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Fiber type composition, organization, and distribution are key elements in muscle

functioning. These properties can be modified by intrinsic and/or extrinsic factors, such

as undernutrition and injuries. Currently, there is no methodology to quantitatively analyze

such modifications. On one hand, we propose a fractal approach to determine fiber type

organization, using the fractal correlation method in software Fractalyse. On the other

hand, we applied the kernel methodology from machine learning to build radial-basis

functions for the spatial distribution of fibers (distribution functions), by dividing into

square cells a two-dimensional binary image for the spatial distribution of fibers from

a muscle fascicle and mounting on each cell a radial-basis function in such a way that

the sum of all cell functions creates a smooth version of the fiber histogram on the cell

grid. The distribution functions thus created belong in a reproducing kernel Hilbert space

which permits us to regard them as vectors and measure distances and angles between

them. In the present study, we analyze fiber type organization and distribution in fascicles

(F2, F3, F4, and F5) of the extensor digitorum longus muscle (EDLm) from control and

undernourished male rats. Fibers were classified according to the ATPase activity in

slow, intermediate, and fast. Then, (x, y) coordinates of fibers were used to build binary

images and distribution functions for each fiber type and both conditions. The fractal

organization analysis showed that fast and intermediate fibers, from both groups, had

a fractal organization within the four fascicles, i.e., the fiber assembly is distributed in

clusters. We also show that chronic undernutrition altered the organization of fast fibers

in the F3, although it still is considered a fractal organization. Distribution function analysis

showed that each fiber type (slow, intermediate, and fast) has a unique distribution

within the fascicles, in both conditions. However, chronic undernutrition modified the

intra-fascicular fiber type distributions, except in the F2. Altogether, these results showed
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that the methodology herein proposed allows for analyzing fiber type organization and

distribution modifications. On the other side, we show that chronic undernutrition alters

not only the fiber type composition but also the organization and distribution, which could

affect the muscle functioning, and ultimately, its behavior (e.g., locomotion).

Keywords: fiber type, chronic undernutrition, fractal analysis, distribution functions, machine learning, ATPase,

skeletal muscle

1. INTRODUCTION

Nature is ordered at all levels, from microscopic (atomic,
molecular, and cellular) to macroscopic (individual and
population levels), but when a disaster or disease occurs at
any level such order changes. The application of mathematics
and computer science in anatomical and/or physiological
problems has allowed a better and deeper understanding of the
fundamental processes of living beings. Cells, tissues, and organs
in vertebrates present an organization which is mathematically
similar to that observed in other biological systems (e.g.,
ecosystems) and manifests self-similarity (Mandelbrot, 1983). It
is now possible to study the organization of particular biological
systems (such as muscles) using fractal tools which have
become essential in the work of physicists, chemists, biologists,
physiologists, economists, among others. Such tools have allowed
researches to reformulate old problems into novel terms, and
address complex problems in simplified forms (Liebovitch et al.,
1987; Jelinek and Fernandez, 1998; Reese et al., 2012; Hernández
and Menéndez-Conde, 2013).

The skeletal muscle is a heterogeneous tissue composed
of various fiber types, which can be classified according to
their metabolic and contractile characteristics as glycolytic
and oxidative or slow, intermediate, and fast fibers,
respectively (Ariano et al., 1973). The organization of muscle
fibers is relevant to maintain the homeostasis and muscle
functioning. This organization can be altered by disease,
inadequate nutrition, exercise or injury, modifying their
contractile and structural properties. Yet we found practically
no studies oriented to investigate the organization of fiber types
in skeletal muscles and how natural or pathological conditions
can modify it, specifically in the case of the extensor digitorum
longus muscle (EDLm), which is composed in four fascicles (F2,
F3, F4, and F5) with different fiber composition, metabolism,
and size (Balice-Gordon and Thompson, 1988; Kissane et al.,
2016; Vázquez-Mendoza et al., 2017). This particular muscle
participates in the extension of toes (each fascicle extends a single
toe, the F2 extends toe 2, the F3 extends toe 3, and so on) and in
the dorsiflexion of the ankle in the rat.

Recently, it has been illustrated elsewhere that chronic
undernutrition exerts a differential effect on the relative fiber type
composition in the EDLm fascicles (Vázquez-Mendoza et al.,
2017). Particularly, it was observed that the third fascicle (F3)
was more affected than the others, being the sequential order
of effects as follows: F3>F5>F4=F2. In that study, the authors
suggested that those changes in the relative composition of fiber
types in the EDLm fascicles could induce modifications in the
intra-fascicle fibers organization. One way to analyze this is by

mathematical methods such as fractal estimation analysis, which
can determine whether a fiber phenotype group is organized in
clusters or spread randomly over the whole muscle or fascicle.

Besides the organization, fiber types distribution within a
muscle is crucial to its functioning (Burkholder et al., 1994).
The visualization method that we developed consists in the
application of the kernel methodology from machine learning to
build distribution functions for the spatial localization of fiber
types. In brief, on the reconstructed microphotograph of the
stained section, we superimposed a square grid of size N and
built a histogram for each fiber type. For each cell, we built a
Gaussian kernel function that is mainly supported therein, by
taking into account the number and localization of fiber types
within the cell. The individual cell functions are then linearly
superimposed to obtain a function whose graph resembles a
smoothing of the histogram of the fiber type under study, we call
it the distribution function (DF) of the fiber type shown in the
histological image. DFs obtained in this way belong in a (finite-
dimensional) reproducing kernel Hilbert space, which in effect
enables us to treat each one of them (and thus each image) as
vectors and thus measure distance and angle between any pair
of them. We then use distance and angle measurements (which
we call dissimilarity quantifiers) to differentiate data images from
one another and in turn quantify the effects of undernutrition in
EDLm fiber content.

In this study, we aimed to develop a methodology to evaluate
changes in fiber type organization and spatial distribution due
to alterations provoked by traumatic processes such as spinal
cord injury, motor nerve damage, multiparity, or by metabolic
diseases (undernutrition or obesity), among others. To this
end, we applied fractal estimation analysis to analyze fiber
type organization and we were able to make a quantitative
analysis of changes in the structure of muscle fibers due to
chronic undernutrition. On the other hand, we applied the
kernel methodology from machine learning to build distribution
functions for the spatial localization of fiber types and along
with the dissimilarity quantifiers we were able to assess how
chronic undernutrition alter the fiber type distribution within the
EDLm fascicles.

2. MATERIALS AND METHODS

All experiments were performed in accordance with the Guide
for the Care and Use of Laboratory Animals (National Research
Council, 2010; National Institutes of Health, Bethesda, MD, USA;
Animal Welfare Assurance #A5036-01). The animal protocols
were approved by the Institutional Bioethical Committee for
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the Care and Handling of Laboratory Animals (UPEAL-Protocol
013−02, CINVESTAV).

2.1. Animals
Chronic undernutrition protocol. We used nulliparous female
Wistar rats (257.4 ± 16.3 g body weight), which were randomly
allocated in two groups: control (C, n= 16) and undernourished
(U, n = 18). Control group had free access to commercial food
(Formulab 5008; LabDiet, Framingham, MA, USA); while the
undernourished group was fed with 50% of the mean food intake
given to control animals, both groups had access to water ad
libitum. Two weeks after, female rats of both groups (C and
U) were put together with a male for 1 week in the same cage
to ensure mating and the consecutive pregnancy. After that,
males were removed. The day females gave birth litters were
adjusted to nine pups: five males and four females. During
gestation, birth, and lactation all rats remained on the same
feeding protocol to which they were subjected from the beginning
(C or U). Each mother and her offspring were housed in large
acrylic cages (43 × 53 × 20 cm). After weaning (postnatal
day 21), pups remained on the same feeding protocol as their
mothers (C or U) until the experimental proceeding. Later,
male rats were housed individually in acrylic cages (32 × 47
× 20 cm) under the same conditions of light/dark cycle (12/12
h) and temperature (22–24◦C). No supplementary mineral,
trace elements or vitamins were added to the food supply of
undernourished animals. Further details of these protocols can be
found in Ruiz-Rosado et al. (2013) and Vázquez-Mendoza et al.
(2017).

At 35 postnatal days, we randomly selected 6 males coming
from each experimental group (C, n = 6; and U, n =
6), which weighed and anesthetized with urethane (1.6 g/kg
of body weight). The EDL muscles were quickly removed
and weighed (more details Vázquez-Mendoza et al., 2017).
Subsequently, the four fascicles of each muscle (F2 to F5)
were carefully separated and their length measured. After that,
fascicles were immersed in 2−methylbutane, cooled to near
freezing point with liquid nitrogen and stored at −80◦C until
their processing. At the end of tissue extraction, the animals
were euthanized using an overdose of anesthetic (urethane).
Subsequently, the middle segment of each fascicle was sectioned
and mounted on a specimen holder in a cryoprotectant
solution (Tissue−Tekr O.C.T Compound, Sakurar Finetek,
Torrance, Ca). Serial transverse sections (10 µm thick) of
each specimen tissue were obtained by means of a cryostat
at −25◦C (CM−1520; Leica Biosystems, Nussloch, Germany).
The sections were subsequently mounted on glass coverslips
for staining.

2.2. Histoenzymatic Analysis
EDLm fascicle sections were stained with the myofibrillar
alkaline ATPase activity technique (pH = 9.4, modified
from Guth and Samaha, 1970) to identify the fast, intermediate
and slow fiber types. In brief, themuscle sections were submerged
20 min in a pre-incubation solution (0.01 M Tris base and
0.018 M CaCl2, pH 10.3), then they were washed three times
for 5 min with deionized water and subsequently incubated

at 37◦C for 60 min in the incubation solution (1.5% w/v of
adenosine-5′-triphosphate in pre-incubation solution, pH 9.4).
After incubation, slides were washed for 3 min with 0.2 M
CaCl2 and transferred to 2% w/v CoCl2 solution for another 5
min. Subsequently, they were washed ten times with deionized
water and finally transferred to 10% v/v ammonium sulfide for 3
min. Stained sections were washed, dehydrated with ascending
alcohol solutions and mounted with glycerogel and coverslips.
Photomicrographs of each muscle fascicle were taken by a
digital camera (AxioCam MRc, Zeiss, Germany) mounted on a
microscope (Olympus CX31, NY, US). The whole muscle fascicle
was reconstructed with the photomicrographs using Photoshop
CS4. After that, the spatial position (x, y coordinates) of each
and the total number of the different fiber types was determined
in control and undernourished muscles using ImageJ (Rasband,
2011). According to the alkaline ATPase technique, the fibers
were identified as light = slow, Type I; gray = fast, Type IIb and
dark= intermediate, Type IIa/IId (see section 7).

2.3. Experiments With Synthetic Data
In order to determine if the dissimilarity quantifiers (distance
and angle) can differentiate between highly similar distribution,
we generated synthetic data which we considered to be
challenging to the quantifiers. Below is describe in detail how
these distribution were constructed. This was implemented in
a MatLab script available in https://github.com/GonzaloCin/
DistributionFunctions.

2.3.1. Data Generation
Our synthetic data consists of four collections of randomly
generated points and with very pronounced tendencies toward
spreading and/or clustering. Each set has a geometric shape
which we think should be challenging for the algorithm to
discern one set from the another. The shapes are: a ball
(uniform spread in all directions with no tendency toward
clustering), a ring (uniform spread in all directions, with
a pronounced tendency to cluster far from and uniformly
around the global centroid of the set), a set in the shape
of a sum sign (with pronounced spreading and clustering
tendencies along the coordinate axes), a cross-shaped data
set (same as the sum-shaped set but with a 45-degree
rotation angle).

To generate each data set we first generated Q points (x, y) on
a square [−L/2, L/2]×[−L/2, L/2], using a uniform distribution,
then points were selected according to the following criteria:

Ball: only points satisfying x2 + y2 ≤ L2/4 were chosen to form
part of the data set.
Ring: only points satisfying (L2/2 − δ)2 ≤ x2 + y2 ≤ L2/4 were
chosen.
Sum sign: only points satisfying−δ/2 ≤ x ≤ δ/2 or −δ/2 ≤ y ≤
δ/2.
Cross: only points (ξ , η) satisfying −δ/2 ≤ ξ ≤ δ/2 or −δ/2 ≤
η ≤ δ/2 were chosen and then rotated a 45-degree angle: x =
(ξ − η)/

√
2 and y = (ξ + η)/

√
2.

We chose δ = L/9, and Q = 500, 1,000, 2,000, 3,000, 4,000
(Figure 1). For each value Q a collection of four data sets was
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FIGURE 1 | Artificial data generated choosing δ =, L =, and Q = 500, 1,000, 2,000, 3,000, 4,000. For each value of Q a collection of four data sets was generated

(one for every shape: ball, ring, sum, cross) and for every one of them a distribution function was built. More details of experiments with synthetic data in section 2.3.

Note that by increasing the number of points (Q), the shape of figures is more defined and, in dissimilarity quantifiers, induce an increase of distance, although angle is

not affected, see text in section 7.2.

then generated (ball, ring, sum, cross) and for every one of
them a distribution function was built using the methodology
in 4. For every pair of distributions in each collection, distances
and angles were calculated using formulae (S19) and (S20) from
Supplementary Material, respectively. The results are reported
in 7.2.

3. FRACTAL CORRELATION INTEGRAL
METHOD

To determine the fractal structure of fiber types in fascicles
we used the Fractalyse software (Thomas et al., 2008) and
binary images constructed. This freeware program has been

Frontiers in Physiology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 777

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Rodriguez-Torres et al. Chronic Undernutrition Affects Muscle Fibers

developed by Frankhauser and colleagues and can be downloaded
on the website http://www.fractalyse.org/. The original version
of this software has been developed in the frame of the
French research program “Ville émergente,” financed by the
PUCA (Plan Urbanisme Construction Architecture). Correlation
analysis turned out to be themost reliable method as it introduces
fewer artifacts compared to others, such as grid and dilation
analysis. In fractal “correlation analysis,” each fiber type pixel is
surrounded by a small square window of size ε. The number of
fibers pixels within each window is then counted. This allows
the mean number of pair correlations per window N(ε) to be
computed. This step is repeated for windows of increasing size. It
results in a series of points that can be represented on a Cartesian
graph where the X−axis refers to the size of the window ε = (2i+
1) (i being the iteration step), and the Y − axis refers to the mean
number of points per window. The next step consists in fitting
this empirical curve to a theoretical curve that corresponds to a
fractal law, i.e., a power law that links the number of correlations
N(ε) to the size of the window ε:

N = εD (1)

The exponent D is the fractal dimension, or in this case,
the correlation dimension. However, real-world patterns
cannot strictly follow a fractal law. Therefore, it is useful
to introduce a generalized fractal law, which contains two
additional parameters:

N = aεD + c (2)

The parameter a is called the “pre-form factor.” It is giving
a synthetic indication of local deviations from the estimated
fractal law (Frankhauser, 1993, 1998; Thomas et al., 2007). For
a mathematical fractal structure, is to be equal to 1 (Gouyet,
1996). Experience shows that when it goes 4 or less than 0.1,
a fractal pattern is not confirmed (see Thomas et al., 2007). In
real-world patterns, fractal behavior may change across scales.
Changes often occur within rather small values of ε, i.e., for small
distances, often corresponding to the clusters of fibers of the same
type. In order to avoid local effects and hence wrong estimations,
it is useful to introduce an additional parameter c that allows
the correct estimation of D and a (Frankhauser, 1998; Thomas
et al., 2008). The software Fractalyze was used to estimate the
parameters mentioned above; it is mainly dedicated in this paper
to the fractal analysis of fibers types and scaled in such a way
that the pixel size is really the counting unit for ε. This ensures
that the numbers N(ε) are correctly counted in spatial structures
like that illustrated further in this paper. Sensitivity analyses were
performed to explore the role and the physiological meaning of
a when estimating fractal dimensions for EDLm fibers under
different conditions. The results were compared with a simplified
version of the generalized law (2), where a is forced to one:

N = εD + c (3)

D is often estimated by using a double logarithmic representation
of the power law. Nonlinear regression was used to estimate
the parameters that best fit the empirical curve since this avoids
implicit assumptions about local deviations from the fractal law.
Noise is assumed to be an independent additional effect. The
fractal dimension D of fibers types can take any value between
0 and 2. When D = 2, the pattern of a fiber fiber type of EDLm
is uniform, following a one-scale logic (Euclidian forms); D = 0
corresponds to a pattern made up of a single point (e.g., one or
few muscle fibers); and finally, when D is between 1 and 2, the
elements distributed in clusters over the space. Fractal dimension
can be considered as a measure of an object’s ability to fill the
space in which it resides.
The quality of the estimation is measured by computing the ratio:

cov(N(est),N(obs))
√

var
(

N(est)
)

var(N(obs)
(4)

WhereN(est ) corresponds to the set of estimated values andN(obs)

to the observed values. We here call this ratio R2∗ by analogy with
the determination coefficient. For values close to 1, N(est)(ε) and
N(obs)(ε) curves tend to be equal, which means that the fractal
model fits well to the observed data. If the fit between the two
curves (empirical and estimated) is poor, we can conclude either
that the pattern is not fractal or that it is multifractal (e.g., Tannier
and Pumain, 2005). In our case, all analyzed patterns lead to R2∗

values >0.99.

4. CONSTRUCTION OF DISTRIBUTION
FUNCTIONS

4.1. Overview
The work discussed in this section is motivated by the old
problem of extracting information about an underlying
phenomenon from a collection of direct or indirect
measurements or observations of the phenomenon itself, in
order to estimate a functional dependency. Concrete examples of
this type of problem are, determining which gene is responsible
for a certain disease (microarray data classification; Cristianini
and Shawe-Taylor, 2000; Schölkopf et al., 2004), and face and
handwriting recognition (pattern classification; Duda et al., 2012;
Devroye et al., 2013). The theory developed around this type of
problems is nowadays known as Learning Theory (Vapnik, 1998;
Cucker and Zhou, 2007) and its application was boosted thanks
to the accessibility of modern computers capable of performing
fast calculations.

Put plainly, the exact problem we are concerned here with
is that of fitting a spatial distribution function to a finite set of
points on the plane. The reader can think that the coordinates
(x, y) of those points on the plane, give the location of muscle
fibers in the histological image of a transverse muscle section.
For distribution function, we will understand a smoothing of the
histogram on the plane for the centered data, built on a square
grid of given size N. N is a parameter specified by the user. If
8 : R

2 → R is the distribution function of a set of points, 8(z)
gives the approximate count of points per unit square length at
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the location z = (x, y) on the plane. Our distribution functions
will be linear superpositions of Gaussian kernel functions, one
kernel function per each square of the grid. This section we will
elaborate on it.

Gaussian kernel functions are a type of radial basis functions
(RBFs). Aside from their ample use in classification problems in
Bioinformatics, RBFs are also used in a variety of scenarios, such
as approximation and interpolation problems (cf. Buhmann,
2003), or in the construction of Lyapunov functions for the
determination of the stability of fixed points of certain dynamical
systems (cf. Giesl, 2007). The RBF construction method we
apply uses the so-called “kernel trick,” which consists in
taking advantage of properties of kernel functions to deal with
the computational problem that entails high-dimensional data
(which is not the case of our data), and to guarantee that
the distribution functions so built will belong in an inner-
product space which we denote by LN , and is the precursor
of a Reproducing-Kernel Hilbert Space (the latter being the
completion of the former under the norm induced by the inner
product (cf. Schölkopf et al., 2004; Wendland, 2005). Working
within an inner-product space will allow us to treat functions
as vectors and thus measure distance and angle between two
functions, we will then use these measurements to make a
quantitative assessment of how distinct distribution functions
associated to two fiber types are, which will directly translate
into a semi-quantitative assessment of how two fiber types with
distinct metabolic and myosin ATPase activities distribute across
a muscle section.

Below we limit ourselves to presenting the methodology by
which distribution functions are built for a single collection
of finitely many points. The set of points is thought of as
representing the spatial localization of fiber centroids in a given
histological image of a muscle fascicle. In order to measure
distance and angle between two functions (and thus between two
collections of points or images), it is necessary to construct all
distribution functions to be compared, simultaneously. The latter
can be done by slightly tweaking the construction we present first.

In the next subsection, we briefly describe the construction
of distribution functions. For a detail explanation on the
mathematical framework of the construction and in what sense
it is possible to speak of distance and angle between two
distribution functions (see Supplementary Material).

Figure 2 shows a schematic representation of how distribution
functions are constructed from the (x, y) coordinates of muscle
fiber type. This method has already been implemented in a
MatLab script for the construction of distribution function for a
single and for a batch of images, which can be downloaded from
https://github.com/GonzaloCin/DistributionFunctions.

4.2. Distribution Function for a Single
Image
Let {z̃1, . . . , z̃ν} ⊂ R

2, z̃j = (x̃j, ỹj), be a collection of finitely
many coordinate pairs of points within a sample image, each one
of which represents a muscle fiber of the same type as all other
fibers in the collection. Let z̄ = ν−1

∑ν
j=1 z̃j be the centroid of

the collection and S = {z1, . . . , zν} with zj = z̃j − z̄ = (xj, yj)

be the centered collection of coordinate pairs. S is our data set
and it is contained within a compact box B = [a,A] × [b,B],
where a = −ε + min xj and A = ε + max xj, with ε a small,
positive, chosen number (b and B defined similarly). B may as
well be determined by the dimensions of the sample image, thus
skipping the “cropping” just described.

Choose a fixed positive integer N and consider uniform
partitions P = {a0, . . . , aN} and Q = {b0, . . . , bN} of [a,A] and
[b,B], respectively. So ak = a+k(A−a)/N (bk defined similarly).
P and Q define a uniform rectangular grid over B, composed of
N2 cells, Cij = [ai−1, ai] × [bj−1, bj]. We next describe a method
to mount a bivariate Gaussian function on each cell Cij. Such
functions are then superimposed linearly so that the graph of
the combined function will look like a smoothed version of the
histogram defined on the grid.

Consider a cellCij and let Sij be the subcollection of data points
within it, Sij = {zk ∈ Cij} ⊆ S. Let |Sij| be the cardinality of Sij
and z̄ij = |Sij|−1

∑

Sij
zk be the centroid of the points in Sij. The

sample covariance matrix of points in Cij is defined as (cf. Duda
et al., 2012, p. 90),

6ij = (|Sij| − 1)−1
∑

Sij

(zk − z̄ij)(zk − z̄ij)t . (5)

Assume for the moment 6ij is invertible (the case when 6ij is
singular is discussed at the end of this section). The bivariate
Gaussian function referred to above, also called Gaussian kernel
function (see next section), is defined as

φij(z) = exp
(

− 2−1(z − z̄ij)t6
−1
ij (z − z̄ij)

)

, (6)

We now associate to the collection S the following distribution
function, where Rij = |Sij|,

8(z) =
N

∑

i=1

N
∑

j=1

Rijφij(z) . (7)

8 is the main object of this section. We now mention three
situations that must be sorted out when constructing 8.

(i) If Cij is empty, we set φij = 0 (indentically zero function).
(ii) If Cij contains only one point zp = (xp, yp), we compute

its distance δ = max{aj − xp, bj − xp} to the boundary of
Cij, redefine 6ij = (δ/3)2Id2 where Id2 is the 2 × 2 identity
matrix, and construct φij as in Equation (6), that is φij(z) =
exp(−9 ·2−1δ−2‖z−zp‖2) (‖ ·‖ denotes Euclidean distance).
The unlikely case in which Cij contains only one point which
lies exactly on its boundary, can be treated in several ways.
One way is to associate that point to the adjacent cell of
shared boundary, assuming such cell has at least one other
point. Another way is to arbitrarily set δ equal to a very small
predefined positive number, so that the contribution of φij to
the sum 8 is highly localized for its double contribution to
the sum in Equation (7) to be significant. We never incurred
in this scenario in our experiments.
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FIGURE 2 | Schematic representation of the sequential steps used to create the muscle fiber type distribution and calculate dissimilarity quantifiers by using the

distribution method implemented in MatLab. More details of the construction of distribution functions are indicated in section 4.

(iii) If6ij is singular or nearly so (its determinant is smaller than a
pre-established number ε0 > 0), we apply the following four
steps:

(a) let λ1 = maxSij ‖zk − z̄ij‖2, and λ2 = λ1/9.

(b) pick any zk in Cij and define u1 = (zk − z̄ij)‖zk − z̄ij‖−1,
then if u1 = (v,w) let u2 = (−w, v) so that ut

1u2 = 0.

(c) LetM = [u1 u2] be a 2 × 2 matrix with columns u1 and u2,
in that order. and 3 = diag(λ1, λ2) be a diagonal matrix.
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(d) Redefine 6ij = M3Mt and construct φij as in (6).

In the next subsection, we establish that the function 8 in (7)
belongs in an inner-product space.

For more details on the method of construction (see
Supplementary Material).

4.3. Distribution Functions for a Batch of
Images
In the previous subsection, we described a methodology to fit one
distribution function to one single image. In this section, we show
that with a slight modification the methodology can be applied to
fit a distribution function for every image in a finite collection
of r distinct images, in tandem, for cross comparison. The
meaning of having a set of r images depends on the context. For
instance, if the points zk represent the location of muscle fibers,
every image could represent muscle fibers of one of r different
types. Once a distribution function has been obtained for every
image, we wish to calculate distance and angle between pairs of
them and assess if those measurements reflect the classification
independently established.

The trick now is tomake sure that the distribution functions of
the images we want to compare, belong in the same inner-product
space LN . In order to achieve that we only need to slightly change
our definition of the functions φij in (6). More precisely, we need
to modify the definition of the covariance matrix 6ij in (5) as we
now describe.

Similarly, as in the previous section, we divide every image
into N × N cells. Let Cb

ij denote cell (i, j) of image b and zb
k
the

kth point in that image. Let Sbij = {zb
k
∈ Cb

ij} (set of points of
image b in its cell Cb

ij), and let |Sbij| represent the number of points

in Cb
ij. We define the global sample covariance matrix for cell (i, j)

as follows:

6ij = (Sij − 1)−1
r

∑

b=1

∑

Sbij

(zbk − z̄ij)(zbk − z̄ij)t , (8)

where Sij =
∑r

b=1 |Sbij| and z̄ij is the global centroid for cell (i, j),

z̄ij = S
−1
ij

r
∑

b=1

∑

Sbij

zbk . (9)

Thus, if

φb
ij(z) = exp(2−1(z − z̄bij)

t6−1
ij (z − z̄bij)) , (10)

then

8b(z) =
N

∑

i=1

N
∑

j=1

Rbijφ
b
ij(z) (11)

is the distribution function for sample image b, with Rbij = |Sbij|.
The same observation as in equation (11) may be applied in this
case for an alternate choice for the coefficients Rij. We can also
adapt cases (i), (ii), and (iii) in the first section to deal with the
scenarios in which 6−1 is singular or nearly so.

5. DATA ANALYSIS

In this work, we used the data obtained in a previous study
from our group (Vázquez-Mendoza et al., 2017) corresponding
to slow, intermediate, and fast fibers in the EDLm fascicles of
control and undernourished young rats (35 days old).

5.1. Fiber Type Fractal Organization
In order to assess the fractal organization of the fiber types in
the fascicles of the EDLm, we constructed binary images using
the (x, y) coordinates of each fiber type with a MatLab program
developed in our laboratory. These images were then analyzed
using the fractal correlation method in Fractalyse, obtaining the
fractal dimension (D), pre-form factor (a), and parameter c. From
this analysis, we excluded the slow fibers because of their small
number in muscle sections.

5.2. Fiber Type Distribution Functions
Intra-fascicle distribution of fiber types was determined applying
the method described in the previous section (4), implemented
in a MatLab script. In brief, this method requires the (x, y)
coordinates of each fiber type, that are used to create a binary
image, which is divided into N × N cells. In our case, we used an
N = 11 because in a pilot study we observed that this number
of cells allowed us to have cells with a few, many and a large
number of fibers. This is relevant due to it lets us visualize the
distribution of fibers in an optimal resolution, showing how the
fibers form groups and how these groups are distributed within
the muscle. Then in each cell, the number of fibers is counted
in order to calculate the estimator covariance matrix and the
centroid. Subsequently, a Gaussian function is built for each cell.
Next, the distribution function of the fiber type is created by
the lineal superposition of all Gaussian functions. Finally, the
distribution function of each fiber type are merged to visualize
them in a single image (Figure 2). Also, the (x, y) coordinates are
used to calculate the dissimilarity quantifiers, distance (D), and
angle (θ), which allows to compare two distribution functions.
On one hand, the closer the distance to zero, the more similar
are the distributions. On the other hand, angles < 45◦ indicates
similar distributions, whereas angles > 45◦ indicates dissimilar
distributions (Figure 2).

In order to determine differences between experimental
condition (control and undernourished), we calculated the
dissimilarity quantifiers for each pair of distributions within a
fascicle (i.e., slow vs. fast, slow vs. intermediate, and intermediate
vs. fast), which we called intra-fascicular fiber type distributions.
Also, we calculated the dissimilarity quantifiers for synthetic data
comparing between shapes (ring vs. ball, ring vs. cross, ring vs.
sum, ball vs. cross, ball vs. sum, and cross vs. sum) and all
quantities of points (500, 1,000, 2,000, 3,000, and 4,000 points).

6. STATISTICAL ANALYSIS

Dissimilarity quantifiers of fiber types distribution, as well as
the fractal dimension (D), a, and c indexes between control
and undernourished EDLm fascicles, were analyzed performing
unpaired Student’s t-test or Mann–Whitney test, depending on
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its normality, evaluated with the Kolmogorov–Smirnov test.
Dissimilarity quantifiers of synthetic data comparisons were
analyzed using Person’s correlation. Data analysis was performed
in GraphPad Prism (v.6.00, GraphPad Sofware, Ca., USA).
Significant differences were considered at P ≤ 0.05. Data are
showed as mean± S.E.M.

7. RESULTS

The data obtained in this study was partially reported in
Vázquez-Mendoza et al. (2017), where we found that chronic
undernutrition reduces the percentage of intermediate fibers in
the F4, increases this fiber type in the F5 and reduces the fast
fibers in the F3 and F5, compared to control fascicles (Table 1).
According to the changes in the proportion of fiber types it
could be established the following sequence of fascicles affected
by chronic undernutrition (most to less): F3 > F5 > F4 = F2.
According to the later, Vázquez-Mendoza et al. (2017) proposed
that chronic undernutrition evokes a differential effect on the
relative proportion of fiber types in EDLm fascicles and suggested
that such condition may provoke changes in the intra-fascicle
distribution and organization of fiber types.

7.1. Fractal Analysis Results
In order to perform the fractal analysis, we first estimated the
a index, which needs to be > 0.1 and < 4.0 to treat them as
fractals. Fast and intermediate fibers in all fascicles (control and
undernourished) showed an a in the range of a fractal (Table 1;
only five values were excluded from the analysis because they
showed a < 0.1). Although intermediate fibers in the fascicle
F5 of the undernourished group showed a significant larger a
value than the control one (P < 0.01) these fibers are still in
range. With these results, we were able to treat the individual
binary images of fast and intermediate fibers from the control
and undernourished rats as fractals. In the case of slow fibers,
these were excluded from the analysis due to the lower number
of fibers.

Once established that the binary images can be treated as
fractal, we estimated the dimension parameter (D), which gives
us how the fibers are organized within the fascicles. The results
showed that fast and intermediate fiber in all EDLm fascicles,
of both conditions, had similar D values, varying between 1.5
and 1.84 (Table 1), indicating that both intermediate and fast
fibers are distributed in clusters over the transverse area of each
fascicle. Statistical analysis showed that chronic undernutrition
only reduced the fractal dimension of fast fibers in the F3, as
compared to control (C, 1.73± 0.03 vs. U, 1.50± 0.08; P < 0.05;
Table 1). Nonetheless, this value still represents a distribution in
clusters over the transverse area of the fascicle.

In real-world patterns, fractal behavior may change across
scales. Changes often occur within rather small values of ε, i.e.,
for small distances, often corresponding to the clusters of fibers
of the same type. In order to avoid local effects and hence wrong
estimations, it is useful to introduce an additional c parameter
that allows the correct estimation of D and a values (Table 1).
Similar to the a index, the c parameter of fast and intermediate
fibers in all fascicles was similar between the groups (P > 0.05;

TABLE 1 | Percentage fiber composition and fractal organization parameters [a

index, fractal dimension (D), and c index] corresponding to the intermediate and

fast fiber types present in the different EDLm fascicles (F2, F3, F4, and F5) of

control (C) and undernourished (U) rats.

Composition (%)

Intermediate Fast

C U C U

F2 57.6 ± 4.5 57.6 ± 5.2 31.7 ± 5.4 37.9 ± 5.4

F3 51.9 ± 5.4 67.2 ± 4.0 46.0 ± 5.5 29.7 ± 4.1*

F4 63.6 ± 2.3 53.6 ± 3.6* 33.3 ± 2.5 42.2 ± 4.0

F5 45.2 ± 2.0 54.4 ± 1.1* 53.7 ± 2.0 44.9 ± 1.1*

a index

C U C U

F2 0.18 ± 0.03 0.22 ± 0.01 0.15 ± 0.03 0.21 ± 0.04

F3 0.20 ± 0.03 0.26 ± 0.03 0.22 ± 0.03 0.43 ± 0.11

F4 0.35 ± 0.10 0.26 ± 0.04 0.27 ± 0.09 0.25 ± 0.07

F5 0.16 ± 0.01 0.24 ± 0.07** 0.25 ± 0.07 0.28 ± 0.02

Fractal dimension (D)

C U C U

F2 1.77 ± 0.05 1.80 ± 0.01 1.75 ± 0.03 1.70 ± 0.05

F3 1.78 ± 0.02 1.75 ± 0.03 1.73 ± 0.03 1.50 ± 0.08*

F4 1.75 ± 0.04 1.78 ± 0.02 1.68 ± 0.04 1.74 ± 0.02

F5 1.84 ± 0.01 1.81 ± 0.01 1.80 ± 0.01 1.81 ± 0.01

c index

C U C U

F2 6.54 ± 1.00 5.08 ± 1.01 7.48 ± 1.39 6.72 ± 0.54

F3 4.51 ± 2.18 0.30 ± 3.01 5.50 ± 1.22 6.62 ± 2.48

F4 −2.71 ± 4.87 2.02 ± 2.75 7.66 ± 3.07 4.98 ± 2.08

F5 6.65 ± 0.90 0.11 ± 1.42** −1.81 ± 1.66 0.75 ± 1.01

Mean± S.E.M. Significant differences between C and U were determined using Student’s

t-test or Mann–Whitney test. *P < 0.05, **P < 0.01. n = 6, except in Intermediate F2C,

F2U, F4U, and in Fast F3U, where n = 5, and in Fast F2 C, n = 4.

Table 1), except for the intermediate fibers in the undernourished
F5, which showed a significant reduced c value as compared to
control (C, 6.65 ± 0.90 vs. U, 0.11 ± 1.42; P < 0.01) that
could be related with the reduction of the muscle CSA due
to undernutrition.

Altogether, this analysis showed that intermediate and fast
fibers in the four EDLm fascicles (F2, F3, F4, and F5) of the
control rats present a fractal organization within the fascicle, i.e.,
the fiber assembly is distributed in clusters. Also, it showed that
this organization is preserved during chronic undernutrition,
except for the fast fibers in the F3, whose organization is reduced,
but still conserve the distribution in clusters. This probably
helps to preserve the optimal muscle functioning despite the
alimentary condition.

7.2. Distribution Functions Results
Although the fractal organization was preserved in all fascicles
of undernourished rats, the fiber types distributions could be
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modified, in order to determine changes in the fiber types
distribution we constructed the distribution function of slow,
intermediate, and fast fibers of control and undernourished rats.

Before analyzing the distribution function of fiber type,
we aimed to determine if our dissimilarity quantifiers could
differentiate between very similar distributions. To achieved this,
we calculated the dissimilarity quantifiers for synthetic data
(Figure 1) that present distributions that could be a challenge
to our quantifiers. Tables 2, 3 contain comparison results with
synthetic data, angle measurements are displayed in degrees.
In general, we observed an increase in distance values while
increasing the number of points (R2 = 0.99, P < 0.001, in
all comparisons, except Ring vs. Ball, where R2 = 0.67, P >

0.05), which did not happen with the angle values (Ring vs. Ball,
R2 = 0.72; Ring vs. Cross, R2 = 0.20; Ring vs. Sum, R2 = 0.37;
Ball vs. Cross, R2=0.75; Ball vs. Sum, R2=0.75; Cross vs. Sum,
R2=0.48; P > 0.05, in all cases), of the shapes being compared.
Our discussion of these results is given in section 8.2.

7.2.1. Intra-fascicle Distribution of Slow,

Intermediate, and Fast Fiber Types
To visualize the intra-fascicle distribution of fibers types, binary
density histograms from sections of EDLm fascicles of control
and undernourished rats stained with the alkaline ATPase
technique were constructed (Figure 3). Apparently, most of the
undernourished EDLm fascicles (F2, F4, and F5) showed a
similar distribution of fiber types as that of control fascicles

TABLE 2 | Distance (D) and angle (θ ) for artificial data.

Synthetic data Ring vs. Ball Ring vs. Cross Ring vs. Sum

Points D θ D θ D θ

500 44.44 75.59 27.51 83.19 29.32 84.46

1, 000 78.36 65.58 57.34 85.50 58.10 80.50

2, 000 144.88 64.10 101.98 85.42 107.54 82.27

3, 000 203.90 59.17 151.85 83.38 155.11 79.78

4, 000 273.52 60.36 193.62 82.81 210.09 80.88

Mean 149.02 64.96 106.460 84.06 112.03 81.58

S.E.M. 92.82 6.50 67.68 1.30 72.87 1.85

500, 1,000, 2,000, 3,000, and 4,000 points. Ring vs. ball, ring vs. cross, and ring vs. sum.

TABLE 3 | Distance (D) and angle (θ ) for artificial data.

Synthetic data Ball vs. Cross Ball vs. Sum Cross vs. Sum

Points D θ D θ D θ

500 42.91 73.19 44.89 77.61 27.77 83.37

1, 000 81.59 70.73 84.05 72.62 56.61 82.33

2, 000 145.53 65.04 145.22 64.35 99.69 83.08

3, 000 214.80 64.81 209.16 61.80 135.39 79.66

4, 000 285.31 65.06 283.28 63.85 192.16 82.63

Mean 154.03 67.77 153.32 68.05 102.32 83.01

S.E.M 98.23 3.93 95.69 6.76 64.84 2.78

500, 1,000, 2,000, 3,000 and 4,000 points. Ball vs. cross, ball vs. sum, cross vs. sum.

(Figures 3A,B,E–H). In contrast, the internal distribution of fiber
types in the F3 of undernourished rats (Figure 3D) completely
differs from that determined in the control group (Figure 3C).

Once established that the dissimilarity quantifiers are robust to
differentiate between distributions, we compared the fiber types
distribution between fascicles of control and undernourished
male rats, in order to obtain not just a qualitative comparison.
Considering that our fascicles sections did not have anatomical
orientation and in order to avoid misinterpretation of the results,
we compared the intra-fascicular distribution of fiber types and
then we compared this values between groups (Table 4).

F2 intra-fascicular distributions from the control animals
showed distances lower than 60, and angles greater than
45 degrees, suggesting that each fiber type has a distinctive
distribution within the fascicle (Table 4). And this was similar
to the undernourished animals, suggesting that chronic
undernutrition does not affect the fiber types distribution of
the F2.

In the case of F3, in the control group, we found that
distance was between 60 and 90, whereas angles were greater
than 45 degrees, indicating that, as with F2, each fiber type
distribution is dissimilar to the others (Table 4). In contrast, in
the undernourished group showed distances smaller than the
controls, particularly in the distribution between slow and fast
fibers (P < 0.001; Table 4). In the case of angles, they were also
greater than 45 degrees, but the angle between the distribution
of intermediate and fast fiber was greater than the control (P <

0.01). These results suggest that chronic undernutrition modified
the fiber type distribution in the F3, but maintaining differences
among them.

For the F4 in the control group, distances were between 50
and 120, but all angles were greater than 45 degrees, suggesting
that the fiber types distribution are dissimilar among them
(Table 4). On the other hand, chronic undernutrition reduced
the distances between the slow and intermediate fiber (P < 0.05;
Table 4) and between the fast and intermediate fiber (P < 0.05;
Table 4). Likewise, chronic undernutrition decreased the angles,
especially between the fast and intermediate fibers (P < 0.05;
Table 4). This suggests that chronic undernutrition affects the
fiber type distribution of the F4, making them more similar
among them.

Finally, the F5 of control animal showed distances
between 80 and 130, but the angles were grater than 45
degrees between the distribution of slow and intermediate
fibers and between slow and fast fibers (Table 4). In
contrast, the angles between intermediate and fast fibers
distribution were lower than 45 degrees, indicating that
fast and intermediate fibers distribution is more similar
between them than with the slow fiber distribution.
Contrary to F4, in F5, chronic undernutrition increased
the distance, especially between the slow and intermediate
fibers distributions (P < 0.01) and between the slow
and fast fibers distribution (P < 0.05; Table 4). Also,
increased the angle values, notably between the slow and
intermediate fibers distributions (P < 0.01; Table 4). This
indicates that chronic undernutrition, also modifies the intra-
fascicular fibers distribution in the F5, making the slow fiber
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FIGURE 3 | Representative distribution functions maps of slow (S), intermediate (I) and fast (F) fibers in the EDLm fascicles (F2, F3, F4, and F5) from control (A, C, E,

G) and undernourished (B, D, F, H) rats. The X-axis Y − axis represent the length and width of the cross-section of the fascicles, whereas the Z − axis represents the

number of fibers (n). Qualitatively, we can observe that each fascicle present a characteristic distribution pattern of each fiber type, which is modified by chronic

undernutrition, more evident in the F3. Quantitatively, dissimilarity quantifiers showed that, indeed, intra-fascicular distributions in F3, F4, and F5 are altered, becoming

both, more similar and more dissimilar, for details see text.
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TABLE 4 | Distance (D) and angle (θ ) of the intra-fascicular fiber type distributions (slow vs. intermediate, SvsI; slow vs. fast, SvsF; intermediate vs. fast, IvsF ) in the EDLm

fascicles (F2, F3, F4, and F5) of control (C) and undernourished (U) rats.

SvsI SvsF IvsF

D θ D θ D θ

F2 C 59.20 ± 5.39 68.39 ± 0.72 38.95 ± 3.49 72.84 ± 0.93 57.58 ± 3.75 63.98 ± 1.32

U 53.97 ± 1.97 71.46 ± 1.17 35.47 ± 1.32 75.38 ± 0.56 48.32 ± 137 55.05 ± 1.45

F3 C 82.20 ± 6.50 72.76 ± 1.39 68.09 ± 2.71 75.88 ± 0.68 71.75 ± 3.45 50.15 ± 1.16

U 60.00 ± 3.42 75.98 ± 1.23 27.12 ± 0.84 *** 80.71 ± 0.91 56.89 ± 3.28 65.53 ± 0.96**

F4 C 105.01 ± 3.86 80.81 ± 0.74 55.72 ± 2.19 79.62 ± 0.32 116.64 ± 3.91 58.41 ± 1.25

U 66.45 ± 4.03* 76.31 ± 1.80 53.57 ± 4.53 77.99 ± 1.09 49.60 ± 2.09 * 46.02 ± 1.61

F5 C 105.76 ± 4.87 74.07 ± 0.76 122.37 ± 2.31 78.67 ± 0.37 83.23 ± 2.65 40.27 ± 0.71

U 167.50 ± 3.10** 81.24 ± 0.26** 143.62 ± 2.61 * 81.71 ± 0.46 95.07 ± 2.78 34.13 ± 0.80

Mean ± S.E.M. Significant differences between C and U were determined using Student’s t-test or Mann–Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001. n = 6, except in F4U,

where n = 5.

distribution more dissimilar to the intermediate and fast
fibers distributions.

Altogether, these results suggest that chronic undernutrition
has a differential effect not just in the fiber type composition, but
also in the organization and distribution of the fiber types. And
these changes could affect the muscle function and ultimately the
behavior (e.g., locomotion).

8. DISCUSSION

Here, we have developed a methodology to compare fiber types
organization and distribution in the EDLm fascicles of control
and undernourished rats. On one hand, we determined that
intermediate and fast fibers in the EDLm fascicles present
a fractal organization, i.e., they are distributed in clusters
over the transverse area of each fascicle. Likewise, our results
showed that chronic undernutrition reduces significantly the
fractal organization of fast fibers in the F3, but preserving the
organization in clusters. On the other hand, the distribution
functions showed that each fiber phenotype has a unique spatial
distribution pattern, but chronic undernutrition modifies the
intra-fascicular fiber types distributions in the F3, F4, and F5.

8.1. Distribution Function Method
Before discussing the biological data, we make a detailed analysis
regarding the methods developed by other authors in previous
work on the spatial distribution, especially those based on the
calculation of Dirichlet tessellations and adjacency matrices (cf.
Venema, 1991, 1995; Grotmol et al., 2002) and correlation
dimension (cf. Arsos and Dimitriu, 1995).

Methods based on Dirichlet tessellations (and variations of
them) as well as adjacency matrices are particularly useful when
one wants to distinguish between two or more classes of points,
one of which is scarce in comparison to the others. Dirichlet
tessellations provide a strictly visual tool when one wishes to
establish clustering among two or more classes of points within
one single image, as well as to show a tendency or pattern in
the spread of those classes. However, this method is subjective
in the sense that it is the user who decides whether or not

there is clustering or spread, and in what direction. In other
words, there is no established criterion or numerical parameter
by which several users may all agree on the presence or absence
of clustering or a pattern within the data sets. Moreover, such
methods are mainly restricted to two-dimensional data.

On the other hand, calculation of the correlation dimension
is a quantitative task which is not constrained to points on the
plane. The concept of correlation dimension was introduced
in Grassberger and Procaccia (1983a) within the context of
dissipative dynamical systems whose phase space evolution is
driven by the presence of a strange attractor. This type of
attractors arise when the flow of the system is contracting in some
directions, expanding in others, and confined within a compact
region. This causes the volume element to fold on itself and
acquire a multi-sheeted shape with a Cantor-like (self-similar)
structure in certain directions, which is directly reflected on the
attractor. The latter structures are typically associated to fractal
sets (cf. Grassberger and Procaccia, 1983b).

To calculate the correlation dimension, one starts with a
sequence of points on the attractor, {zj : j = 1, . . . ,M}, which
ideally is a time series with fixed time increment time τ , i.e.,
zj = z(t + jτ ). A measure of the spatial correlation of the points
is the quantity (cf. Grassberger, 1983; Grassberger and Procaccia,
1983b):

C(ℓ) = lim
M→∞

1

M2
×

{

number of pairs (j, k) such that ‖zj − zk‖ < ℓ
}

.

(12)

For small values of ℓ, it was established in Grassberger and
Procaccia (1983b) that

C(ℓ) ∼ ℓν , (13)

where the constant ν is the correlation dimension or correlation
exponent (cf. Grassberger, 1983; Grassberger and Procaccia,
1983b). The correlation dimension ν is related to Kolmogorov’s
capacity D, also called box-counting dimension or even “fractal
dimension” after Mandelbrot (cf. Mandelbrot, 1977), but the
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latter terminology is misleading as there is more than one
way to define the dimension of a fractal set (cf. Grassberger,
1983). In Grassberger and Procaccia (1983b), D is identified as
the Hausdorff dimension, but the latter has a more involved
definition (cf. Farmer et al., 1983). Mandelbrot used the term
fractal dimension in reference to the Hausdorff dimension and
to the information dimension σ , as follows: ν ≤ σ ≤ D.
ν and D solely depend on the metric of the phase space for
their calculation, whereas σ also requires defining a probability
measure. ν should not exceed, for instance, the embedding
dimension of the attractor (i.e., if the zj’s are p-dimensional
vectors, then ν should not be greater than p).

In applications (e.g., measurements obtained from
observations carried out in a laboratory), however, only a finite
set of measurements will be available and thus considering the
limit in Equation (12) is not possible. In that case Equation (12)
is replaced by the following:

C(ℓ) =
2

M(M − 1)
×

{

number of pairs (j, k) such that ‖zj − zk‖ < ℓ
}

;

(14)

observe that the coefficient 2/M(M − 1) is the reciprocal of the
maximum number of different pairs of data points. When using
Equation (14) M is expected to be (sufficiently) large and the
relation Equation (13) is still assumed to hold approximately for
ℓ ∈ I, where I is an open interval contained in (δmin, δmax) with
δmin the minimum distance between two data points and δmax

the maximum distance (the diameter of the point set). In the
context of this work, which is the same as that of Arsos and
Dimitriu (1995), these two hypotheses are important. Eckmann
and Ruelle (1992) shows how to estimate the number of points
necessary in order for Equation (14) to yield a meaningful result.
Our method of construction of distribution functions does not
need those hypotheses.

We now discuss the meaning of the exponent ν in
Equation (13). Recall that Equation (13) is a law that is assumed
to hold approximately for the right-hand side of (Equation 14),
for ℓ values within a certain interval I. Even though the following
two cases will not be meaningful to us, they are nonetheless
convenient to discuss for the sake of clarity. If there is only one
pair of points at a distance δ from each other, that isM = 2, then
C(ℓ) = 0 for ℓ ≤ δ and C(ℓ) = 1 if ℓ > δ. In such case one can
consider that ν = 0 as ℓ0 = 1.When there is only one point in the
data set, ν is defined as zero. Now, in general, when the data set is
finite, but large (M large), it is customary to estimate ν by plotting
logC(ℓ) against log ℓ and adjusting a line over the range of values
of ℓ for which a linear tendency is observed, such tendency is
expected to be easily detected for M sufficiently large. This, thus
can be considered the criterion by which to consider that the
size of the data set is adequate for purposes of the study. In this
scenario, ν gives the growth rate of the number of data pairs at a
distance no greater than ℓ. When ν = 1, the growth is considered
“neutral,” that is, no clear tendency toward either spreading or
clustering among data points can be declared. When 0 < ν < 1,
this means a slower-than-linear growth in the number of pairs of
points at a distance at most ℓ, in other words, one can speak of

a tendency in the data toward clustering. On the contrary, when
ν > 1, it means an accelerated growth (greater than linear) in the
number of points at a distance at most ℓ that is, the data points
are spreading (no clustering). We think this interpretation is the
most honest conclusion one can derive from the calculation of the
correlation dimension alone, in the context of this work (and that
of Arsos and Dimitriu, 1995), that is, outside of the dynamical
systems context.

Pullen (1977a,b) uses a simple quantitative technique to
analyze fiber composition and distribution of the adult tibialis
anterior muscle in rats. The author considers complete cross-
sections of the muscle in different specimens and sets deep-
superficial and medial-lateral axes. Histological images are then
projected on a counting grid. Only those cells of the grid
along the axes are considered. The magnification of each image
is set so that fifty to one hundred fibers are shown in each
cell and their identification is possible. For each cell along
the axes the fiber ratio (fiber type over total number of fibers
in the cell) is determined for three different types of fibers
which the authors name IIA, I, and IIB, and correspond
to intermediate, slow and fast fibers, respectively, according
to their oxidative, phosphorylase, and ATPase histochemistry.
Then, for each cell, histograms are constructed to appreciate
fiber distribution and muscle composition. The variance among
histograms is then analyzed. The results obtained showed that,
not only distribution of fiber histochemical types varies across
an entire cross-section of the muscle, but also the histochemical
technique employed seems to affect the quantitative analysis.
Fiber cross-section area is also calculated, in an attempt to
verify disparities found among classification of fibers based on
different histochemical techniques. The author concludes with
a few important observations such as fiber classification based
on different histochemical techniques may produce different
distributions profiles.

The relevance of Pullen (1977a,b) to our study comes from
the fact that it considers a division of the cross-section of a
muscle, by the deep-superficial and medial-lateral axes. Along
these axes, cells of a counting grid are considered. Within each
cell of this grid, a relative count of fiber types is performed and
a profile of each fiber type distribution is revealed, by drawing
histograms put together with the counts of all cells along each
axis. The distribution profiles obtained by the author sweep along
the perpendicular directions of the axes, not across the entire
muscle. Our study is more focalized as it considers fascicles, but it
does so entirely. We also construct distribution functions which
we later use to be able to compare among fiber types and try
to establish parameters for their distinction (distance and angle
between pairs of them).

In another study, Henriksson-Larsén et al. (1983) focused on
the importance of defining the biopsy depth when analyzing
the distribution of different types of fibers of human skeletal
muscle (tibialis anterior). Two types of fibers were considered
based on enzyme histochemical classification criteria: type 1
(red, slow-twitch, and oxidative) and type 2 (white, fast-twitch,
and glycolytic). The authors report significant variations in
the relative number of fibers depending on the depth of the
muscle biopsy (human tibialis anterior). There are two main
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reasons why Henriksson-Larsén et al. (1983) seems relevant to
our study:

1. It brings about the question of whether biopsy depth should
be a factor to be taken into consideration. Given the size of the
specimens used in our work, this point does not seem relevant.

2. In Figure 2, the authors have a histogram of fibers type 2,
followed (Figure 2D) by a contour plot. For these figures, a
grid was drawn on every mounted section of a muscle. Each
cell of the grid drawn on the image had a side length of
1mm and was divided into nine sub-cells. The total number
of fibers for each type was determined for the central sub-
cell only (one-ninth of the whole cell). However, the authors
do not detail how they determine the size of the grid or the
method used to obtain the contour map (for the latter they
used a computer program, but they did not mention which
one). The authors use these contour plots to visually assess
the distribution of fibers on a cross-section of the muscle,
but they do not try to establish a method to compare two
distributions (as we did in our work), nor do they attempt to
give a more formal definition to the term distribution (as we
did in our work).

In Wang and Kernell (2001), advantage is taken of the match
between motoneuronal nerve endings and their muscle fibers, so
that studying the spatial distribution of the latter will translate
into properties of the spatial distribution of the former. To
that end, the authors devise two methods for determining the
position and the extent of muscle fibers within a muscle cross-
section: the “mass vector method” and the “sector method.” The
authors developed these methods in order to get on the subject of
degree and direction of what they call fiber type regionalization,
something that had been missed by previous studies which are
more focused on providing a detailed or pointwise description
of the muscle fiber distributions (Johnson et al., 1973; Pullen,
1977a,b; Armstrong and Phelps, 1984). The specific questions
that the methods developed by the authors address are: how
much does the center for a given fiber type population differ from
that for the muscle as a whole? (vector method) and, how much
of the available cross-section space of a muscle is utilized by a
given fiber type? (sector method). The vector method designed
by the authors allows two things. On one hand, it allows pointing
at a specific region within the muscle being observed, in which
certain type of fibers are distributed. This is done by constructing
the “mass vector,” which is a vector that points from the centroid
of the muscle section to the centroid of the fiber set. On the other
hand, by scaling themass vector by the diameter of a circle, whose
area is that of the cross-section of the muscle, one obtains the
“fiber target vector.” The latter can be compared in length and in
magnitude with other fiber target vectors from similar samples.
Both, themass and the fiber target vectors, account for the general
location of the set of fibers as a whole, within the muscle. To
account for the extent of the fiber set within the muscle cross-
section, the authors designed the sector method. As in the case
of the convex hull method, the section method determines what
percentage of the total cross-section area of the muscle is being
covered by the fibers under study. Unlike the convex hull method,
the sector method tends to exclude regions of the cross-section

that are not populated by fibers, and which would otherwise
be included in the convex hull method due to the irregularity
of the fiber set perimeter. However, the sector method has the
disadvantage of being semi-automatic. The number of sectors
to be considered must be determined by the experimenter. Too
many sectors will tend to produce a fragmented picture of the
occupied region, and too few sectors will cause that some fibers
will fall outside of their region.

The relevance of Wang and Kernell (2001) to our work is in
that, in essence, is the closest to the type of analysis we performed.
More precisely, it tries to quantify the spatial localization of
fibers and the region of the muscle cross-section they occupy.
Like in the case of the sector method, our method is semi-
automatic (the size of the counting grid must be determined
by the experimenter). However, our method does provide a
distribution function per se, which accounts for actual spatial
location and number of fibers. The vector method provides a
general direction in which fibers are located, but does not provide
a sense of how fibers are distributed around the head of the mass
vector. Our method specifically tells the experimenter where
fibers are located within the muscle cross-section.

8.2. Dissimilarity Quantifiers
It is evident from our results that distance measurements show
a tendency to increase as the number of points in the data
set increases. In contrast, angle measurements seem to stabilize
themselves as the number of data points increases, that is as more
information is known about the data sets. Moreover, based on
angle measurements alone we see that, as the data set increases
(and thus becomes more defined), the pair ring vs. ball became
the more similar pair among all, followed the ball vs. sum, and
the ball vs. cross. Nonetheless, for these three pairs of shapes
the angle between distributions is around or above 60 degrees
which is two thirds of 90 degrees (maximum transversality)
and four thirds of 45 degrees (halfway between colinearity and
perpendicularity), therefore we think this is still clear evidence
that the angle quantifier can serve as a tool to tell apart between
two images. Note also that from the start the angle quantifier was
able to distinguish the ring from the cross, the ring from the sum,
and the cross from the sum, returning angles closer to 90 degrees.

The above discussion suggests that the angle quantifier is
helpful in telling apart data sets which are uniformly distributed
in all directions and highly localized (the ring), from data sets
which are uniformly distributed and highly localized in specific
directions (the sum and the cross), and even two data sets
in the latter category so far as they are distributed along two
distinct directions.

Currently, our distance quantifier depends strongly on the
data size, but this can be fixed in the manner we suggest in
the next paragraph. Right now, we want to make our point that
angle and distance quantifiers are complementary dissimilarity
quantifiers, in other words, they must both be used by the
researcher who is trying to set apart two data sets based on the
geometry of their spatial distributions. The argument is rather
evident: based on Tables 1, 2, we see that the angle quantifier did
not perform so as well setting aside the ring from the ball, the
ball from the cross, and the ball from the sum, as it did setting
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apart the ring from the cross, the ring from the sum, and the cross
from the sum. For instance, the angle value in the ring vs ball
with 4,000 points is just above sixty degrees, whereas for a data
set of the same size, the angle value in the ring vs sum is about 81
degrees, this amounts to a roughly 20 degree difference, and we
perhaps “lose confidence” in the angle quantifier. But when we
look at those same cases, the distance measurement for the ring
vs. ball pair is 273, whereas for the ring vs. sum pair is 210, which
tells us that the distance quantifier is better at distinguishing one
data set from the other in the ring vs. ball pair, by a difference
of over 60 units, so we “gain confidence” in this quantifier. In
essence, when we think one quantifier is not performing to our
standards, the other may be doing a better job.

To fix the scaling effect of the data set on the distance
(larger data sets seem to yield larger values of the distance), we
propose to modify our definition of the distance quantifier in the
following way which completely eliminates that effect. Let

D = d/(1+ d) ,

where d is the distance as calculated by (Equation S19,
Supplementary Material). D is bounded below by zero and
above by one and it is well-known in functional analysis that
it also satisfies the properties of a metric. We are currently
testing this quantifier and our preliminary results suggest that it
is more subtle to appreciate differences in distance readings with
this quantifier.

These preliminary results on artificial data suggest that the
method of construction of distribution functions, as well as their
“measure of dissimilarity” (distance and angle), are adequate
tools to distinguish among trends of spread and clustering within
the data. The case presented here is that of two-dimensional data,
but of course the methodology lends itself to study the case of
higher-dimensional data, with straightforward modifications on
the sample covariance matrix.

Lastly, we must note that, whereas the sample covariance
matrix suffers from the effect of “high dimensionality of the
data” (it is a square matrix of size d, where d is the dimension
of the data vectors), distance and angle evaluations solely
depend on kernel evaluations which are convenient from a
computational standpoint.

8.3. Fiber Type Organization and
Distribution on the EDLm Fascicles
It is well known that skeletal muscles actively participate in the
extension and flexion of articular joints (Lindstedt, 2016) as
well as during changes in position (muscle length) or during
generation of force (muscle strength) (Schappacher-Tilp et al.,
2015). Such muscle properties allow vertebrate organisms to
perform changes in posture and locomotion (Frontera and
Ochala, 2015). It has been considered that each muscle is
constituted by a variable proportion of slow, intermediate, and
fast fibers. In the rat, the EDL muscle, an extensor muscle
involved in the extension of the toes (2nd to 5th) and dorsiflexion
of the ankle, is mostly conformed by fast-twitch fibers, meanwhile
the soleus muscle, one of the flexor muscles of the calf, mainly
contains slow-fiber twitch fibers (Armstrong and Phelps, 1984;

Soukup et al., 2002). In addition, it has been proposed that
contractile properties of each individual muscle are closely
related to the relative proportion of fibers types and to their
intra-muscle distribution in the cross-sectional area, mainly in
the medial part of the muscle (Myatt et al., 2011).

In this study, we analyzed the fractal organization of
fiber types in fascicles of the EDLm from well-nourished
and undernourished rats. Our previous results (Vázquez-
Mendoza et al., 2017) indicate that each fascicle in the EDLm,
from both well-nourished and undernourished rats, showed a
particular composition of fibers types. The relative proportion of
intermediate and fast fibers in undernourished fascicles F2 and
F4 had no significant differences with that of control fascicles,
while the relative proportion of fiber types in fascicles F3 and
F5 showed notorious differences with respect to controls (see
Table 1), being the sequential order of fascicles affected by
chronic undernutrition as follows: F3>F5>F4=F2. In the present
study, we found that the calculated values of a index, D and c
parameters corresponding to intermediate and fast fiber types
were practically similar between control and undernourished
fascicles (F2, F3, F4, and F5), indicating that fibers are organized
in clusters over the transverse area of each fascicle. Meanwhile,
only fast fibers in the undernourished F3 showed significant
differences in fractal parameter D, as compared to those of
control muscles, suggesting that fast fibers in the undernourished
F3 are slightly less organized in clusters than in control ones.
Because of the latter, it could be proposed that such fiber
type cluster-organization is used as a mechanism to increase
muscle efficiency (Myatt et al., 2011). Then, this change in the
organization of fast fiber in the F3 could imply a change in the
efficiency of the EDLm.

Although fiber organization was similar between
conditions, fiber type distribution analysis showed that
chronic undernutrition modifies the intra-fascicular fiber
type distribution in the fascicles F3, F4, and F5. As fiber
types distributions within a muscle are crucial to its
functioning (Burkholder et al., 1994), these changes could
induce alterations in muscle functioning. Thus, chronic
undernutrition could be changing the efficiency and functioning
of the EDLm fascicles.

Altogether, our observations indicate that chronic
undernutrition exerts a more complex effect that just on
the fiber type composition, finding a differential effect among
the EDLm fascicles. Also, there is a differential effect on the
distribution of intermediate and fast fibers in the EDLm fascicles
and only the fractal dimension or structure of fast fibers in
F3 seems to be modified by chronic undernutrition. All these
differential effects on the properties of EDLm fascicles could
be related to their anatomical position within the muscle and
the fiber type composition. The F2 is located in the anterior
part, followed by the F3, then the F4, and finally, the F5 is in
the posterior part (Balice-Gordon and Thompson, 1988). In
our previous work (Vázquez-Mendoza et al., 2017), the F3
was the most affected by chronic undernutrition, in the fiber
metabolism as well as in the fiber type, together with the F5
(in fiber type changes) in comparison with the F2 and F4. This
probably is related to the similarities of fiber type percentages
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composition (Vázquez-Mendoza et al., 2017). However, our data
do not allow us to explain why a chronic food deprivation evoked
such differential action on the EDLm fascicles, particularly on
fascicles F3 and F5. In addition, it remains to be elucidated how
the alterations provoked by undernutrition on the composition
and fractal organization of fiber types in F3 affect the extension
of the third toe and dorsiflexion of the ankle during a particular
motor act (e.g., during gait locomotion).

9. CONCLUSION AND FUTURE
APPLICATIONS

RBF distribution functions constitute not only a visual aid to,
for example, assess muscle structure and organization in the
form of fiber distribution, but they also provide quantitative
means by which to distinguish spatial distribution of fiber types.
Those means are our dissimilarity quantifiers, distance and angle,
defined between pairs of distribution functions. Themathematics
of these quantifiers rests soundly on learning theory, and
ultimately on functional analysis. Our results on artificial data
suggest that distance and angle are dissimilarity quantifiers that
complement one another. The angle quantifier is able to set
apart data sets that spread along definite linearly independent
directions in space or sets that spread along definite directions
from sets that are uniformly spread along all directions while
forming a single coherent cluster pattern (e.g., a ring). However,
the angle quantifier is less able to set apart sets that are uniformly
spread say, in the ring or in the ball type-of patterns, it is in these
circumstances when the distance quantifier may be a better tool
to distinguish between the two sets.

Other scenarios where the proposed method can be used
is in current research oriented to reveal possible structural
alterations of muscles provoked by traumatic processes, such
as spinal cord injury, motor nerve damage, multiparity, or
undernutrition/obesity. Of course, one may also use other
histochemical techniques.

Finally, we would like to mention that although the problem
that motivated this work comes from physiology, we hope that,
given the potential to use the distance and angle quantifiers with
high-dimensional data, the mathematical tools herein developed
can also serve in other fields of Computational Biology.
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