21 (Zhang et al., 2018).

PERSPECTIVES ON THE ROLE OF
NEUREGULIN AS AN
ANTI-INFLAMMATORY FACTOR

The studies reviewed indicate that NRG plays several key roles.
It maintains a healthy cellular status in multiple tissues, it
safeguards mitochondrial homeostasis, and it prevents alterations
driven by inflammation (Figure 1). The role of NRG in
mitochondrial activity may be related to its anti-inflammatory
effects. Indeed, NRG may regulate metabolic tissue inflammation
by modulating mitochondrial function. In this regard, there
is increasing evidence that mitochondrial dysfunction is the
primary cause of many auto-inflammatory conditions (Dela
Cruz and Kang, 2018). Mitochondria are a major source
of damage-associated molecular patterns (DAMPS) such as
mitochondrial DNA (mtDNA) (Rodriguez-Nuevo et al., 2018)
and mitochondrial reactive oxygen species (mROS) (Rimessi
et al., 2016). Mitochondria is one of the primary sources of
cellular ROS, which is produced at various sites, but especially
by complex I and complex III activities (Quinlan et al., 2013).
Oxidative stress can initiate inflammation through the NF-
κB pathway, thereby increasing the expression of several pro-
inflammatory cytokines (Morgan and Liu, 2011). In addition,
ROS can activate a leucine-rich repeat-containing protein
(NLRP) family member, namely NLRP3, at the inflammasome

to promote IL1β cleavage and pyroptosis. In turn, NLRP3 can
induce ROS production, thereby further increasing inflammation
(Heid et al., 2013). This positive inflammatory feedback loop,
caused by oxidative stress, feeds many inflammatory alterations
that are involved in the development of metabolic syndrome
and type II diabetes. The treatment of inflammation, focusing
on mitochondrial homeostasis, emerges as a novel therapeutic
field. In this regard, NRG may prevent this inflammatory loop by
blocking NF-κB activation and promoting macrophage clearance,
thereby improving insulin sensitivity.

In summary, given the protective role of NRG against
insults that impair cell energy stability and thus compromise
cell survival, this growth factor emerges as a potential drug
candidate for the treatment of multiple pathologies, particularly
those involving inflammatory and metabolic dysregulation such
as obesity and type 2 diabetes. Nowadays, it is ahead of
our knowledge, and future studies will have to delineate
the conditions in which neuregulin could be useful for
therapeutic application.
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