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Bone marrow failure (BMF) syndromes, such as severe congenital neutropenia (SCN)

are leukemia predisposition syndromes. We focus here on the transition from SCN to

pre-leukemic myelodysplastic syndrome (MDS). Stochastic mathematical models have

been conceived that attempt to explain the transition of SCN to MDS, in the most

parsimonious way, using extensions of standard processes of population genetics and

population dynamics, such as the branching and the Moran processes. We previously

presented a hypothesis of the SCN to MDS transition, which involves directional selection

and recurrent mutation, to explain the distribution of ages at onset of MDS or AML.

Based on experimental and clinical data and amodel of human hematopoiesis, a range of

probable values of the selection coefficient s and mutation rate µ have been determined.

These estimates lead to predictions of the age at onset of MDS or AML, which are

consistent with the clinical data. In the current paper, based on data extracted from

published literature, we seek to provide an independent validation of these estimates.

We proceed with two purposes in mind: (i) to determine the ballpark estimates of the

selection coefficients and verify their consistency with those previously obtained and (ii)

to provide possible insight into the role of recurrent mutations of the G-CSF receptor in

the SCN to MDS transition.

Keywords: clinical data, G-CSF receptor (G-CSFR), recurrent mutation, myeloid neoplasia, Moran model, selective

advantage

1. INTRODUCTION

Bone marrow failure (BMF) syndromes, such as severe congenital neutropenia (SCN) are leukemia
predisposition syndromes. In addition to SCN, these heterogeneous groups of disorders include
Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, Shwachman-Diamond
syndrome, and GATA2 deficiency (West and Churpek, 2017; Kennedy and Shimamura, 2019).
Each of these clinically defined disorders are monogenic with mutations in one or more genes in a
pathway. For example, Fanconi anemia results from germline mutations in genes involved in DNA
repair and Diamond-Blackfan anemia in ribosome structure (Oyarbide et al., 2019). What is less
well-understood are the somatic mutations that arise during transformation of a BMF syndrome to
myeloid neoplasia (Rafei and DiNardo, 2019).
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Focusing on the SCN to MDS to AML transition, individuals
with a germline mutation in the ELANE gene develop at
early age a severe neutropenia (Touw, 2015). This profound
neutropenia makes them susceptible to recurrent infections,
which can be only partly managed by antibiotics. Treatment
introduced in the 1990s involves administration of large doses of
recombinant human granulocyte colony stimulating factor (G-
CSF), which boosts neutrophil production (Bonilla et al., 1989).
Unfortunately, in about 30% of patients, either myelodysplatic
syndrome (MDS), a preleukemic disorder, or acute myeloid
leukemia (AML) emerges. In 70% MDS or AML cases arising
from SCN, somatic mutations of the G-CSF Receptor (CSF3R)
occur (Link, 2019). These are almost always nonsense mutations.
The truncated CSF3R affects altered signaling, gene expression,
and phenotype within the neutrophil lineage. There is enhanced
proliferation and impaired neutrophilic differentiation to G-CSF.

Stochastic mathematical models have been conceived, which
attempt to explain the transition of SCN to MDS and then to
AML, in the most parsimonious way, using suitable extensions
of standard processes of population genetics and population
dynamics, such as the branching (Kimmel and Corey, 2013)
and the Moran processes (Wojdyla et al., 2019). Specifically,
the latter paper presented a hypothesis of the SCN → MDS
transition, which involves the Moran process with directional
selection (Durrett, 2008) and recurrent mutation, to explain
the distribution of ages at onset of MDS or AML. As argued
in Wojdyla et al. (2019), starting in the fetal life, CSF3R
mutations arise as a random process and are selected for when
G-CSF is administered to boost neutrophil production. Based
on experimental and clinical data and a model of human
hematopoiesis, a range of probable values of the selection
coefficient s and mutation rate µ have been determined. These
estimates lead to predictions of the age at onset of MDS or AML,
which are consistent with the clinical data.

In the current paper, based on data extracted from published
literature, we seek to provide an independent validation of these
estimates. We will use the model of evolution of the mutant
receptors in the hematopoietic stem cells (HSC) in the bone
marrow in the form of a Moran process with selection and
recurrent mutation. This is the same process we used in Wojdyla
et al. (2019), except that here, to simplify computations, we
assume constant HSC population size and develop an analytical
approximation of the expected values of the mutant receptor
occurrence among HSC under the assumption that initial count
of mutants is already substantial (Methods and Data). We
proceed with two purposes in mind. Our first purpose is to
determine the ballpark estimates of the selection coefficients and
verify their consistency with those obtained in Wojdyla et al.
(2019). Our second purpose is to provide insight into the relative
role of recurrent mutations of the G-CSF receptor in the SCN to
MDS transition.

2. METHODS AND DATA

2.1. Moran Process
In the monograph by Durrett (2008), the Moran process with
selection is defined as follows

• Constant population of N individuals.
• At each discrete time moment, a randomly chosen individual

dies, and, at the same moment, another randomly chosen
individual proliferates (for mathematical completeness, it can
be the same individual).

• In the model with directional selection, there are individuals
of two types: wildtype (WT) and mutant (M) and the choice
of individual that proliferates is biased. The wildtype is chosen
with weight 1− s, s ∈ (0, 1).

It is instructive to consider the discrete-time case first. Let us
denote the number of mutants by i. There are four possibilities

• WT dies, with probability (N − i)/N

– WT proliferates, with probability
(1− s)(N − i)/[(1− s)(N − i)+ i]

– M proliferates, with probability
i/[(1− s)(N − i)+ i]

• M dies, with probability i/N

– WT proliferates, with probability
(1− s)(N − i)/[(1− s)(N − i)+ i]

– M proliferates, with probability i/[(1− s)(N − i)+ i]

Only the WT→M and M→WT options lead to change in the
number of mutants

pi,i+1 =
N − i

N

i

[(1− s)(N − i)+ i]
,

pi,i−1 =
i

N

(1− s)(N − i)

[(1− s)(N − i)+ i]
,

theM→MandWT→WToptions jointly contribute to pi,i. States
{0} and {N} are absorbing. The probability of being eventually
absorbed in {N}, if at time 0 there are imutants, is equal to

P[TN < T0] =
1− (1− s)i

1− (1− s)N

in the case with selection, which leads to

P[TN < T0] = i/N

in the neutral case.
The continuous-time version is defined by transition

intensities

qi,i+1 = (N − i)
i

N
, qi,i−1 = i

(1− s)(N − i)

N
,

which have different denominators than the transition
probabilities. However, they lead to the same absorption
formula. The expected time to absorption in {N} (fixation of the
mutant) has a commonly used asymptotics

E1(TN) ∼
2

s
ln(N)

as N → ∞ in the case with selection, which however is not
very accurate.
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2.2. Time-Continuous Moran Process With
Directional Selection and Recurrent
Mutations
A time-continuous Moran process with directional selection may
be supplemented with recurrent mutation by adding a term of
the form µ(N − i) to the qi,i+1 transition intensity. This can be
interpreted as an equal and independent chance µ1t + o(1t),
for each of the N − i WT cells, of becoming a mutant in a short
time interval (t, t + 1t). The complete set of transition rules for
the chain {X(t), t ≥ 0} assumes the form

qi,i+1= (N−i)
i

N
+µ(N−i), qi,i−1= i

(1− s)(N − i)

N
, i=0, . . .N.

(1)
Because the state space is finite, the chain is eventually absorbed
in the state N at random time TN ; cf. Figure 1 for a heuristic
illustration.

2.3. Simulation of Trajectories of the Moran
Process With Recurrent Mutation
Simulation of a time-continuous Markov Chain is based directly
on application of the transition intensities as expressed in
Equation (1). Briefly, if the mutant cell chain X(t) is in state i
at time t, then the time to the next jump is a random variable
τ distributed exponentially with parameter qi,i−1 + qi,i+1. The
direction of the jump at time t + τ is then decided by a random
choice, i → i− 1 with probability

qi,i−1

qi,i−1+qi,i+1
and i → i+ 1 with

probability
qi,i+1

qi,i−1+qi,i+1
, respectively. This algorithm (know also

popularly as the Gillespie algorithm) is based on the properties
of holding times and jumps of time-continuous Markov Chain,
as explained for example in the book (Grimmett and Stirzaker,
2001). Simulations depicted in Figure 2 were executed using
this algorithm.

2.4. Approximation of the Moran Process
With Recurrent Mutation and Estimation of
Selection Coefficient and Mutation Rate
In the current study, we are not as much concerned with
a mathematically rigorous theory of the Moran process with
selection and recurrent mutation, as with obtaining computable
expressions that lead to ballpark estimates of the selection
coefficient and mutation rate. Based on transitions spelled out
in Equation (1), we obtain the following expression for the
conditional expectations:

E[X(t+1t)|X(t) = x] = x+

(

(N − x)xs

N
+ µ(N − x)

)

1t+o(1t)

(2)
Corresponding expression for variance is more involved. From
Equation (2), assuming that x = X(t) can be replaced by its
expectation and denoting the latter by x(t) we formally obtain
the following ordinary differential equation (ODE) for x(t).

ẋ(t) =

(

(N − x(t))x(t)s

N
+ µ(N − x(t))

)

, t ∈ [t0, t1] (3)

Following a change of variables y(t) = x(t)/N ∈ [0, 1], this
leads to

ẏ(t) = (1− y(t))y(t)s+ µ(1− y(t)), t ∈ [t0, t1] (4)

This latter equation has an explicit solution

y(t) =
1− (µ/s)α0 exp(−(µ + s)(t − t0))

1+ α0 exp(−(µ + s)(t − t0))
, t ∈ [t0, t1] (5)

where

αi = (1− yi)/(yi + u), yi = y(ti), i = 0, 1, and u = µ/s (6)

This curve is very similar to that derived in the initial part of the
well-known study by Gerrish and Lenski (1998), under branching
process hypotheses. Let us also notice that population sizeN does
not play a role in the expression for y(t). However, as evidenced
by a comparison between the simulations in Figures 2A,F, larger
N reduces process variance and the slight bias of y(t) as the
estimate of X(t)/N.

Let us note that Equation (5) yields

1− y(t)

y(t)+ µ/s
= α0 exp(−(µ + s)(t − t0)), (7)

which after substitution t = t1 yields

α1 =
1− y1

y1 + u
= α0 exp(−(µ + s)(t1 − t0)), (8)

which yields

µ + s =
ln(α1/α0)

t1 − t0
(9)

The latter can be written alternatively as

s =
1

(1+ u)

ln(α1/α0)

(t1 − t0)
(10)

Knowing y0 and y1 (and therefore also knowing α0 and
α1), we can thus now find the set of values (s,µ) such
that yi = y(ti) i = 0, 1.

The latter expression embodies the trade-off between selection
and mutation. To understand it, let us notice that the RHS of
Equation (10) is equal to C =

ln(α1/α0)
(t1−t0)

if u = 0, and it changes

very little if u is small. The magnitude of C (which is the estimate
of s when µ = 0) as computed from data varies between 0.002
and 0.05 if we disregard the sole negative value −0.059. To
significantly influence (i.e., by say 10%) the lowest estimate 0.002,
the mutation per cell per nucleotide rate should be equal to at
least 0.0002, which is five orders of magnitude higher than the
standard human rate. We use per nucleotide rates since we are
discussing specific mutation sites in each case.
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FIGURE 1 | Anatomy of the Moran process with recurrent mutations. Some mutant count trajectories may become transiently extinct (green line), but they will be

resurrected by one of the recurring mutations events (red lines). Eventually the mutants are fixed.

In summary, estimates depicted in Table 1 and Figure 3 were
obtained using the method of the preceding paragraph under
assumption µ = u = 0.

2.5. Empirical Observations of Increase in
Mutant Receptor Frequency Over Time
Several papers documented the process of increase of the
frequency of mutant receptor, based on genome sequencing of
bone marrow cells of the SCN patients, in two or more time
points.We focus our attention on three of these papers (Beekman
et al., 2012; Skokowa et al., 2014; Klimiankou et al., 2019). In
these papers, patient data were recorded with changing frequency
of mutant receptors over time. Of these cases, we selected only
the ones that displayed unambiguous monotonous trend. Theses
case are listed in Table 1. The estimates that are obtained using
expression (10) are ambiguous since the expression provides only
a relationship between s and µ. However, if s estimated under
the hypothesis that µ is small, which is plausible unless the
mutation rate is orders of magnitude higher than normal, then
the estimates of s differ only slightly from those obtained under
µ = 0, as explained in the preceding subsection. This effect
is very similar to that observed in simulations in Wojdyla et al.
(2019).

3. RESULTS

3.1. Approximate Mean Expression vs.
Simulations
We address here the accuracy of the agreement of the
approximate expression (5) for expected value of the Moran
process with directional selection and recurrent mutations, with
direct simulations. Figure 2, presents a comparison of 1,000
simulated trajectories and their mean and standard deviation to

the y(t) function. We observe an almost complete agreement of
the approximate mean and simulation average, which become
indistinguishable with cell count N increasing from 1, 000 to
10, 000 [compare panels (A–F)]. Additionally, the simulation
variance decreases almost inversely proportionally to N.

It is very important to compare the influence of selection
coefficient s and mutation rate µ on the expectation of the
process. If µ does not exceed 0.001 per generation, its influence
can be disregarded, while the influence of s is decisive [panels (A–
C)]. Only when µ reaches 0.01, its influence becomes important.
In the estimates of the selection coefficient s, based on expression
(10), this effect is represented by the coefficient u = µ/s (also
present in expressions for α0 and α1), the magnitude of which
determines the departure from the case µ = 0.

3.2. Estimates of Selection Coefficients
Table 1 depicts the estimates of the selection coefficient s
obtained using Equation (10) with µ = 0. All details of the
data used are included in the Table 1. The estimates depend on
the assumed average interdivision time of the HSC (including
some self-renewing CMP). It is assumed to be equal to 1/24 of
1 year (15 days). Changing this assumption leads to different
estimates, as it can be tested by modifying the parameter λ in
the spreadsheet (λ equals the inverse of the interdivision time).
Overall, the estimates span a range from 0 to 0.05, with the
exception of patient 13 of publication (Klimiankou et al., 2019)
who has a negatively estimated selection coefficient.

Figure 3 depicts estimated selection coefficients ŝ from
Table 1, plotted against the time interval t1 − t0 between the
first and the second instance of sequencing. There seems to exist
a negative association between ŝ and t1 − t0. In addition, the
MDS cases (red circles), seem to have lower values of ŝ than the
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FIGURE 2 | Trajectories of the Moran process with directional selection and recurrent mutation. One thousand simulations were plotted, with thicker green line

denoting their mean, thinner green lines mean ± standard deviation, and black dashed line the solution of Equation (4). Parameter values (A) s = 0.01, µ = 0.000001,

(B) s = 0.05, µ = 0.000001, (C) s = 0.01, µ = 0.001, (D) s = 0.01, µ = 0.01, (E) s = 0.01, µ = 0.1; and N = 10000, t0 = 0, y0 = 0.2 in (A–E). (F) For comparison,

trajectories under s = 0.01, µ = 0.1 as in (A), but with N = 1, 000 are depicted, illustrating the impact of the cell count on variance of the process. In all panels, time is

expressed in average cell generation units, µ in inverse time units, and s is dimensionless.

AML cases (green circles). Cases labeled as “CN-MDS/AML” in
Klimiankou et al. (2019) are denoted by black circles.

4. DISCUSSION

The results of the present paper provide estimates of the selection
coefficients that may underlie the fixation of the mutant G-CSF
receptor in the SCN to MDS transition, which are consistent
with the range deduced in Wojdyla et al. (2019) based on
epidemiological evidence. Let us emphasize that our initial and
final fractions of mutant receptor data come from sequencing of
samples from patients with SCN. Availability of these sequencing
data in papers (Beekman et al., 2012; Skokowa et al., 2014;
Klimiankou et al., 2019) is at the stem of our results.

Severe congenital neutropenia is not the only inherited BMF
syndrome with predisposition to MDS and AML; however, we
believe that SCN provides the most robust and accurate disease
to model because acquisition of CSF3R mutation is so common
(70-80%) as a secondary hit (see discussion of sources inWojdyla

et al., 2019). On the other hand, TP53mutations in Shwachman-
Diamond are controversial in that the mutations do not augur
for transformation (Xia et al., 2018). Furthermore, the prevalence
of mutations in TP53 and in other genes such RUNX1 in
Fanconi anemia or dyskeratosis congenita appears to be much
less than that of CSF3R in SCN (Chao et al., 2017; Lane, 2017;
Kirschner et al., 2018). Despite this, modified Moran model
might be applicable to other bone marrow failure syndromes that
are associated with leukemia transformation. Since the variant
allele frequencies of CSF3R is not reported for most of these
rare patients, but our model provides an accurate prediction,
it is conceivable that uncommon secondary mutations, such as
TP53 or PPM1D or RUNX1, could be used in our modified
Moran model.

We do not use the cases with non-monotonic change in
variant receptor frequency. The reason is that, at this range of
frequency, Moran model is very unlikely to exhibit persistent
reversals. Therefore, it is more likely that factors that cannot be
included in the Moran model play a role.
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TABLE 1 | Tabular summary of truncated receptor data from three publications, and resulting estimates of selection coefficient for the Moran model without recurrent

mutation.

Identifier References Figure Case Phase y0 y1 t1 − t0 λ α1 α2 ŝ Mutation

1 Klimiankou et al. (2019) Figure 4E CN pt. 21 0.13 0.14 0.45 24 0.15 0.16 0.002 Q749

2 CN pt. 11 0.03 0.10 1.15 24 0.03 0.12 0.047 Q754

3 CN pt. 27 0.01 0.06 1.75 24 0.01 0.06 0.053 Q741

4 CN pt. 19 0.13 0.15 2.90 24 0.15 0.18 0.002 Y752

5 CN pt. 13 0.13 0.07 0.45 24 0.14 0.08 -0.059 Q741

6 Beekman et al. (2012) Figure S4 pt. ph. 1 MDS 0.06 0.11 6.00 24 0.07 0.12 0.004 D715

7 pt. ph. 2 AML 0.11 0.49 9.00 24 0.12 0.97 0.010 D715

8 Skokowa et al. (2014) Figure S3 pt. 6 ph. 1 MDS 0.24 0.56 13.00 24 0.32 1.27 0.004 Q726X

9 pt. 6 ph. 2 AML 0.56 0.83 3.00 24 1.27 4.88 0.019 Q726X

10 pt. 10 MDS 0.01 0.02 3.00 24 0.01 0.02 0.007 Q726P

11 pt. 16 ph. 1 MDS 0.10 0.30 4.50 24 0.11 0.43 0.012 Q720X

12 pt. 16 ph. 2 AML 0.30 0.33 0.33 24 0.43 0.49 0.017 Q720X

13 pt. 19 ph. 1 MDS 0.28 0.43 2.25 24 0.39 0.75 0.012 Y729X

14 pt. 19 ph. 2 AML 0.43 0.65 0.75 24 0.75 1.86 0.050 Y729X

Figure numbers are these in original publications. MDS/AML column based on the disease history of the patient in Beekman et al. (2012) and Figure 3 in the Supplement to Skokowa

et al. (2014); Klimiankou et al. (2019) is listing “CN-MDS/AML” as a single category. y0, initial fraction of mutant receptor, y1, final fraction of mutant receptor, t1 − t0, duration of time

interval (years), λ, average count of cell divisions (year−1 ), also equal to the inverse of the expected interdivision time (years), α0, α1, as defined in Equation (8), and ŝ, estimate of the

selection coefficient. “pt.” is patient, “ph.” is phase.

FIGURE 3 | Estimated selection coefficients from Table 1, plotted against the time interval between the first and the second instance of sequencing. Red, MDS;

green, AML; black, unclassified. Numbering of cases follows the identifiers in Table 1.

One of the important questions in understanding cancer
evolution is the balance among different genetic forces, such as
mutation and selection. The problem has been studied for solid
cancers, e.g., by Ling et al. (2015). In essence, mutant frequency
in the cell population can increase in a similar way with different
(negatively associated) values of s and µ. In particular, if a fit to
the mutant frequency increase observed over a time interval is
obtained under µ = 0, as in Table 1, then under µ > 0, the
estimate of s will only be smaller. The decrease will depend on
the value of u = µ/s. However, as discussed in the Results,

unless the mutation rate in cells is five orders of magnitude
higher than in normal cells, i.e., µ ≈ 10−4 per cell generation
per nucleotide, mutation does not make much difference for the
estimates. Therefore, recurrent mutation is an important factor
only if the CSF3Rmutation sites are extremely strong mutational
hot-spots. We also examined the magnitude of the correlation
coefficient, depending on whether the observed transition was
from SCN to MDA or to AML (Figure 3), wherever the data
have been available. The selection coefficients in the transitions
to AML seem to be greater.
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An additional effect may be due to the fact that not one,
but several types of mutant receptors are observed in MDS.
The most frequent is the truncated D715 variant, but there are
a number of other, as documented in Beekman et al. (2012),
Skokowa et al. (2014), and Klimiankou et al. (2019). Therefore,
the basic mutation rate should be multiplied by the number of
alternative mutants. Assuming that there are no more than 10 of
these mutants, the effect does not seem to play a major role.

It is interesting to observe the apparent effect of ascertainment
bias on the data from papers (Beekman et al., 2012; Skokowa
et al., 2014; Klimiankou et al., 2019) which we use in our study.
Figure 3 in the Results depicts estimated selection coefficients
ŝ from Table 1, plotted against the time interval 1t = t1 −

t0 between the first and the second instance of sequencing.
The negative association seen in Figure 3 may be explained by
the fact that the second time at which the frequency of the
mutant receptor is observed, arrives sooner if the progression
of the disease is faster, i.e., when the coefficient s is higher.
This trend may also lead to our estimated s being in general
an overestimate, under the assumption that cases with very
low s are never diagnosed. Impact of ascertainment bias on
estimates of progression in solid cancers has been studied (see,
e.g., Kimmel and Flehinger, 1991), and similar methods may

be used. However, such study exceeds the framework of the
current paper.
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