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During contraction the energy of muscle tissue increases due to energy from the

hydrolysis of ATP. This energy is distributed across the tissue as strain-energy potentials

in the contractile elements, strain-energy potential from the 3D deformation of the

base-material tissue (containing cellular and extracellular matrix effects), energy related

to changes in the muscle’s nearly incompressible volume and external work done

at the muscle surface. Thus, energy is redistributed through the muscle’s tissue as

it contracts, with only a component of this energy being used to do mechanical

work and develop forces in the muscle’s longitudinal direction. Understanding how the

strain-energy potentials are redistributed through the muscle tissue will help enlighten

why the mechanical performance of whole muscle in its longitudinal direction does not

match the performance that would be expected from the contractile elements alone.

Here we demonstrate these physical effects using a 3D muscle model based on the finite

element method. The tissue deformations within contracting muscle are large, and so the

mechanics of contraction were explained using the principles of continuum mechanics

for large deformations. We present simulations of a contracting medial gastrocnemius

muscle, showing tissue deformations that mirror observations from magnetic resonance

imaging. This paper tracks the redistribution of strain-energy potentials through the

muscle tissue during fixed-end contractions, and shows how fibre shortening, pennation

angle, transverse bulging and anisotropy in the stress and strain of the muscle tissue are

all related to the interaction between the material properties of the muscle and the action

of the contractile elements.

Keywords: muscle, energy, finite element model, MRI, contraction, tissue, deformation, 3D

INTRODUCTION

Most of our understanding of muscle function and performance comes from measurements at
small scales such as sarcomeres, single fibres and small muscles. Additionally, muscle contraction
data have typically been determined whenmuscle is fully active, changes length at constant velocity,
and considers forces and length changes in only the muscle’s longitudinal direction. By comparison,
we know much less about how whole, large muscles contract, particularly when they are not fully
active and contract with varying velocities. Yet, these are exactly the conditions that we may want
to understand in order to understand healthy muscle function, and the impairments that arise
from injury, disuse and disease. Understanding how the contractile elements interact with the
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tissue properties of the whole muscle, how deformations may
arise in all three dimensions during contraction, and how the
dynamics of muscle size influences whole muscle performance
may result in muscle behaviours that are not intuitive from the
understanding of single fibre function alone. The purpose of this
series of papers is to consider contractile mechanisms that are
relevant at the whole muscle level, and how these influence the
design and performance of skeletal muscle.

Muscles change shape and develop forces when they
contract. These effects are typically assumed to occur along the
longitudinal direction of the muscle, however, shape changes and
forces can occur in all three dimensions. For example, as a muscle
shortens then it must increase in girth, or cross-sectional area, in
order to maintain its volume (Zuurbier and Huijing, 1993; Böl
et al., 2013; Randhawa and Wakeling, 2015). Additionally, as a
muscle expands in cross-section it will tend to push outwards
as transverse forces develop. Indeed, transverse expansions have
been reported from early studies, where contracting muscle
bulged to fill glass tubes (Swammerdam, 1758, source: Cobb,
2002), to more recent studies where muscle bulging has been
reported in both animal (Brainerd and Azizi, 2005; Azizi et al.,
2008) and human studies (Randhawa et al., 2013; Dick and
Wakeling, 2017). Transverse forces and deformations have also
been recorded bymuscles lifting weights when they bulge (Siebert
et al., 2012, 2014; Ryan et al., 2019), which is akin to lifting your
body by tensing your glutes whilst you are seated.

The 3D shape changes of a muscle are important to its
function (Azizi et al., 2008). The forces that muscle fibres actively
develop decrease the faster they shorten (Hill, 1938), and thus
processes that affect fibre shortening velocity will also affect
their force. As the fibres shorten then they must expand in
girth to maintain their volume, making the fibres press on
each other in a transverse direction. In pennate muscle this
transverse expansion is accommodated by the fibres rotating
to greater pennation angles (Alexander, 1983; Maganaris et al.,
1998), or expanding in either of the two transverse directions
(Wakeling and Randhawa, 2014; Randhawa andWakeling, 2018).
The increases in pennation angle result in lower fibre shortening
velocity allowing the fibres to develop greater forces, in a process
known as muscle belly gearing (Wakeling et al., 2011). The forces
developed by whole muscle affect how it changes shape and
can cause gearing to vary (Dick and Wakeling, 2017), with this
variable gearing favouring velocity output at low loads and force
output against high loads (Azizi et al., 2008). Changes to the
3D shape of muscle therefore influence the deformations and
speeds at which the fibres shorten, and consequently affect whole
muscle forces.

Transverse forces acting at the surface of muscle are also
important to muscle function. When groups of muscles within
anatomical compartments contract together, their transverse
bulging causes the muscles to press on each other, and this
results in lower forces being generated by the collective group
of muscles than is possible by the sum of the muscle forces if
they are isolated (de Brito Fontana et al., 2018). In a similar
manner, when compressive forces are applied to the transverse
surfaces of contracting muscle, the muscle forces generated along
their longitudinal direction decreases (Siebert et al., 2012, 2014,

2016, 2018; Ryan et al., 2019), and the deformations of the
fibres, changes in pennation angle and belly gearing are also
affected (Wakeling et al., 2013; Ryan et al., 2019). Additionally,
the tendency for a muscle to bulge can cause the muscle to
experience internal work: generating a transverse force that can
lift a weight (Siebert et al., 2012, 2014). Contracting muscle thus
develops and reacts to transverse forces acting on its surface, and
when the surface deforms in the transverse directions, this will
additionally result in work being done.

This paper will consider the effect of work and energy on
muscle contractions. Mechanical work is the amount of energy
transferred by a force. For clarity in this paper, the term work will
be used to describe mechanical work at the surface of the muscle,
whereas the term energy will be used to describe the internal
energy within the muscle. This internal energy is a strain-energy,
which is energy stored by a system undergoing deformation. At
the whole muscle level, any process that redistributes energy
into a transverse direction will detract from the energy that
can be used to generate mechanical work. Currently, we know
relatively little about how energy redistributes within the whole
muscle structure, and how this redistribution of energy relates
to the work done. However, energy redistribution within muscle
may have important implications to both the mechanical and
metabolic function of a muscle (Williams et al., 2012; Roberts
et al., 2019). Surprisingly, these energetic considerations have
barely been incorporated into our current understanding of
whole muscle function.

This is the first of a series of papers in which we explore how
the redistribution of energy within muscle affects its mechanical
function during contraction, and we use these energetic
mechanisms to demonstrate how whole muscle function is not
simply due to the behaviour of individual contractile elements,
but rather emerges from the mechanics of the whole 3D
muscle structure. In this current paper we present a mechanistic
framework for quantifying the energy redistribution and describe
how strain-energy is related to the stretch and shortening of the
muscle fibres, to the 3D shape and deformations of the whole
muscle, and to the forces developed during muscle contraction.
We extend this analysis in two companion papers to identify
how transverse forces and compression affect the muscle force
in its longitudinal direction, and how the mechanical cost of
accelerating the inertial mass of the muscle tissue lessens the
mechanical performance during dynamic contractions.

APPROACH

Experimental and modelling studies have reported local
variations in tissue deformations within muscle (Pappas et al.,
2002; Higham et al., 2008; Hodson-Tole et al., 2016), and these
variations can be explained by the internal mechanics of the
muscle fibres and surrounding tissue (Blemker et al., 2005;
Rahemi et al., 2014). Thus, how a muscle’s tissue deforms during
contraction depends on the general structural and material
properties of the muscle, rather than on the particular features of
the muscle’s surface geometry. However, a wide range of muscle
sizes, shapes and architectures exist (Wickiewicz et al., 1983;
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Lieber and Fridén, 2000), so while the same physical principles
govern the internal mechanics and behaviour of muscle, the
actual tissue deformations and stresses that develop during
contraction also depend on muscle shape and architecture (Gans
and Bock, 1965; Lieber and Fridén, 2000). Hence, in this study
we compare deformations of muscle tissue for geometries that
span a range of pennation angles and cross-sectional areas to
distinguish general principles that do not rely on specific features
of muscle shape.

The premise in this study is that strain-energy redistributes
through the muscle tissue resulting in changes to the force and
external work of whole muscle. The maximum work from an
active sarcomere is given by the area under its force-length
curve when it shortens very slowly along its entire range of
motion so that its contractile forces are close to their maximum
isometric value at each instant (Weis-Fogh and Alexander,
1977), giving a maximum strain energy-density of ∼1.5 × 105

J m−3, where the strain-energy density is the strain-energy for
a given volume of muscle tissue. The maximum muscle work
possible would be approximately equal to the product of the
work from each sarcomere and the number of sarcomeres in
the muscle, or equivalently the product of the strain energy-
density from the sarcomere and the volume of the muscle tissue.
Here we additionally compare blocks of muscle with different
shapes and architectures, but the same initial volumes so that
we can evaluate how strain-energy is redistributed within them
independently from the effect of muscle size, or effectively the
number of sarcomeres.

The mechanics of whole muscle contraction depend on many
factors such as the geometry of the muscle and properties of
the tissue, and different models have been evaluated to explain
how individual factors influence contractile performance. Here
we present a general modelling approach, using the principle
of minimum total energy (Liu and Quek, 2014), to explain
many of these different effects in one framework. Previously,
muscle shape changes have been related to belly gearing and
shortening velocities using both 2D and 3D geometrical models
(e.g., Maganaris et al., 1998; Azizi et al., 2008; Randhawa
and Wakeling, 2015); transmission of forces and deformations
between the longitudinal direction and transverse directions have
been investigated with studies that used fluid and hydrostatic
models and experiments (Azizi et al., 2017; Sleboda and Roberts,
2017); and lumped parameter models have accounted for tissue
mass, accelerations and the mechanical cost of inactive tissue
(Günther et al., 2012; Ross and Wakeling, 2016; Ross et al.,
2018b). However, the physical principles that relate muscle
shape and force should emerge from the complex interactions
between the contractile elements, the material properties of the
tissue and the 3D structure of the muscle and not rely on
specific explanations for distinct examples. Modelling muscle as
a fibre-reinforced composite biomaterial allows the principles
of continuum mechanics and the finite element method (FEM)
to be applied to this problem (Johansson et al., 2000; Meier
and Blickhan, 2000; Yucesoy et al., 2002; Oomens et al., 2003;
Blemker et al., 2005; Röhrle and Pullan, 2007; Böl and Reese,
2008; Rahemi et al., 2014): in this approach tissue deformations

are associated with an energy function, usually called the
strain-energy function. The strain-energy function describes all
the active, passive and incompressibility behaviours of the muscle
tissue, allowing these models to track the redistribution of strain-
energy potentials within the tissue. Thus, such FEM models
are ideal for evaluating the redistribution of energy within a
contracting muscle.

In this paper we use a FEM model of muscle that we
previously developed (Rahemi et al., 2014, 2015; Ross et al.,
2018b), but with a number of numerical and computational
refinements. Both muscle and aponeurosis tissue are modelled
as fibre-reinforced composite biomaterials using the principles
of continuum mechanics. For the muscle tissue, the fibres
in the model represent the myofilaments that develop both
active and passive forces (from the actomyosin cross-bridges
and titin molecules, respectively). These model fibres are non-
linear actuators, with their forces being calculated using a
Hill-type modelling approach (e.g., Zajac, 1989). The fibres
develop active forces that increase with the activation level
and their orientations are specified at each point, allowing the
pennation angle to be calculated. The material properties of
the muscle are modelled as base material (combining both
intracellular and extracellular effects), and the whole muscle
tissue is considered as nearly-incompressible. The aponeurosis
tissue is also fibre-reinforced, but here the model fibres
represent collagen fibres within the aponeurosis. Similar to the
muscle, the aponeurosis has its own base material properties
and nearly incompressible constraints. Both the muscle and
aponeurosis tissues are thus transversely isotropic. In this
paper we quantify the energy state of the different elements
within the model (the contractile strain-energy potential from
the fibres, the base material strain-energy potential, and the
volumetric strain-energy potential that penalizes volume changes
at each element), and track the redistribution of energy between
these elements as the fixed-end contractions progress. Here we
evaluate the deformations of the medial gastrocnemius between
our modelled and magnetic resonance imaging (MRI) results,
and we quantify the redistribution of energy that occurred
within a block of muscle in the medial gastrocnemius, and
across a series of additional blocks with varying geometry
and architecture.

METHODS

In this paper we present a parallel modelling and experimental
study to evaluate the changes in internal energy during fixed-end
muscle contraction. We model blocks of muscle with different
sizes, shapes and pennation angles to determine how these
features affect the strain-energy, deformations and forces of
the muscles. To assess how valid these modelled effects are to
whole muscle contractions we compare the model outputs to the
outputs of a block of muscle within the experimentally-measured
geometry of the medial gastrocnemius muscle. Additionally,
we validate the deformations of the medial gastrocnemius
that are predicted by the model with experimentally measured
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A B

C D

FIGURE 1 | Constitutive relations. We fit curves for the active (grey) and passive (black) along-fibre properties of the muscle tissue to experimental data from Winters

et al. (2011) (A). The along-fibre properties of the aponeurosis were due to only passive forces, and we fit this curve to experimental data from Dick et al. (2016)

(B). (C,D) Show curves for the isotropic base material for muscle, fit to data from Mohammadkhah et al. (2016), and aponeurosis, fit to data from Azizi et al. (2009),

respectively.

deformations of the muscle surface geometry and the internal
fibre pennation angle.

Finite Element Model
Formulation
Wemodelled the muscle tissue as a three-dimensional and nearly
incompressible fibre-reinforced composite material. While the
model is transversely isotropic, the presence of fibres through the
material results in an overall anisotropic response of the tissue.
The formulation of our model is based on the balance of strain-
energy potentials proposed by Simo et al. (1985); see also Simo
and Taylor (1991), Weiss et al. (1996), and Blemker et al. (2005).
Our approach is to numerically approximate the displacements
u, internal pressures p, and dilations J of the tissues so that the
total strain-energy of the system Etot reaches a local optimum.
The total strain-energy of the system is given by:

Etot(u, p, J) = Uint(u, p, J)−Wext(u), (1)

where U int denotes the internal strain-energy potential of the
muscle and Wext denotes the external work on the system. In
other words, we seek a state (u, p, J) such that the first variation
of the total strain-energy DEtot is zero:

DEtot(u, p, J) = 0. (2)

To approximate the solutions (u, p, J) of Equation 2 we used
the finite element method, and to approximate the integrals that

are computed as a part of this method, we used the quadrature
rule which involves quadrature points and weights. Therefore,
u, p, and J are only known at the quadrature points. See section
Appendix I. Details ofModel Formulation for more details on the
formulation of our problem. The model was implemented in the
finite element library deal.II version 8.5 (Arndt et al., 2017).

Material Properties
The fibres in the fibre-reinforced composite material represent
the behaviour of the myofilaments in muscle that develop
both active (contractile element) and passive (parallel elastic)
forces, and the tissue surrounding the fibres that we refer to
as base material, represents the behaviour of the additional
intra- and extracellular components that include connective
tissue such as ECM, blood, and other materials within whole
muscle. We formulated the active and passive fibre curves
as trigonometric polynomial and second-order piecewise
polynomial fits of experimental data (Winters et al., 2011).
These curves (Figure 1A) are similar in shape to the Bézier
curves presented in (Ross et al., 2018a) but are not parametric.
To model the base material properties of the muscle, we
used a Yeoh model (Yeoh, 1993) fit to experimental data
for tensile loading of muscle in the across-fibre direction
(Mohammadkhah et al., 2016) (Figure 1C). Because the
properties of the fibres only act in the along-fibre direction,
the tensile across-fibre data from Mohammadkhah et al. (2016)
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likely only represents the properties of the base material
surrounding the fibres. We assumed that the base material is
isotropic and so contributes to the muscle tissue response in
all directions.

While the block geometries in this paper are composed of
only muscle and do not account for the effects of aponeuroses,
we included both a superficial and deep aponeurosis in the
MRI-derived geometries to better replicate the behaviour of the
in vivo medial gastrocnemius. As with the muscle tissue, we
modelled the aponeurosis tissue as fibre-reinforced composite
material. However, while the fibres in the muscle tissue produce
both active and passive forces, the fibres in the aponeurosis
tissue produce only passive forces and represent the behaviour
of the bundles of collagen fibres within the connective tissue.
Given that tendon is an extension of aponeurosis and likely has
similar composition and collagen properties, we fit the passive
fibre curve to experimental stress-stretch data for tendon (Dick
et al., 2016). This passive fibre curve is of the same form as the
piecewise polynomial that we used for the muscle fibre passive
curve and can be seen in Figure 1B. To model the base material
properties of the aponeurosis, we fit the model from Yeoh (1993)
to transverse tensile loading data for aponeurosis (Azizi et al.,
2009; Figure 1D).

We modelled both the muscle and aponeurosis tissue as
nearly incompressible, with a volumetric strain-energy potential
describing the energetic cost of the compression that does occur
in the muscle. These volumetric strain-energy potentials were
described by their bulk modulus κ, that took values of κ =106

Pa for the muscle and κ =108 Pa for the aponeurosis (Rahemi
et al., 2014, 2015; Ross et al., 2018b). Finally, we set the maximum
isometric stress of the tissues to 200 kPa.

Experimental Data Collection
We collected surface geometry and internal architecture data
for the medial gastrocnemius (MG) muscle using magnetic
resonance (MRI) and diffusion tensor (DTI) images of the lower
limb. These data were to provide initial geometries for model
simulations of muscle contraction (from the resting condition),
and to provide deformed geometries and architectures during
fixed-end contraction to validate the simulation outputs from the
finite element model of muscle contractions.

Four female participants (age 29± 4 years mean± S.D.) with
no recent history of musculoskeletal disease or injury took part
in this study. All procedures conformed to the Declaration of
Helsinki (2008) and were approved by University of New South
Wales’ Human Research Ethics Committee HREC (approval
HC17106). We obtained written informed consent from all
participants. Details of the MRI acquisition and data analysis
can be found in Appendix II. Experimental Measurements From
MRI and DTI. Briefly, we had participants lie supine in an
MRI scanner with their right knee slightly flexed, their right
foot strapped to a footplate and their ankle at 5◦ plantarflexion.
We instructed participants to generate plantarflexion torques
of 10% (twice) and 20% (once) of their maximum voluntary
plantarflexion torque while we imaged their right lower leg:
we provided visual feedback of the plantarflexion force to

help participants maintain constant plantarflexion torque during
the 2.5 min scans.

We calculated fibre orientations from DTI scans (primary
eigenvector of the diffusion tensor) and created 3D surface
models of the medial gastrocnemius from anatomical MRI scans
both while the muscle was relaxed and during contractions
(Figure 2).

Model Simulations
Simulations of Block Geometries
We constructed a series of 25 blocks of parallel-fibred and
unipennate muscle with cuboid geometries and no aponeurosis
(Figure 3). We defined the length of the blocks as the distance
between the positive and negative x-faces in the x-direction.
The muscle fibres were parallel to each other and the xz plane,
but oriented at an initial pennation angle β0 away from the
x-direction. We determined the cross-sectional area CSA of
each muscle block from its initial configuration V0 as the area
of the cross-section in the yz plane. The muscle blocks had
faces in the positive and negative x, y, and z sides (for V0)
that deformed during contraction. One purpose of this study
was to identify if the strain-energy is redistributed within the
muscle independently from the effect of muscle size or shape.
Hence, we varied the shape and pennation angle of the muscle
blocks to span a range of architectures. The standard dimensions
for the muscle blocks were 30 × 10 × 10mm, however, we
varied CSA and the block volumes Vol by 15%, and β0 from
0 to 37◦ Some blocks had the same CSA and Vol, but varied
in their β0; some blocks had the same β0 and Vol but differed
in their CSA; some blocks had the same CSA and β0 but differed
in their Vol. In this manner, the effects of β0, CSA, and Vol could
be independently tested.

We simulated contractions of the muscle blocks using the
FEM model. To fix the ends of the muscle blocks, we imposed
kinematic constraints on the positive and negative x end faces
in all three directions. We set the initial length of the fibres to
their optimal length (λiso = 1) and linearly ramped the activation
from 0 to 100% over 10 time steps. For these blocks containing
only muscle tissue, the simulations would only converge to an
activation of 100% when β0 was>5◦, so we increased the stiffness
of the base material using a scaling factor sbase of 1.5 to allow the
model to converge tomaximum activation when β0 was 5

◦ or less.

Simulations of MRI-Derived Geometries
We created hexahedral meshes of the MG muscle at rest for all
four participants. To do this, we outlined the shape of the muscle
on all scan slices where themuscle was visible and then used these
outlines to create a surface model of the muscle with 100 nodes.
We converted the surface model to a volumetric tetrahedral mesh
and then to a hexahedral mesh in GMSH format using GIBBON
Toolbox and custom-built Matlab algorithms (MATLAB, 2018;
GIBBON Toolbox: Moerman, 2018).

Large parts of the MG surface are covered by aponeuroses, so
unlike the block simulations, we included superficial and deep
aponeuroses in these simulations to better mimic the behaviour
of the whole muscle during contraction. Aponeuroses are thin
and difficult to discern on MRI scans so we identified them
as regions where the muscle fibres intersect with the muscle
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FIGURE 2 | Example MRI scan of medial gastrocnemius and model geometry. (A) Example of an axial slice of the mDixon MRI scan of the calf approximately midway

between the ankle and the knee. The medial gastrocnemius is outlined in green. (B) Example of a three-dimensional surface model reconstruction of the medial

gastrocnemius. (C) Example of a hexahedral mesh of the same muscles with the muscle elements in red and the aponeurosis elements in white. (D) Example of a

coronal slice of the mDixon scan (left) and DTI-derived primary eigenvectors shown as a red-green-blue color maps (right) intersecting the medial gastrocnemius

mid-belly. These images were obtained with muscle at rest. The sphere in the inset can be used for interpretation of the directions of the primary eigenvectors (blue:

superior/inferior, red: left/right, green: anterior/posterior). (E) mDixon and primary eigenvector map obtained at the same location in the muscle during a contraction at

20% plantarflexion torque. The red rectangles in the images indicate the 30 × 10 × 10mm region of the muscle that was used to compare to simulations of a muscle

block of similar size.

surface: these fibres (4,039–7,745 per participant) were tracked
using tractography methods on the DTI data, described in
Bolsterlee et al. (2019). We added new hexahedral elements to
the outside of the muscle surface where the aponeuroses had
been identified. These elements tapered linearly in thickness
along the muscle’s length so that they were 2mm thick where
they merged with the external tendon and 1mm thick at
the other end (Figure 2). Aponeurosis elements were assigned
aponeurosis properties.

The DTI-derived muscle fibre orientations provided an
opportunity to populate the MG-based geometry with the actual
β0 at each point (Chen et al., 2016; Alipour et al., 2017). To
achieve this, we sampled local fibre orientations at 2mm intervals
along muscle fibres from DTI-derived fibre tracts, and then
assigned fibre orientations to quadrature points of all muscle

elements using nearest neighbor interpolation (or extrapolation
for the most proximal part of the muscle for which no DTI data
were available). We set the fibre orientations of quadrature points
inside the aponeurosis to be tangential to the muscle surface
with a zero y-component, i.e., parallel to the muscle’s surface
and nearly parallel to the muscle’s long axis. We additionally
evaluated simulations of the MG-based muscle using constant
pennation angle β0 through the muscle, to compare directly with
results from the isolated muscle blocks.

We simulated fixed-end contractions of the MRI-derived
geometries for the medial gastrocnemius, up to 100% muscle
activation in increments of 10%, by applying kinematic
constraints in all three orthogonal directions to the most
proximal faces of the superficial aponeurosis and the most distal
faces of the deep aponeurosis.
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A

B

C

D

E

F

G

H

I

FIGURE 3 | Geometries of muscle blocks. (A). Each block of muscle was defined by its initial cross-sectional area (CSA, blue face, parallel to the yz plane): the

physiological cross-sectional area (brown plane, normal to the fibre direction) was greater than the CSA for pennate blocks. We set fibre orientations at each

quadrature point (red vector, shown here only through centre of muscle). Modelled muscle had orientations defined at 128,000 quadrature points within each block.

(B–E) Some blocks had the same dimensions, but different fibre orientations. (F–I) Other blocks also varied in their CSA and volume. Vertical grey dash lines are

projected down from the diagonal corners of blocks (A,F) to highlight where the other blocks have changed dimensions.

Post-Processing and Data Analysis
The model geometries used for the FEM simulations were
each bounded by their surface. For the block simulations, we
characterised the faces of the blocks (–x, +x, –y, +y, –z and +z
faces) for the undeformed state V0, and then followed these for
each deformed state V. The length of the muscle block l is the

distance between the -x and+x faces and was normalized l̂ to the
length in the undeformed state. The strain ε between the faces
is the change in distance between opposite faces, normalized to

their initial separation in the undeformed state. The geometries
from the medial gastrocnemius muscles from the MRI scans had
no distinct faces and so we characterized the changes in width
and depth from the whole surface. We sampled cross-sections of
the surfaces at 10% intervals along the muscle length: the width
was the maximum width of the section, and the depth was given
by the cross-sectional area of that section divided by its width.

We defined muscle bulging as displacement of the muscle’s
surface in the direction perpendicular to the surface. We
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calculated bulging using distance maps. A distance map is a
3D regular grid of points in which the absolute value of each
grid point equals the distance to the nearest point on the
surface model. To determine muscle bulging during contraction,
a distance map of the muscle surface at rest V0 was created.
We aligned the surface for the current state V with that for the
undeformed state V0 using principal component analysis. The
distance map of the muscle at rest was then interpolated at the
nodes of the aligned current state. The value associated with
each node thus approximates the distance to the nearest point of
the muscle at rest, allowing for quantification of muscle bulging
patterns: the sign indicates whether a point is inside (negative)
or outside (positive) the muscle surface. Muscle bulging was
calculated using this same approach for both theMRI geometries,
and the FEM simulations of the medial gastrocnemius.

The FEM model calculates tissue properties across a set of
quadrature points within each model: 128,000 quadrature points
for the muscle blocks, and∼37,000 for the medial gastrocnemius
geometries. We defined an orientation and stretch (normalized
length) at each quadrature point. The pennation angle in the
undeformed β0 and current β states were calculated as the angle
between the fibre orientations and the x-axis: this is an angle in
3D space, similar to the 3D pennation angles defined by Rana
et al. (2013). The fibre stretch λtot gives the normalized length
of the tissue in the direction of the fibres at each quadrature
points. These pennation angles β and fibre stretches λtot are thus
calculated for local regions within the muscle tissue, and so we
sometimes reported them as their mean value across the whole
tissue or block.

We calculated forces F as the magnitude of force
perpendicular to a face or plane within the muscle, and the
stress σ as that force divided by the area of that face or plane in
the current state of the simulation.

The strain-energies are initially calculated as strain
energy-densities ψ, which are the strain-energy for a given
volume of tissue, in units J m−3. The FEM calculates ψ for
every quadrature point, and so we calculated the overall strain
energy-density from the weighted mean of ψ, where it is
weighted by the local dilation at each quadrature point. The
strain-energy potential U is the strain-energy in the tissue, in
units of Joules. We calculated U by integrating ψ across the
volume of muscle tissue.

We compared the simulation results for isolated blocks to the
results of the MRI-based model of the medial gastrocnemius.
Specifically, quadrature points inside a 30 × 10 × 10mm
region in the centre of the medial gastrocnemius (Figure 2) were
compared to the results for an isolated block of muscle tissue of
the same size. For both blocks we used β0 = 25◦, and sbase = 1.

Symbols used to reference the post-processing parameters are
shown in Table 1.

RESULTS

Simulations of Block Geometries
The parallel fibred (β0 = 0◦) blocks had their initial fibre
direction parallel to the longitudinal direction of the muscle
blocks (x-direction), and so their fibres showed no net shortening
for these fixed-end contractions. Instead, the volume of the

TABLE 1 | Symbols and definitions of variables in the main text.

Symbol Definition

u displacement vector

p internal pressure

J dilation

Etot total strain energy

U strain-energy potential

Uint internal strain-energy potential

Wext work done by external forces

DEtot first variation of Etot

ψ strain energy-density

V0 initial configuration

V current configuration

CSA cross-sectional area

β0 pennation angle in initial configuration V0

β pennation angle in current configuration V

β Mean pennation angle in current configuration V

Vol current volume

λiso isovolumetric stretch

λtot mean total stretch

sbase stiffness parameter for muscle base material

ε scalar strain

l length

l̂ normalized length

F force

Fx force in x-direction

σ scalar stress

κ bulk modulus

blocks showed a marginal increase during contraction, with the
fibre stretch λtot increasing minimally (Figure 4A). The mean
pennation angle for the parallel fibred block was β = 0 at full
activation. On the other hand, the fixed-end constraints were not
in the same direction as the fibre orientation for the pennate
(β0 > 0◦) blocks, and so their fibres underwent a net shortening
during contraction (Figure 4D). Indeed, at 100% activation the
β0 = 30◦ block shortened to λtot = 0.86, and its pennation angle
increased to 33.6◦ (Figures 4D,E).

Stresses normal to themean fibre direction, through the centre
of the muscle blocks, increased as activation increased and are
shown for the fully active conditions (Figure 5A). These stresses
had components due to the different strain-energy potentials.
The stresses due to the active-fibre and the volumetric strain-
energy potentials both acted to shorten the fibres, whilst the
stress from the base material acted to resist shortening. For the
parallel-fibred case (β0 = 0◦), the stress from the volumetric
component was a large proportion of the total stress, and there
was little resisting stress from the base material. These features
transitioned as the pennation angle increased, and the β0 =

30◦ block had the least stress from the active fibre strain-energy
potential, and the greatest resistive stress from the base material
strain-energy potential. As the pennation angle increased, the
normal stress to the fibres had a smaller component in the
longitudinal direction (x-direction) of the blocks. Indeed, the
parallel fibred block (β0 = 0◦) developed a force of Fx = 19.06N
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FIGURE 4 | Contractile features for parallel and pennate blocks of muscle during fixed-end contraction. Parallel fibred muscle (A–C) and pennate fibred muscle

blocks (D–F) shown as activation level increased to 100%. The stretch (A,D) and pennation angles (B,E) are shown as means calculated across the 128,000

quadrature points in each muscle block. The force Fx is in the line or action of the muscle acting on the x-face of the block (C,F). These two muscle blocks had the

same volume and the same cross-sectional area of 1× 10−4 m2.

in its longitudinal direction, whereas the pennate block (β0 =

30◦) developed a reduced force of 10.70N (Figures 4C,F).
The x-stress on the x-face increased as activation increased

(Figures 6A,D), but there was no x-strain due to these
contractions being fixed at their x-faces. By contrast, the y-stress
on the y-face and the z-stress on the z-face were minimal,
due to these faces being unconstrained. Nonetheless, stresses in
the y- and z-directions developed within the blocks of muscle
when the muscle activated. Within the blocks, stresses in the
y- and z-directions were transversely isotropic for the β0 = 0◦

block, but showed increasing asymmetry as the pennation angle
increased. In general, the y- stress was larger than the z-stress
and both acted to expand the muscle block, however, at larger
pennation angles (β0 > 25◦) the z-stress became minimal or
compressive. The muscle blocks deformed in 3D. For both the
parallel and pennate example, the x-faces remained fixed, and
so no x-strain was recorded. For the parallel-fibred block, the
small increase in volume resulted in a small, but isotropic, strain
in the y- and z-directions (Figure 6B). There was a transition
pennation angle at β0 = 15◦ below which the z-strain was
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A

B

FIGURE 5 | Components of stress and force during fixed-end muscle contraction. (A) Stress through the centre of the muscle blocks, normal to the mean fibre

direction. Stress is shown for the 100% activation condition, for muscle blocks with initial length λiso =1, but different initial pennation angle, β0. The total stress,

normal to the fibres has components from the volumetric, active-fibre and base material strain-energy potentials. Stress is positive if it acts to shorten the fibres, but

negative if it acts to length the fibres: the volumetric stress acts to shorten the fibres, but this is resisted by the base material that acts to lengthen the fibres. (B) Force

in the longitudinal direction of the muscle blocks, measured on the x-face. The muscle block had initial pennation β0 = 0◦, was stretched or shortened to a new length

using traction on the +x face, then held it at that length as we increased activation to 100%. Note how the base material and volumetric forces oppose shortening at

short lengths, and how the passive forces have been redistributed across passive-fibre, base material and volumetric components for longer lengths.

positive with the z-faces increasing in separation, and above
which the z-strain was negative with the z-faces becoming closer
during contraction (Figure 7). Small changes in the active-fibre
strain-energy potential in the parallel-fibred block were largely
balanced by increases in the volumetric strain-energy potential:
here the changes in passive-fibre and base material strain-energy
potentials were much smaller (Figure 8C). By contrast, the
active-fibre strain-energy potential showed a larger change in the
pennate block of muscle that, in this case, was largely balanced
by increases in the base material strain-energy potential: here the
changes in volumetric and passive-fibre strain-energy potentials
were much smaller (Figure 6D).

When the parallel-fibred muscle block (β0 = 0◦) was stretched
or shortened to different lengths before the contraction began,
the balance of the strain-energy potentials changed within
the muscle. When the muscle block was fully active, the
component of the stress due to the active-fibre strain-energy
potential acted to shorten the muscle at all muscle lengths
tested. The components of stress due to the volumetric and base
material strain-energy potentials both acted to resist shortening

at the short muscle lengths (l̂ < 0.9), and thus contributed
to a reduction to the force in the longitudinal direction Fx
(Figure 5B). At the longer muscle lengths, the components of
stress due to the volumetric, base material and passive-fibre

strain-energy potentials all acted to resist lengthening (l̂ < 1.1).
Interestingly, the contribution of the passive-fibre to the overall
resistive force was less than that for the base material and also the
volumetric components (Figure 5B).

The components of the strain energy-density showed little
change with cross-sectional area of the muscle blocks, but a
pronounced change with pennation angle (Figure 8). There were
very few points in the muscle blocks that showed an increase in
fibre stretch at full activation, and so the strain energy-density
for the passive-fibre component was small for these simulations
(Figure 8B). However, the strain energy-density for the base
material increased in an almost linear fashion with pennation
angle (r2 = 0.99: Figure 8D). The strain-energy potential from
the base material acted to resist the fibre shortening, and the
strain-energy potential from the volumetric and active-fibre
components acted to shorten the fibres (Figure 5A). The strain
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FIGURE 6 | Stress, strain and strain-energy potentials for parallel and pennate blocks of muscle during fixed-end contraction. Parallel fibred muscle (A–C) and

pennate fibred muscle blocks (D–F) shown as activation level increased to 100%. The y- and z-stresses on the y- and z- faces were minimal, but were higher within

the blocks (see text). The y-strain on the y-face was the same as the z-strain on the z-face for the parallel fibred block (B), however, the transverse anisotropy in the

stress caused a transverse anisotropy between y-strain on the y-face and the z-strain on the z-face for the pennate fibred block (E). The base material strain-energy

potential was much larger for the pennate block (F) than for the parallel fibred-block (C), and was largely balanced by the active-fibre strain-energy potential. These

two muscle blocks had the same initial volume (3× 10−6 m3) and same cross-sectional area (1× 10−4 m2 ).

energy-density for the active fibres increased in magnitude at
greater pennation angles (Figure 8A), whereas the volumetric
component of the strain energy-density decreased at higher
pennation angles (Figure 8C). The stress in the longitudinal
direction of the muscle blocks (x-stress on x-face) remained
high for pennation angles up to 15–20◦ (Figure 8E) and showed
substantial reduction for pennation angles >20◦ (Figure 8E).

The isolated block of muscle showed similar deformations
and strain-energy densities as to the block of similar size and
fibre orientation extracted from the simulation in the MRI-
derived MG geometry (with β0 = 25◦ for both; Figure 9B).
There was a greater spread of values in the isolated block,
due to the proximity of the fixed-end constraints on the faces,

however, the median fibre strain, dilation, and pennation angle
were different by <1% or 1◦ for these simulations. Additionally,
the strain energy densities had a close match for the two
conditions (Figure 9C).

Simulations of MRI-Derived Geometries
The simulations and the DTI data both showed increases in
pennation angle β during contractions (Figure 10). However, this
increase was larger for the DTI data (11◦ at 20% plantarflexion
torque) than the simulations (3◦). The simulations and the MRI
data both showed relatively small changes (<2%) in muscle
width and depth at 10% activation. At the most distal end, the
model decreased its depth slightly whilst the depth increased
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FIGURE 7 | Transverse strains between the y- and z-faces of the muscle blocks as a function of pennation angle. y-strain εy shown for the y-face and z-strain εz

shown for the z-face. Results shown for the 100% activation state for all blocks, covering a range of volumes, cross-sectional areas, and pennation angles.

in the most proximal regions (Figures 11A,B). Changes in
width and depth were larger and more heterogeneous along
the muscle’s length (Figures 11C,D) at 20% activation. The
proximal region increased in width and decreased in depth
while the distal part decreased in width and increased in
depth. On average, changes in width were similar between
simulations and MRI measurements. However, the simulation
with DTI-derived fibre orientations did not predict the decrease
in depth observed in MRI data for 20% activation. Adjusting
the initial pennation angle of the model to β0 = 25◦

resulted in a closer match between DTI-derived and simulated
fibre orientations at 20% activation (Figure 10), and a close
match in magnitude and pattern of muscle depth change
between MRI and simulations (Figures 11C,D). The adjusted
model also resulted in a close match of 3D muscle bulging
patterns predicted by the model and as measured from MRI
(Figure 12).

DISCUSSION

This study investigates the energetic mechanisms within muscle
tissue during fixed-end contractions. The pennate blocks of
muscle (β0 > 0◦) that we modelled showed general features of
contraction that have been typically reported in both animal
and human studies (Kawakami et al., 1998; Héroux et al.,
2016). The fibres shortened (λtot < 1) and rotated to greater
pennation angles during contraction, even though the ends of
the blocks were fixed (Figure 4). An asymmetry developed to the
stress in the transverse (yz) plane when the muscle was active.
Changes to the tissue shape were governed by the isotropic base
material properties and the volumetric strain energies: because
there was an asymmetry to the stress across the muscle, this
resulted in an asymmetry to the transverse tissue deformation
that was dependent on pennation angle (Figure 7). In particular,
differences in the direction of the z-direction strains during

contraction were similar to those reported by Chi et al. (2010).
These findings explain a mechanism that can result in transverse
anisotropy within a muscle, that we have previously reported
(Randhawa and Wakeling, 2018).

Interestingly, the volume of the muscle blocks increased
during contraction to a small extent (0.6–0.9% for the 20%
activation MG simulations; Figure 9B). The mechanism for
this increase is described in section Strain-Energy Distribution
Through Contracting Muscle. The extent of the increase in
volume is related to the choice of the bulk modulus κ of the tissue
that is used to calculate the volumetric strain-energy potential.
However, previous studies have shown that κ can be varied across
a wide range of magnitudes and still result in similar predictions
of tissue deformation (Gardiner and Weiss, 2000), and here
we used a value consistent with our previous studies (Rahemi
et al., 2014, 2015). Our finding that muscle volume can change
is consistent with a number of previous studies investigating
muscle at different scales (Neering et al., 1991; Smith et al.,
2011; Bolsterlee et al., 2017). Intriguingly, the volume of muscle
tissue will tend to increase with the muscle bulging transversely,
even for a fixed-end contraction of parallel-fibred blocks (zero
pennation angle). However, this is consistent with the finding
that regions of single fibres can increase in volume during fixed-
end contraction (Neering et al., 1991). Local increases in volume
had previously been explained due to cytoskeletal effects (Neering
et al., 1991); in our simulations the cytoskeleton is represented
as part of the base material, and we show that as energy is
redistributed to the base material and volumetric components,
there is a tendency for the volume to increase. The changes in
volume were not uniform through the blocks of muscle. Indeed,
variations in bulging along a muscle belly have also been reported
in both human and rabbit muscle (Böl et al., 2013; Raiteri et al.,
2016). It should be noted that increases in intramuscular pressure
during contraction may expel blood from the muscle (Barnes,
1986; Sjøgaard et al., 1988), acting to decrease the whole muscle
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FIGURE 8 | Strain energy-densities and stress in the longitudinal direction for muscle blocks across all geometries. Strain energy-densities ψ are shown for the

active-fibre (A), passive-fibre (B), volumetric (C), and base material (D) components. Note the different scales for the components of strain energy-density, showing

much lower strain energy-density for the passive-fibre and volumetric components. The strain energy-densities presented are relative to the undeformed state V0.

Stress σx in the x-direction on the x-face (E). Results are shown for the 100% activation state from the simulations.

volume; this may occlude local increases in volume of the muscle
tissue due to the volumetric strain-energy potential.

Evaluating the muscle model within the actual MRI-derived
geometry of the medial gastrocnemius allowed us to qualitatively
validate the outputs from the model. When muscle contracts it
develops force and changes length (ormore exactly changes shape
in 3D). Direct measures of muscle force are virtually impossible
to make in humans, and even in the few animal studies where
they are measured, the forces would typically only be measured
in one-dimension. Thus, complete force and deformation data
sets for validating 3Dmuscle models are sparse for animal studies

(Böl et al., 2013), and non-existent for human studies. However,
3D muscle models have previously been validated against
deformations of contracting muscle for both animal (Tang et al.,
2007) and human (Blemker et al., 2005; Böl et al., 2011) studies.
MRI allows 3D deformations of the whole muscle geometry to
be measured, allowing for validation of the surface deformations
that were generated by the muscle model. It should be noted
that the MRI images of the medial gastrocnemius were from
the intact leg, and thus subject to external forces and boundary
constraints (from surrounding tissues) that were not replicated
in the model here. Additionally, the MRI images were for muscle
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FIGURE 9 | Deformations and energies for a block of muscle within the medial gastrocnemius and an isolated block. Both simulations were evaluated for β0 = 25◦

and 20% activation (similar to the extreme conditions in Figures 10, 12). (A) Geometries of the muscle blocks. (B) Stretch, pennation angle, and volume shown for

each quadrature point, the median for these values (horizontal black bar), and the spread of the data (vertical black bar). (C) Strain energy-densities for these blocks.

The boxes show the 25 and 75% quantiles, with the median value indicated in the middle. The grey bars show the values for the undeformed state V0.
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contractions with fixed joint angles, however, due to stretch in
the tendons the muscle belly would undergo some shortening
(∼3mm during 20% plantarlexion torques as measured from
the MRI scans), and thus the model constraints should not be
considered as an exact match of the MRI experimental situation.
Nonetheless, there was a close match of the deformations
of the surface geometry between the MRI and FEM model
results (Figure 12). Additionally, a block of muscle identified
within the actual MRI-derived geometry showed similar patterns
of strain-energy densities as for an isolated block of muscle
(Figure 9C). These results give confidence that the mechanisms
of contraction identified for the blocks of muscle tissue
are realistic.

Novel results from this study are that regions of the muscle are
displaced inwards, particularly under the aponeuroses, whereas
other regions are displaced outwards, predominantly at the
ends and edges of the muscle, and this bulging is apparent
in both the MRI images and the FEM model results. Previous
ultrasound studies have suggested that tissue deformations and
volume changes predicted from imaging the middle region of
the muscle belly may not represent deformations along the entire
muscle if deformations and volume changes vary along its length
(Raiteri et al., 2016; Randhawa and Wakeling, 2018), and these
suggestions are now supported by the results from this study.

Strain-Energy Distribution Through
Contracting Muscle
When themuscle contracts it increases in its free energy, with this
energy being derived from the hydrolysis of ATP to ADP within
the muscle fibres (Woledge et al., 1985; Aidley, 1998). There is
only finite free energy available from hydrolysis of ATP within
the muscle, governed by the availability of nutrients and ATP,
therefore, there is a limit to the work that can be done during
a muscle contraction. The mechanical work that can be done
by a contracting sarcomere in its line-of-action is an intrinsic
property of the sarcomere, is given by the area under the active
force-length curve, and has an energy-density of ∼1.5 × 105 J
m−3 (Weis-Fogh and Alexander, 1977). Strain-energy potentials
develop in the fibres of our FEMmodel during contraction: these
fibres represent the contractile elements within the myofilaments
in muscle. Within the myofilaments, the cross-bridges contain
energy when they attach between the actin and myosin as part
of the cross-bridge cycle (Williams et al., 2010) like a set of
taught springs. This energy is partially redistributed to the thick
and thin myofilaments (Williams et al., 2012), with additional
energy being released during the power stroke of the cross-bridge
cycle. Strain-energy potentials are also redistributed to the titin
filaments that are large proteins that span from the M-line to the
Z-disc (Gregorio et al., 1999) and likely account for the majority
of the passive-fibre strain energy. Base material strain-energy
potential can develop in the bulk muscle tissue within the muscle
fibres (excluding the myofilament fraction), connective tissue
surrounding the muscle fibres such as the extracellular matrix,
and in sheets of connective tissue that form the aponeuroses,
internal and external tendons. Energy is also used to change
the muscle volume. Whilst muscle is often assumed to be

FIGURE 10 | Mean pennation angles (β) in a block of 30× 10× 10mm in the

middle of the medial gastrocnemius muscle belly. Data are shown for muscles

at rest and during 10% and 20% plantarflexion torques as predicted by the

simulations (black squares for β0 = 25◦ and black circles for actual β0) and as

measured from DTI scans (white circles). Circles and error bars are the means

and standard deviations of the data/models from four participants. Results are

shown for simulations with the DTI-derived initial fibre orientations (actual β0)

and for simulations in which β0 initial was set to 25◦ so that the simulated fibre

orientations at 20% activation were a closer match to the orientations

measured with DTI at 20% plantarflexion torque.

incompressible, small changes in volume can occur in fibres
(Neering et al., 1991), bundles of fibres called fascicles (Smith
et al., 2011) and in the whole muscle (Bolsterlee et al., 2017):
these changes in volume result in changes to the volumetric
strain-energy potential. Additionally, energy is required for the
acceleration of the tissue mass within the muscle to overcome
its inertia during rapid movements (Ross et al., 2018b). Finally,
energy is transduced to mechanical work at the surface of the
muscle where the muscle changes shape and exerts forces on
surrounding structures (Siebert et al., 2012, 2014).

Muscle force developed in the longitudinal direction is given
by the x-component of force on the positive and negative
x-faces from the blocks of muscle in this study. As the
strain-energy potentials within the muscle are redistributed
between the different components of energy (volumetric, base
material and active- and passive-fibre strain-energies), and
because the strain-energy potentials in both the base material
and volumetric components are distributed across all three
dimensions, the force that can be developed in the longitudinal
direction will be less than that could be generated by just the
contractile elements alone. This is a fundamental consequence of
encasing the model fibres (representing the muscles’ contractile
elements) within the bulk muscle tissue. In addition, the muscle
fibres develop non-uniform stretches throughout the muscle
(Figure 9B), and so the muscle is further unable to contract with
all its fibres at their optimal length, and thus the whole muscle
tissue will always contract at forces less than the theoretical
maximum isometric force. Heterogeneities in strain along the
muscle fibres are increasingly prominent when considering the
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FIGURE 11 | Change in muscle width (A,C) and depth (B,D) during fixed-end contractions of the medial gastrocnemius. Data are shown for 10% (A,B) and 20%

plantarflexion torques (C,D) as predicted by the simulations (black squares for β0 = 25◦ and black circles for actual β0) and as measured from anatomical MRI scans

(white circles). Circles and error bars are the means and standard deviations of the data/models from four participants. The two sets of white circles in the top panels

are repeated MRI measurements. The bottom panels show changes in depth and width for simulations where the initial fibre orientations (not activated) were derived

from DTI (black circles), and where the initial fibre orientations were set to 25◦ (black squares) so that the simulated fibre orientations at 20% activation were a closer

match to the orientations measured with DTI at 20% plantarflexion torque.

impact of surrounding tissue, and have been demonstrated
both experimentally (Pamuk et al., 2016; Karakuzu et al., 2017)
and predicted through modelling studies (Yucesoy and Huijing,
2012). While the model developed in this current study does
not have explicit shear properties between the muscle fibres, the
strain experienced by a single fibre will impact neighbouring
fibres resulting in similar heterogeneous strains on the adjacent
fibres. Therefore, the implicit shear properties in the model
will likely cause variations to the passive and base material
strain-energy potentials when considering muscle in vivo. Even
when the stresses and forces are considered relative to the fibre
orientation, we find that redistribution of strain-energy potentials
through the muscle tissues results in contractile stresses (normal
to the fibre direction: Figure 5A) being developed by both
volumetric and active-fibre components when the fibre stretch
λtot < 1, and additionally from passive-fibre and base material

components at longer muscle (l̂ > 1) and fibre lengths
(Figure 5B).

Our computational results suggest that parallel-fibred muscle
(β0 = 0◦) bulges slightly due to its base material properties, even
when its ends are fixed and there is no series elasticity such
as tendon that could allow the muscle belly to shorten. This
again can be explained in terms of the energy redistribution.

The free energy in the muscle increases during the contraction
process and will be redistributed across fibre, base material and
volumetric strain-energy potentials. The energetically favourable
state identified in our simulations occurred with a small
increase in tissue volume, due to transverse expansion of the
fibres (in the yz-plane). Thus, muscle bulging should not
only be considered to be a consequence of muscle shortening
leading to an increase in cross-section to maintain a constant
volume (e.g., Azizi et al., 2008, 2017; Siebert et al., 2012),
but may also occur due to the biological tissues showing
small changes in volume, even for fixed-end contractions. This
mechanism is consistent with the finding that even single
fibres can bulge during fixed-end contraction (Neering et al.,
1991).

The stresses in the tissues are defined as the first variation of

the strain energy-densities (Equation 2). We need to integrate

these stresses in order to obtain the strain-energy potentials

from known values of the stress. However, this would only

provide a change of the energy; the integral of the stress

equals the difference of the strain-energy potentials between

two different states. The strain-energy potentials presented in

this study are relative to the undeformed state V0 of the
whole muscle.
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A B C

D E F

FIGURE 12 | Muscle bulging in the medial gastrocnemius during fixed-end contraction. (A–C) show MRI data and (D–F) show data predicted by the FEM model for

the MRI-derived geometry for one subject where we set the initial muscle fibre orientation β0 to 25◦. Red and blue shades indicate outwards and inwards bulging [in

mm] at 20% activation, respectively. (A,D) show the superficial surface of the muscle whereas (B,E) show the deep surface. The proportions (frequency) of the points

on both surfaces that showed different magnitudes and directions of bulging are shown in (C,F).

This paper focusses on the internal energy within the muscle
during fixed-end contraction. However, it should be noted that
the whole energy balance will also include external work done
at the surface of the muscle (Equation 6 in section Appendix
I. Details of Model Formulation). For the case of the fixed-
end block simulations at the initial muscle length, this external
work is zero. However, we had to apply external work to the
x-faces of the system to lengthen of shorten the muscle blocks
for Figure 5B. It should be noted that external work could be
done at any point on the muscle surface, for instance transverse
compression of the muscle (in the yz-plane), and this is the
topic of our companion paper. Additionally, kinematic energy is
required to accelerate the tissue mass, and should be included to
the energy balance (Equation 5 in section Appendix I. Details of

Model Formulation) to understand the effect of muscle mass on
dynamic contractions of whole muscle: this is the topic of our
second companion paper.

Implications for Muscle Structure and
Function
Here we show that considerable strain-energy potential develops
in the base material during fixed-end muscle contractions,
with this strain-energy potential increasing as muscles become
more pennate (Figures 6F, 8D). The base material resists
the contractile force in the longitudinal direction, and so
the increasing involvement of the base material results in a
progressive suppression of the muscle force for more pennate
muscle. In this study we have implemented the base material
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as an isotropic material. However, elements of the base material
do have anisotropy that is conferred by their structure such
as the network of connected tunnels forming the endomysium
that contain a feltwork of collagen fibres (Purslow and Trotter,
1994). Lumped constitutive models, such as used here and
by e.g., Blemker et al. (2005) and Rahemi et al. (2015), are
unlikely to capture the details of base material anisotropy and
the asymmetric response to compression and tension (Böl et al.,
2012; Gindre et al., 2013). Anisotropy in the base material
properties is most pronounced when the tissue is in tension and
may be reasonably disregarded for compressive tests with λtot <

1 (Böl et al., 2012), as is the case for all the block tests in Figures 4,
5A, 6, 8. Nevertheless, we suggest here that for all the fixed-
end tests in this study (regardless of the degree of anisotropy
in the base material), the base material would still act to resist
muscle deformation and the force in the longitudinal direction;
however, as seen by Hodgson et al. (2012), the extent to which
the base material interacts with the fibre direction, and thus
muscle pennation, depends on the extent of its anisotropy. We
additionally show that even though the changes in volumetric
strain-energy potential are small, relative to the base material
strain-energy potential, the contribution of the volumetric strain-
energy potential to the contractile stress and force can be
considerable (Figure 5). Thus, even though the contribution of
volumetric and base material strain-energy potentials has been
largely ignored to date in considerations of whole muscle force
and deformation, we suggest that they play an important role
in the 3D structure and function of whole-muscle contractions.
Subsequently, this finding and study highlight how little we
currently know about these processes, and how important it will
be to further characterise and implement the base material and
volumetric properties of muscle as we continue to learn about 3D
function of whole muscle contractions.

The muscle force and stress in the longitudinal direction were
reduced at the higher pennation angles (Figures 5A, 8E). This
may be partly due to a region of muscle tissue in the middle of
the blocks having fibres that did not connect directly to the x-
faces of the block. These “unsupported” fibres would still develop
strain-energy potentials as they deformed their base material
during shortening; however, it is possible that lateral transmission
of force across the base material was not fully accommodated
by the model parameters used, thus these fibres may not have
fully contributed to the Fx forces experienced by the x-faces
of the block. Nonetheless, our results show no evidence that
increased pennation angle β0 causes an increase in the force
in the longitudinal direction of the muscle. Instead, the results
from this study support the notion that the functional benefit
of pennation in muscle may be to reduce the metabolic cost of
contraction (Biewener, 2003), or allowing the fibres to reduce
their contractile velocity and thus be better geared for dynamic
force production (Azizi et al., 2008), rather than to increase the
muscle force for fixed-end contractions per se (Alexander, 1983;
Lieber and Fridén, 2000; Biewener, 2003).

We have previously shown how intramuscular fat decreases
the force and stress that can be produced by contracting
muscle (Rahemi et al., 2015), using a similar FEM approach to
this current paper. In the fat study (Rahemi et al., 2015) we
implemented the intramuscular fat into model simulations in a

number of ways and found that all the fatty models generated
lower fibre stress and muscle force than their lean counterparts.
This effect was due to the higher base material stiffness of the
tissue in the fatty models. This fat study highlighted how the
material properties of the base material may cause important
changes to muscle contractile performance, and this was due
to the same mechanisms of energy redistribution as we now
describe in this current study. There are a range of muscle
conditions and impairments that are associated with increases
in fibrotic tissue, changing muscle stiffness, and this energetic
framework now provides an approach for us to understand how
such conditions lead to loss of muscle function. For instance,
altered material properties of muscle tissue post stroke (Lee et al.,
2015) andwith cerebral palsy (Lieber and Fridén, 2019) have been
linked to increases in collagenous connective tissue within the
muscle (Lieber and Ward, 2013). Whilst it is possible to measure
proxies of muscle tissue stiffness with shear wave ultrasound
elastography (Lee et al., 2015), it is difficult to partition these
changes between the passive stiffness of the fibres, or the stiffness
of the base material. Nonetheless, increased collagen content in
the extracellular matrix (that contributes to the base material
properties in this study) causes an increase in the passive stiffness
of the muscle in mice (Meyer and Lieber, 2011; Wood et al.,
2014). As such, we suggest that understanding how altered
tissue properties affect the energetic consequences of muscle
deformations will allow us to understand muscle impairments in
greater detail.

CONCLUSIONS

1. Strain-energy potentials develop within muscle tissue during
contraction, even for fixed-end contractions where there is no
external work.

2. Strain-energy potentials are distributed across different
components within the muscle: the contractile elements as
the active- and passive-fibre strain-energy potentials, the
cellular and extracellular components as the base material
strain-energy potentials and the volumetric component as
the volumetric strain-energy potential to enforce the nearly
isovolumetric constraints. The balance of this strain-energy
distributionmay seem counter intuitive, and it depends on the
length of the muscle and the orientation of its fibres.

3. The volumetric and base material strain-energy potentials
redistribute the energy into all three dimensions and affect
the 3D deformations of the muscle. Despite the changes in
volumetric strain-energy potential being small, relative to the
base material strain-energy potential, the contribution of the
volumetric strain-energy potential to the contractile stress and
force can be considerable. Even though the contributions of
volumetric and base material strain-energy potentials have
been largely ignored to date in considerations of whole
muscle force and deformation, we suggest that they play an
important role in the 3D structure and function of whole-
muscle contractions.

4. The muscle volume and girth can change, even for fixed-end
contractions, due to the volumetric strain energy potential.
This strain energy potential is part of the energy balance, and
accounts for the energetic cost of changes in muscle volume.
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5. Strain-energy potentials taken up by the volumetric (at shorter
muscle lengths) and base material (at short muscle lengths
and higher pennation angles) components result in forces that
resist the muscle contraction.

6. The active muscle force in the longitudinal direction is thus
less than could be predicted from the intrinsic properties
of the contractile elements alone. This loss in force gets
more pronounced for highly pennate muscle, particularly
where β0 > 20.

7. There are a range of muscle conditions and impairments
that are associated with increases in fibrotic tissue, changing
muscle stiffness. The energetic framework that we present in
this paper provides an approach for us to understand how
changes to the base-material or extracellular properties of a
muscle will lead to loss of muscle function.
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NOMENCLATURE

Activation specifically refers to the active state of the contractile
elements (muscle fibres), and is used to scale the active force that
they can develop.

Muscle contraction is the process of muscle developing
forces when its activation level is greater than zero. In muscle
physiology, contraction does not necessarily mean shortening
because tension can be developed without a change in length.

Isometric is a term commonly used in muscle physiology
to describe contractions where the length does not change,
but this can refer to length at a range of scales, including
the sarcomere, muscle belly, muscle-tendon unit or joint angle.
We use isometric here to refer to the common physiological
measure of maximum isometric force and stress, and also to
describe the MRI experiments when the subjects had fixed ankle
joint angles.

Fixed-end is used to refer to all the muscle block simulations
where the blocks had their +x and -x faces fixed, and the distance
between these faces did not change when the activation increased.
It is recognised that during these contractions the local fibre
stretch varied through the block, and was not always equal to one,
and therefore these fixed-end contractions were not isometric at
the level of the contractile fibres at each quadrature point.

The longitudinal direction is the major x-axis of each muscle
block. This can be considered the direction that would be
between the proximal and distal tendons in a fusiform muscle,
and so it is in the commonly phrased ‘line of action’. We
do not use ‘line-of-action’ (except when referencing sarcomere
properties), because forces and deformations occur in three
dimensions in this study and so there is no unique line-of-action.

Transverse direction is used to describe directions in the y-z
plane, and thus is perpendicular to the longitudinal direction of
the muscle block.
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APPENDICES

Appendix I. Details of Model Formulation
See section 3.1.1. for the general formulation of the finite element
model and Table A1 for the definitions and notation of the
variables that we used in this section.

The Cauchy stress in the tissues σ is defined as the first
variation of the internal strain energy-density ψint (see Equation
3). To obtain the strain-energy potentials, we integrate the
Cauchy stress. However, this provides a change of the energy;
the integral of the stress equals the difference of the strain-
energy potential between two different states (see Equation 7).
The strain-energy potentials reported in this study are relative to
the undeformed stateV0 of the wholemuscle. In our formulation,
the undeformed configuration has a zero strain-energy potential
as all internal stresses and external forces in the system are zero.

This paper focuses on the change of the internal strain-energy
potential U int within the muscle during fixed-end contraction.
However, it should be noted that the whole energy balance will
also include external work done at the surface of the muscle
(Equation 6). For the case of the fixed-end block simulations at
the initial muscle length, this external work is zero. However,
when the muscle block was initially stretched or shortened to a
new passive length, with traction being applied to the positive
x-face, external work is added to the system.

We assume that a muscle occupies an initial configuration
V0 and its surface is S0. Using the principles of continuum
mechanics, a point q0 in V0 can be tracked over time after the
muscle in V0 has seen some deformation. We consider V as the
current configuration, where themuscle inV0 has been deformed
at time t. We assume that there exists a unique point q in V such
that q= q(q0,t). This means that the point q is the representation
of the point q0 in the current configuration of the muscle. The
displacement vector at the point q0 in V0 is defined as the vector
formed by the points q and q0, that is

u
(

q0, t
)

:= q
(

q0, t
)

− q0.

The deformation of the tissues is defined as the gradient of
this displacement. This deformation is quantified as a tensor of
infinitesimal changes of points q0 inV0 at time t. Mathematically,
this is defined as:

F := I + ∇0u,

where I is the 3-by-3 identity matrix and ∇0 is the gradient of a
vector with respect toV0. We denote the dilation of the tissues by
J, and the internal pressure in the tissues by p.

The deformation tensor F provides a change of variables for
integrals over V0 and V as well as over the surfaces S0 and S. The
following change of variables hold:

dV = I3 (F) dV0, n̂dS = I3 (F) F−tn̂0dS0,

where n̂ is the unit normal vector on S and n̂0 is the unit normal
vector on S0, and F

−t is the transpose tensor of the inverse tensor

of the deformation tensor, F−1. These changes of variables are
used to compute volume and area of the deformed configurations
of the muscle. We compute these as follows:

Vol :=

∫

V0

I3 (F)dV0, A :=

∫

S0

I3 (F)

√

n̂t0 F
−1F−tn̂0 dS0.

The fourth invariant I4 of Biso:=I3(B)
−1/3 B, where B is the

left Cauchy tensor defined as B := FtF, is used in our model to
represent the isovolumetric stretch of the fibres at the point q0 in
V0, denoted by λiso. Following the ideas in Simo et al. (1985), we
consider normalized vectors â0 = â0(q0) that are tangential to the
fibres at the point q0 inV0. We refer to â0 as the initial orientation
of the fibre at the point q0 in V0. The total stretch of the fibres at
q0 in V0 is denoted by λtot and is defined as:

λtot := I3 (F)1/3 λiso, λiso = I4
(

â0,Biso

)

.

Important elasticity tensors can be obtained from the internal
strain energy-density ψint. The Kirchhoff tensor τ and the
Cauchy tensor σ are defined as:

τ := 2B
∂ψint

∂B
, σ := I3 (F)−1

τ . (3)

The strain energy-density ψint is split into volumetric and
isovolumetric strain energy-densities ψvol and ψiso. Following
(Pelteret and McBride, 2012), the volumetric strain energy-
density ψvol is defined as:

ψvol

(

u, p, J
)

:=
κ

4

(

J2 − 2 log (J) − 1
)

+ p(J − I3 (F)),

where κ > 0 is the bulk modulus of the tissue. The value of the
bulk modulus is different for muscle and aponeurosis, κmus =

106 and κapo = 108 (see Rahemi et al., 2014). We add the pressure
p as a Lagrange multiplier in our system to ensure an accurate
computation of the dilation J.

The isovolumetric strain energy-density is the sum of the base
material and fibre strain energy-densities:

9iso (u) := 9base (I1 (Biso)) + 9fibre (λiso) .

We fit parameters from the models proposed by Yeoh (1993)
to data reported in Mohammadkhah et al. (2016) and Azizi et al.
(2009) to obtain the mechanical properties for the base material
in both muscle and aponeurosis, respectively (see section 3.1.2).
The strain energy-density ψbase and the scalar stress σbase satisfy
the following:

∂9base

∂I1
= σbase (I1 (Biso)) .

The muscle base material properties differ widely from those
of the aponeurosis. We use ψmus,base and σmus,base for muscle
tissues, and use ψapo,base and σapo,base for aponeurosis tissues.
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TABLE A1 | Variables only in appendix.

Symbol Definition Symbol Definition

S0 surface of V0 n̂0 normal unit vector on S

V current configuration â0 normalized fibre orientation in V0

S surface of V t applied traction

St region of S with applied traction κmus bulk modulus muscle

Sd region of S with applied displacement κapo bulk modulus aponeurosis

Vol current volume F deformation tensor

A area in V I identity tensor

t time B left Cauchy tensor

q0 point in V0 Biso isovolumetric left Cauchy tensor

q point in V σ Cauchy stress tensor

Uvol volumetric strain-energy potential τ Kirchhoff tensor

Uiso isovolumetric strain-energy potential I1 first invariant

Ubase base material strain-energy potential I3 third invariant

Ufibre fibre strain-energy potential I4 fourth invariant

Uapo,base aponeurosis base material strain-energy potential â activation level in muscle fibres

Uapo,fibre aponeurosis fibre strain-energy potential σ0 maximum isometric stress of contractile elements

Umus,base muscle base material strain-energy potential σbase base material stress

Umus,fibre muscle fibre strain-energy potential σmus,base muscle base material stress

Uact active muscle fibre strain-energy potential σapo,base aponeurosis base material stress

Upas passive muscle fibre strain-energy potential σfibre fibre stress

ψvol volumetric strain energy-density σmus,fibre muscle fibre stress

ψiso isovolumetric energy-density σapo,fibre aponeurosis fibre stress

ψbase base energy-density σ̂act active muscle fibre stress

ψfibre fibre energy-density σ̂pas passive muscle fibre stress

ψapo,base aponeurosis base material energy-density ∇0 gradient with respect to V0

ψapo,fibre aponeurosis fibre energy-density ∇ gradient with respect to V

ψmus,base muscle base material energy-density div tensorial divergence with respect to V

ψmus,fibre muscle fibre energy-density 0 zero vector

Following Blemker et al. (2005), the scalar stress in the fibres
σfibre is related to the strain energy-density ψfibre as follows:

λiso
∂ψfibre

∂λiso
= σfibre(λiso) (4)

For muscle tissues, passive and active properties are part of the
normalized fibre stress σ̂. We also consider the activation of the
tissues, denoted by â = â(q0, t), and assume it only affects the
active stresses. The stress due to fibre stretch in muscle fibres is
defined as

σ̂mus,fibre (λiso) := â
(

q0, t
)

σ̂act (λiso) + σ̂pas (λiso) ,

where σ̂act represents the stress in the tissues due to active stretch
of the muscle fibres and σ̂pas is the stress in the tissues due to
passive stretch of the muscle fibres. Altogether, we can relate the
stresses in the muscle fibres to the strain energy-densityψmus,fibre

by using Equation (4):

λiso
∂ψmus,fibre

∂λiso
= σ0σ̂mus,fibre(λiso),

where σ0 is the maximum isometric stress of the
contractile elements.

For aponeuroses, the stresses in the fibres are only due to
passive stretch of the fibres. The strain energy-density ψapo,fibre

and the scalar stress in the aponeurosis fibres σapo,fibre are defined
exactly as in Equation (4):

λiso
∂ψapo,fibre

∂λiso
= σapo,fibre(λiso).

Our approach seeks a displacement u, an internal pressure p
and a dilation J which minimize the total energy of the system.
Let Etot be the total strain energy in the muscle. Under the
assumption of a quasi-static regime, the total energy can be
considered as the sum of the internal strain-energy potential
and the work done on the system by external forces. Given an
applied traction t on a part of the surface S of V, denoted by
St, the total strain energy of a deformed muscle in V can be
defined as:

Etot
(

u, p, J
)

= Uint

(

u, p, J
)

−Wext (u) , (5)
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where

Uint

(

u, p, J
)

:=

∫

V
9int

(

u, p, J
)

dV . (6)

We utilize the finite element method to approximate states (u,
p, J) at which the first variation DEtot of the total strain energy is
zero. That is, we numerically solve the following equation for the
unknowns (u, p, J):

DEtot
(

u, p, J
)

= 0.

The first variation of the total strain energy gives the following
set of equations:

divσ (u) = 0, J − I3 (u) = 0, p−
κ

2

(

J −
1

J

)

= 0 in V ,

σ (u) n̂ = t on St, u = 0 on Sd,

where the vector n̂ denotes the unit normal vector on S, and Sd
stands for the part of S on which the displacement u is prescribed.
Note that in our model we clamp the displacement u on Sd.

The change in the internal strain-energy potential reported in
this paper is computed using the following definition:

Uint

(

u, p, J
)

:=

∫

V0

τ :∇u dV0 + Uint

(

u0, p0, J0
)

, (7)

where (u0,p0,J0) is a known state of the displacement, pressure
and dilation. We compute the volumetric, isovolumetric,
muscle base material, aponeurosis base material, muscle active-
fibre, muscle passive-fibre, and aponeurosis fibre strain-energy
potentialsUvol,U iso,Umus,base,Uapo,base, Uact,Upas, andUapo,fibre

respectively by using the formula given in Equation (7):

Uvol

(

u, p, J
)

:=

∫

V0

pJI :∇ u dV0 + Uvol

(

u0, p0, J0
)

,

Uiso (u) := 2

∫

V0

B
∂9iso

∂B
:∇ u dV0 + Uiso

(

u0, p0, J0
)

,

Umus,base (u) := 2

∫

V0

σmus,base (I1)B
∂I1

∂B
:∇ u dV0+

Umus,base

(

u0, p0, J0
)

,

Uapo,base (u) := 2

∫

V0

σapo,base (I1)B
∂I1

∂B
:∇ u dV0+

Uapo,base

(

u0, p0, J0
)

,

Uact (u) := σ0

∫

V0

σ̂act (λiso)

λiso
B

∂I1

∂B
:∇u dV0 + Uact

(

u0, p0, J0
)

,

Upas (u) := σ0

∫

V0

σ̂pas (λiso)

λiso
B

∂I1

∂B
:∇ u dV0+Upas

(

u0, p0, J0
)

,

Uapo,fibre (u) := σ0

∫

V0

σapo,fibre (λiso)

λiso
B

∂I1

∂B
:∇u dV0

+ Uapo,fibre

(

u0, p0, J0
)

.

We assume that u0, p0, and J0 are the displacement, pressure,
and dilation in V0. In our simulations we set the displacement u0
to be the zero vector 0, the pressure p0 to be zero, and the dilation
J0 to be 1. The definition of the intrinsic properties of the tissues
implies that all the strain-energy potentials in the equations above
at the state (u0, p0, J0) vanish.

Appendix II. Experimental Measurements
From MRI and DTI
This appendix describes experimental data collection and
analysis for measurement of the changes in three-dimensional
whole-muscle shape and muscle fibre orientation of the human
medial gastrocnemius during fixed-end (constant ankle angle)
plantarflexion contractions.

Data Acquisition
We obtained mDixon magnetic resonance imaging (MRI) and
diffusion tensor imaging (DTI) scans of the right lower legs
of four female participants (age 29 ± 4 years mean ± S.D.).
All procedures conformed to the Declaration of Helsinki (2008)
and were approved by University of New South Wales’ Human
Research Ethics Committee HREC (approval HC17106). Written
informed consent was obtained from all participants.

Participants lied supine with the knee slightly flexed in a 3T
MRI scanner (Philips Achieva TX, Best, the Netherlands). We
used a cardiac coil with 32 elements for receive. The anterior
part of the coil was placed on the tibia and the posterior
part of the coil was placed on the MRI table. The knee was
supported by a foam wedge to maintain a small gap between
the coil and the posterior calf. The right foot was strapped
tightly into a footplate, which was connected to a custom-
built MRI-compatible force transducer. The ankle was held in
5◦ plantarflexion relative to the neutral position with the foot
perpendicular to the tibia. MRI and DTI scans were obtained
while the participant’s muscles were relaxed (rest) and during
plantarflexion contractions at 10% (twice) and 20% (once) of
their maximum voluntary isometric plantarflexion torque, which
was previously determined with a dynamometer. We chose scan
sequences and fields of view to have a maximal scan duration
of 2.5min, because pilot testing showed that all participants
could maintain 20% plantarflexion torque for up to 2.5min while
staying sufficiently still to obtain high qualityMRI scans. mDixon
and DTI scans were obtained during separate contractions with
participants given at least two minutes rest in between scans. The
scans did not cover the most proximal part (∼5 cm) of the medial
gastrocnemius. Visual feedback was provided on a monitor next
to the MRI bed to help participants maintain the target force
during the scans.
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The settings of the mDixon scan were: 2-point 3D mDixon
FFE, TR/TE1/TE2 6/3.5/4.6ms, field of view 180 × 180mm,
250 slices, slice thickness 1mm, acquisition matrix 180 × 180
(reconstructed to 192 × 192), reconstructed voxel size 0.94 ×

0.94 × 1mm, number of signal averages 1 and scan time 138 s.
The settings of the DTI scan were: DT-EPI with spectral pre-
saturation with inversion recovery (SPIR) fat suppression, TR/TE
3836/63ms, field of view 180× 180mm, 40 slices, slice thickness
5mm, 16 gradient directions on a hemisphere, number of signal
averages (NSA) = 1 for diffusion-weighted images and NSA
= 2 for the b0 image, b = 500 s/mm2 (b0 image with b = 0
s/mm2), diffusion gradient time 1/δ = 30.4/8.2 msec and scan
time 134 s.

Medial Gastrocnemius 3D Surface Models
We created 3D surface models of the medial gastrocnemius
muscle at rest by manually outlining the boundary of the
medial gastrocnemius on the water image of the mDixon
scan (Bolsterlee et al., 2017; Figure 2). We used non-rigid
registration algorithms (Elastix 4.7; Klein et al., 2010) to create
surface models of the deformed muscles during contractions
and visually inspected the results to determine that the

deformed outlines followed closely the boundaries of the
muscle on the scans obtained during contractions. The
surface models were rotated to a local coordinate system
using principal component analysis on the vertices (nodes)
of the surface model so that the x-axis aligns with the
long axis and the y- and z-axis with the width and depth
axes, respectively.

Fibre Orientation at Rest and During Contractions
We determined muscle fibre orientations from the DTI scans
(Bolsterlee et al., 2019), assuming that the primary eigenvector
of the diffusion tensor aligned with muscle fibre orientations
(Damon et al., 2002). First, DTI scans were filtered using a local
principal component analysis filter (Manjon et al., 2013), after
which the diffusion tensor was reconstructed using DSI Studio
(Yeh et al., 2013). The fibre orientation of a voxel was defined as
the angle in 3D between the primary eigenvector of the diffusion
tensor and the x-axis (longitudinal axis) of the muscle. We
calculated the fibre orientation of the muscle at rest and during
contractions as the average fibre orientation of voxels inside a
30 × 10 × 10mm region sampled in the middle of the muscle
(Figure 2).
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