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Epilepsy is one of the most common disorders of the brain. Clinically, to corroborate an

epileptic seizure-like symptom and to find the seizure localization, electroencephalogram

(EEG) data are often visually examined by a clinical doctor to detect the presence

of epileptiform discharges. Epileptiform discharges are transient waveforms lasting for

several tens to hundreds of milliseconds and are mainly divided into seven types. It is

important to develop systematic approaches to accurately distinguish these waveforms

from normal control ones. This is a difficult task if one wishes to develop first principle

rather than black-box based approaches, since clinically used scalp EEGs usually contain

a lot of noise and artifacts. To solve this problem, we analyzed 640 multi-channel EEG

segments, each 4s long. Among these segments, 540 are short epileptiform discharges,

and 100 are from healthy controls. We have proposed two approaches for distinguishing

epileptiform discharges from normal EEGs. The first method is based on Signal Range

and EEGs’ long range correlation properties characterized by the Hurst parameter H

extracted by applying adaptive fractal analysis (AFA), which can also maximally suppress

the effects of noise and various kinds of artifacts. Our second method is based on

networks constructed from three aspects of the scalp EEG signals, the Signal Range, the

energy of the alpha wave component, and EEG’s long range correlation properties. The

networks are further analyzed using singular value decomposition (SVD). The square of

the first singular value from SVD is used to construct features to distinguish epileptiform

discharges from normal controls. Using Random Forest Classifier (RF), our approaches

can achieve very high accuracy in distinguishing epileptiform discharges from normal

control ones, and thus are very promising to be used clinically. The network-based

approach is also used to infer the localizations of each type of epileptiform discharges,

and it is found that the sub-networks representing the most likely location of each type of

epileptiform discharges are different among the seven types of epileptiform discharges.

Keywords: EEG, epileptiformdischarges, adaptive fractal analysis, Hurst parameter, singular value decomposition,

brain network
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1. INTRODUCTION

Epilepsy is a chronic neurological disease characterized by
the paroxysmal seizures that affects people of all ages (Li
et al., 2019). According to the WHO, about 50 million people
worldwide have epilepsy, making it one of the most common
neurological diseases in the world (Perkins, 2019). The ictal
EEG is characterized by the presence of epileptiform discharges
occurring before or after a seizure (Tautan et al., 2018). Unlike 24
h monitoring where one may be able to record the occurrence of
seizures of a patient once or a few times, in clinical examination
where only a few hours recording is considered feasible, often
epileptiforms rather than actual seizures may be more likely
to be observed. As epileptiform discharges can already provide
information about seizure localization (Richards et al., 2018)
and epileptic syndrome (Basiri et al., 2019), identification of
epileptiform discharges is very important.

There are a variety of ways to represent EEG. Among the
simplest and most popular are to compute the amplitude values
(Toet et al., 2005), compute the Power Spectral Density (PSD)
(Gao et al., 2007), or take wavelet transform (Adeli et al., 2003;
Subasi, 2007; Faust et al., 2015; Chen et al., 2017). Clinically,
however, neurologists still customarily examine the long
continuous signals visually to identify epileptiform discharges
or other features from EEG. Unfortunately, this is quite time-
consuming and potentially inaccurate due to human fatigue. This
problem has motivated much effort to develop novel algorithms
to automatically detect epileptiform discharges or other features
from EEG (Sharmila and Geethanjali, 2019). Among the notable
works along this line are to use entropy (Nicolaou and Georgiou,
2012; Arunkumar et al., 2016, 2017) and complexity measures
(Gao et al., 2011a, 2012b; Martis et al., 2015; Medvedeva et al.,
2016; Pratiher et al., 2016; Sikdar et al., 2018). However, the
majority of the works published are based on electrocorticogram
(ECoG), which is invasively obtained by means of electrodes
applied directly over or inserted into the cerebral cortex (Wang
et al., 2019). Clinically, the more widely available form of
EEG is the non-invasive surface EEG. Compared with ECoG,
surface EEG signals are much poorer in terms of signal-to-
noise ratios (Haufe et al., 2018). Besides noise, surface EEG
recordings are also often contaminated by various kinds of
artifacts (Islam et al., 2016; Brienza et al., 2019), including eye
movements (e.g., blinking), muscle activities (e.g., swallowing,
head movements), and the heartbeat (Kappel et al., 2017). These
noise and artifacts greatly hinder the proper interpretation of
the underlying neural information processing and add enormous
difficulty to automatically identify epileptiform discharges from
normal controls. Although machine learning based approaches
(Mirowski et al., 2008; Shen et al., 2009; Antoniades et al., 2016;
Kuswanto et al., 2017; Ullah et al., 2018; van Putten et al., 2018;
Subasi et al., 2019) can partly solve some of these problems,
overall, the problem remains to be challenging, and calls for
easily-interpretable, less black-box based approaches.

To develop accurate fundamental principle-based instead of
black-box based approaches to automatically detect epileptiform
discharges, it is critical to comprehensively account for all
the major features in the EEG that distinguish epileptiform

discharges from normal ones. Based on this rationale, we will
consider the long range correlation properties of EEG, together
with the Signal Range and the relative energy in the alpha wave
band of an EEG signal. The long range correlation properties are
characterized by the Hurst parameter H which has been found
to be able to characterize effectively dynamical changes in EEG
signals.H is among the simplest measures from nonlinear science
(Gao et al., 2007). Here we will employ adaptive fractal analysis
(AFA) to compute H (Hu et al., 2009; Gao et al., 2011b, 2012a;
Tung et al., 2011; Riley et al., 2012; Kuznetsov et al., 2013), which
is an improvement DFA and can better deal with noise, non-
stationarity, and various kinds of artifacts in surface EEG (Peng
et al., 1994; Hu et al., 2001; Chen et al., 2002, 2005; Xu et al., 2005,
2011; Ma et al., 2010).

The human brain is comprised of numerous neurons that
form a complicated network (Bashan et al., 2012; Bartsch et al.,
2015; Liu et al., 2015; Ivanov et al., 2016; Denève et al., 2017;
Gupta et al., 2018; Xue and Bogdan, 2019). Over the recent
years, many researches have been conducted to elucidate the
characteristics of cerebral network based on structural and
functional scales (Smitha et al., 2017; Smith and Escudero, 2017;
Xue and Bogdan, 2017; Gupta et al., 2018, 2019; Wang et al.,
2018). The information yielded by an EEG channel is essentially
the difference of electrical activity between two electrodes in
the time-domain (Pardey et al., 1996; Lopez et al., 2016); the
amplitude, frequency, and synchronization of the brain waves
and background will change (Seeck et al., 2017; Vanherpe and
Schrooten, 2017), depending on which montage is chosen (e.g.,
earlobe reference, averaged reference, or bipolar Christodoulakis
et al., 2013; Geier and Lehnertz, 2017; Rana et al., 2017; Acharya
and Acharya, 2019; Rios et al., 2019). For the EEG signals to
reflect the networked nature of the brain, it is important to
construct networks based on the EEG signals or the features
of EEG. As we will discuss later, such a strategy has additional
advantages in further suppressing noise and artifacts, andmaking
the dependence of the results on the chosen montages weaker.

The remainder of the paper is organized as follows. In
section 2, we briefly describe the EEG data and analysis methods.
In section 3, we present results of our analysis. In section 4, we
summarize our findings.

2. MATERIALS AND METHODS

2.1. Data
The EEG data analyzed in this study were from the First
Affiliated Hospital to Guangxi Medical University. The studies
involving human participants were reviewed and approved by
the ethics committee of the First Affiliated Hospital to Guangxi
Medical University. The participants provided their written
informed consent to participate in this study. Fifty-nine epilepsy
patients underwent a 3 h video-EEG monitoring with 19-
channel EEG recording with electrodes placed on the scalp
under the international 10–20 system at 256 Hz sampling rate.
The electrode impedances were kept below 10K�. The 19 scalp
electroencephalographic electrodes were arranged according to
the names Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, and O2.
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All epileptiform discharges were annotated by an experienced
clinical neurophysiologist based on the average montage with an
analog bandwidth of 0.1 ∼ 70 Hz and a notch filter of 50Hz.
EEG signals were segmented into 4s epochs and were assigned
random numbers for each participant. The collected epochs
were transformed into European Data Format (EDF) for further
analysis. In total, there were 532 EEG recordings of epileptiform
discharges and 100 healthy controls, each 4s long, from all the
participants. Among the 532 short epileptic discharges, there
were 69 spikes, 82 sharps, 174 spike, and slow wave complexes,
72 sharp and slow wave complexes, 64 polyspike complexes,
77 polyspike, and slow wave complexes and 2 spike rhythmic
discharges. Note the numbers for these 7 epileptiform discharges
sum up to 540, which is slightly larger than 532. The reason is a
few discharges were considered to simultaneously belong tomore
than 1 of the 7 different epileptiform discharges. For convenience
of referencing, the definitions for these 7 epileptiform discharges
are listed below. Examples of their waveforms are shown in
Figure 1.

• Spike: The spikes are the most basic paroxysmal EEG activity,
with a duration of 20∼70 ms. Amplitude varies but are
typically >50 uV (Kane et al., 2017).

• Sharp: A sharp wave is similar to the spike, and its time limit is
70∼200 ms (5∼14 Hz). Its amplitude is between 100 and 200
uV , and the phase is usually negative.

• Spike and slow wave complex: An epileptiform pattern
consisting of a spike and an associated slow wave following the
spike, which can be clearly distinguished from the background
activity; may be single or multiple (Kane et al., 2017).

• Sharp and slow wave complex: An epileptiform pattern
consisting of a sharp wave and an associated slow wave
following the sharp wave, which can be clearly distinguished
from the background activity; may be single or multiple (Kane
et al., 2017).

• Polyspike complex: A sequence of two or more spikes.
• Polyspike and slow wave complex: An epileptiform pattern

consisting of two or more spikes associated with one or more
slow waves.

• Spike rhythm: refers to a widespread 10∼25 Hz spike rhythm
outbreak, with an amplitude of 100∼200 uV and the highest
voltage in the frontal area, lasting more than 1 s.

Recall that a few epileptiform discharge waveforms were
considered to simultaneously belong to more than 1 of the
7 different epileptiform discharges. Because of this, further
considering the differences among the seven epileptiform
discharges becomes impossible and is not pursued here.

2.2. Computation of the Signal Range and
the Energy of the Alpha Wave Component
Often EEG epileptic discharges are associated with a larger
amplitude than the normal control EEG. This motivates us
to compute a simple statistic, which we call Signal Range, to
quantify this effect. It is computed as follows:

Signal Range = Maximum of
{

x(t), t ∈ [t1, t2]
}

− Minimum of
{

x(t), t ∈ [t1, t2]
}

(1)

FIGURE 1 | Typical waveforms of the 7 major epileptiform EEG, where (A–G),

denotes spike wave, spike and slow wave complex, sharp wave, sharp and

slow wave complex, polyspike complex, polyspike and slow wave complex,

spike rhythm discharges, respectively.

where x(t) is the EEG signal. This procedure is applied to each
of the 19 EEG signals with reference to the earlobes (i.e., the
difference of the EEG signals measured at the 19 electrodes and
the earlobes), or to the difference of the EEG signals according to
the network construction, as detailed in section 2.4. In the former
case (i.e., with reference to the earlobe), the final Signal Range is
estimated as the average of the 10 largest Signal Range estimated
from the 19 EEG signals.

In clinical applications, the brain wave is often categorized
into five bands: delta (0.5∼3 Hz), theta (4∼7 Hz), alpha (8∼13
Hz), beta (14∼30 Hz), and gamma (>30 Hz), respectively. The
alpha wave is most visible when human beings are relaxed with
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eyes closed. We have found that the alpha wave component
on occipital area is often larger for epileptiform discharges. To
compute this component, we employ a Fourier transform of the
EEG signal, obtain the power spectral density (PSD), and finally
integrate the PSD curve over the alpha wave band.

2.3. Adaptive Fractal Analysis (AFA)
AFA utilizes an adaptive detrending algorithm to extract globally
smooth trend signals from the data for a given time scale and then
analyzes the scaling of the residuals to the fit as a function of the
time scale (Hu et al., 2009; Tung et al., 2011). The main steps of
AFA to estimate H are as follows:

Suppose starting from a stationary incremental process
x(1), x(2), x(3),..., construct a random walk through the
following equation:

u(n) =
∑n

k=1(x(k)− x), n = 1, 2, 3, ...,N (2)

where x is the mean of the process. Based on this random
walk u(n), we wish to get a global trend v(i), i = 1, 2, ...,N for
any specific time scale w, where N is the length of the original
time series. This is achieved by dividing the above random walk
process into overlapped windows, where the size of each window
w contains an odd number of samples, and adjacent windows
overlap by (w + 1)/2 samples. The random walk process in each
window is fitted by a polynomial of orderM, and the polynomials
in overlapped regions are combined to yield a single global trend.
Typically M should be 1 or 2, a linear or quadratic function. The
local fitting ensures that the global trend is optimal or close to
optimal, as locally Taylor series expansion is used.

After we get the global trend v(i) of u(i) by the above method,
the residual u(i)− v(i) can describe the fluctuation around the
global trend. For fractal processes, the Hurst exponent H can be
computed by the following equation,

F(2)(w) =
[

1
N

∑N
i=1 (u(i)− v(i))2

]
1
2 ∼ wH (3)

FIGURE 2 | Illustration of estimation of the Hurst exponent using AFA: (A) raw EEG of a channel, (B) fitting (the red curve, with window size w = 21) of the EEG signal

by the adaptive algorithm described, and (C) illustration of the scaling law with AFA.

TABLE 1 | A 19× 19 table consisting of the difference of the EEG signals between two electrodes.

Fp1-Fp1 Fp1-Fp2 Fp1-F7 Fp1-F3 Fp1-Fz Fp1-F4 Fp1-F8 Fp1-T3 Fp1-C3 Fp1-Cz Fp1-C4 Fp1-T4 Fp1-T5 Fp1-P3 Fp1-Pz Fp1-P4 Fp1-T6 Fp1-O1 Fp1-O2

Fp2-Fp1 Fp2-Fp2 Fp2-F7 Fp2-F3 Fp2-Fz Fp2-F4 Fp2-F8 Fp2-T3 Fp2-C3 Fp2-Cz Fp2-C4 Fp2-T4 Fp2-T5 Fp2-P3 Fp2-Pz Fp2-P4 Fp2-T6 Fp2-O1 Fp2-O2

F7-Fp1 F7-Fp2 F7-F7 F7-F3 F7-Fz F7-F4 F7-F8 F7-T3 F7-C3 F7-Cz F7-C4 F7-T4 F7-T5 F7-P3 F7-Pz F7-P4 F7-T6 F7-O1 F7-O2

F3-Fp1 F3-Fp2 F3-F7 F3-F3 F3-Fz F3-F4 F3-F8 F3-T3 F3-C3 F3-Cz F7-C4 F3-T4 F3-T5 F3-P3 F3-Pz F3-P4 F3-T6 F3-O1 F3-O2

Fz-Fp1 Fz-Fp2 Fz-F7 Fz-F3 Fz-Fz Fz-F4 Fz-F8 Fz-T3 Fz-C3 Fz-Cz Fz-C4 Fz-T4 Fz-T5 Fz-P3 Fz-Pz Fz-P4 Fz-T6 Fz-O1 Fz-O2

F4-Fp1 F4-Fp2 F4-F7 F4-F3 F4-Fz F4-F4 F4-F8 F4-T3 F4-C3 F4-Cz F4-C4 F4-T4 F4-T5 F4-P3 F4-Pz F4-P4 F4-T6 F4-O1 F4-O2

F8-Fp1 F8-Fp2 F8-F7 F8-F3 F8-Fz F8-F4 F8-F8 F8-T3 F8-C3 F8-Cz F8-C4 F8-T4 F8-T5 F8-P3 F8-Pz F8-P4 F8-T6 F8-O1 F8-O2

T3-Fp1 T3-Fp2 T3-F7 T3-F3 T3-Fz T3-F4 T3-F8 T3-T3 T3-C3 T3-Cz T3-C4 T3-T4 T3-T5 T3-P3 T3-Pz T3-P4 T3-T6 T3-O1 T3-O2

C3-Fp1 C3-Fp2 C3-F7 C3-F3 C3-Fz C3-F4 C3-F8 C3-T3 C3-C3 C3-Cz C3-C4 C3-T4 C3-T5 C3-P3 C3-Pz C3-P4 C3-T6 C3-O1 C3-O2

Cz-Fp1 Cz-Fp2 Cz-F7 Cz-F3 Cz-Fz Cz-F4 Cz-F8 Cz-T3 Cz-C3 Cz-Cz Cz-C4 Cz-T4 Cz-T5 Cz-P3 Cz-Pz Cz-P4 Cz-T6 Cz-O1 Cz-O2

T4-Fp1 T4-Fp2 T4-F7 T4-F3 T4-Fz T4-F4 T4-F8 T4-T3 T4-C3 T4-Cz T4-C4 T4-T4 T4-T5 T4-P3 T4-Pz T4-P4 T4-T6 T4-O1 T4-O2

T5-Fp1 T5-Fp2 T5-F7 T5-F3 T5-Fz T5-F4 T5-F8 T5-T3 T5-C3 T5-Cz T5-C4 T5-T4 T5-T5 T5-P3 T5-Pz T5-P4 T5-T6 T5-O1 T5-O2

P3-Fp1 P3-Fp2 P3-F7 P3-F3 P3-Fz P3-F4 P3-F8 P3-T3 P3-C3 P3-Cz P3-C4 P3-T4 P3-T5 P3-P3 P3-Pz P3-P4 P3-T6 P3-O1 P3-O2

Pz-Fp1 Pz-Fp2 Pz-F7 Pz-F3 Pz-Fz Pz-F4 Pz-F8 Pz-T3 Pz-C3 Pz-Cz Pz-C4 Pz-T4 Pz-T5 Pz-P3 Pz-Pz Pz-P4 Pz-T6 Pz-O1 Pz-O2

P4-Fp1 P4-Fp2 P4-F7 P4-F3 P4-Fz P4-F4 P4-F8 P4-T3 P4-C3 P4-Cz P4-C4 P4-T4 P4-T5 P4-P3 P4-Pz P4-P4 P4-T6 P4-O1 P4-O2

T6-Fp1 T6-Fp2 T6-F7 T6-F3 T6-Fz T6-F4 T6-F8 T6-T3 T6-C3 T6-Cz T6-C4 T6-T4 T6-T5 T6-P3 T6-Pz T6-P4 T6-T6 T6-O1 T6-O2

O1-Fp1 O1-Fp2 O1-F7 O1-F3 O1-Fz O1-F4 O1-F8 O1-T3 O1-C3 O1-Cz O1-C4 O1-T4 O1-T5 O1-P3 O1-Pz O1-P4 O1-T6 O1-O1 O1-O2

O2-Fp1 O2-Fp2 O2-F7 O2-F3 O2-Fz O2-F4 O2-F8 O2-T3 O2-C3 O2-Cz O2-C4 O2-T4 O2-T5 O2-P3 O2-Pz O2-P4 O2-T6 O2-O1 O2-O2
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The above equation means by calculating the variance of
the residual between the original random walk process and
the fitted global trend under a varying window w, we can
obtain a linear (or multiple linear) relation between log2 F(w)
and log2 w.

To illustrate the procedures described, we have shown in
Figure 2A an example of EEG signal and its global smooth trend
in Figure 2B. By varying the window sizew, we can obtain a curve
of log2 F(w) and log2 w shown in Figure 2C, where we observe
two scaling regimes, i.e., the curve can be fitted by two straight
lines, with the slopes being the Hurst parameter on short and
long time scales, respectively. The H on short time scales will be
focused here.

2.4. Cerebral Network Construction
Brain activities involve spatial-temporal coordinated dynamics of
numerous neurons in different regions of the brain, i.e., involve
numerous functional brain networks. To better characterize the
synergistic effects among the brain networks, it is important to
construct brain networks based on multi-channel EEG signals.
For this purpose, we consider networks with nodes being the
19 electrodes. Between any two of the nodes, we consider
the difference between the two associated EEG signals. This is
illustrated in Table 1 with a 19 × 19 table consisting of the
difference of the EEG signals between two electrodes. Therefore,
each element in the Table 1 is a time series. From it we can
compute the Signal Range, the relative energy of the alpha wave

FIGURE 3 | Comparison of epileptiform discharges and normal EEG: (A) example of epileptic discharges, (B) normal EEG, (C,D) 2-D phase diagrams using the

summation of the 19 epileptiform discharges and normal EEG signals shown in (A,B), respectively, which can be used to estimate Signal Range.
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component, and the Hurst parameter, as detailed earlier. Using
each variable, we then obtain a network. Further analysis of these
three networks will be based on singular value decomposition
(SVD), which we will explain next.

2.5. Singular Value Decomposition (SVD)
SVD is a decomposition method that can be applied to arbitrary
matrices. For an n×mmatrix A, it is generally expressed as:

A = U6VT (4)

where, Un×n and Vm×m are orthogonal matrices, which are
composed of eigenvectors of square matrices, AAT and ATA,
respectively. 6n×m, called the singular value matrix, is non-zero

only on the main diagonal with the elements there being the
square root of the eigenvalues of AAT (or ATA). Denote them
by 6ii = σi, i = 1, 2, ..., r, where r is the rank of AAT (or ATA).
They are usually written in descending order. In this work, we
only need the largest singular value of the three networks based
on the Signal Range, the energy of the alpha wave component,
and the Hurst parameter.

2.6. Inference of the Localization of the
Epileptiform Discharges
Based on the networks constructed using the three variables, the
signal range, the relative energy of the alpha wave component,
and the Hurst parameter, and using SVD, we can infer the

FIGURE 4 | Same as Figure 3, except data were from another subject showing that Signal Range for epileptiform discharges can be smaller than that of normal EEG:

(A) example of epileptic discharges, (B) normal EEG, (C,D) 2-D phase diagrams using the summation of the 19 epileptiform discharges and normal EEG signals

shown in (A,B), respectively, which can be used to estimate Signal Range.
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FIGURE 5 | Scatter plots using features Signal Range and the Hurst parameter H, where (A–G), illustrates the different between the seven types of epileptiform

discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave complex, spike

rhythm discharges) and normal EEG. These plots highly suggest the classification accuracy will be very high.
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localization of each type of epileptiform discharges. The approach
is as follows. For each network of a subject, after we obtain
the SVD, we project each column vector of the network to the
singular vector corresponding to the largest singular value. The
vector is then retained if the absolute value of the projection
coefficient is ≥ 0.5. These vectors allow us to determine which
channels of the original data are important. The procedure
is applied to each of the three networks of the subject. We
assume the common channels indicate the localization of this
particular type of epileptiform discharge for that subject. As this
localization may vary among subjects, we determine the most
likely localization of a particular type of epileptiform discharge
for all relevant subjects by requiring that each channel occurs at
least with certain probability. Here, we has chosen this probability
to be 0.55.

2.7. Random Forest Classifier (RF)
Random forest (RF) is an ensemble-based learning technique
for classification (Cutler et al., 2012), which has been shown to
have high accuracy, is not affected by overtraining, and does
not require normalization of the input data. It consists of many
separate classification trees, each of which is obtained through
a separate bootstrap sample from the data set and each tree
classifies the data. A majority vote among the trees provides the
final result.

TABLE 2 | Class distribution of the samples in the training and test data sets.

Classes Training set Testing set Total

Normal controls 66 34 100

Epileptiform discharges 360 180 540

Total 426 214 640

TABLE 3 | Confusion Matrix for the testing data of 180 epileptiform discharges

and 34 normal controls: Method One uses Signal Range and H, Method Two is

based on the networks constructed from the Signal Range, the energy of the

alpha wave component, and the H.

Method Result Epileptiform

discharges

Healthy

controls

Method one Epileptiform discharges 175 5

Healthy controls 6 28

Method two Epileptiform discharges 178 2

Healthy controls 1 33

TABLE 4 | Classification performance measures.

Method Sensitivity (%) Specificity (%) Accuracy (%)

Signal range and Hurst 97.22 82.35 94.86

The network based on

Signal Range, alpha

band energy, and H

98.89 97.06 98.60

The objective of the RF classifiers used here is to classify which
of the two classes an EEG signal belongs to: normal or epileptic
discharges. The inputs to the RF classifier are the square of the
largest singular values of the three networks (e.g., based on the
Signal Range, the energy of the alpha wave component, andHurst
parameters) based on SVD. Following usual practice, we have
randomly taken one-third of the total data as testing data and
two-thirds of the data for training the model in this paper.

2.8. Evaluation of Performance
To assess the consistency of the diagnosis by the neurologists
and machine classification, we need to compute the classification
accuracy. This can be accomplished by computing the receiver
operating characteristic (ROC) curve and many statistics derived
from the ROC curve. In fact, all these are best understand with
the confusion matrix, which is a table with two rows and two
columns that reports the number of false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN).
From them we can define three major metrics:

sensitivity =
TP

TP + FN
(5)

specificity =
TN

TN + FP
(6)

accuracy =
TP + TN

TP + FP + TN + FN
(7)

Note that the sensitivity is also called true positive rate (TPR) and
1− specificity is also called false positive rate (FPR).

The ROC is a plot of TPR vs. FPR using different threshold
values as a sweeping variable. Not suffering from class imbalance,

FIGURE 6 | The ROC curve for the testing data. The red and blue curves

show respectively the ROC based on methods using Signal Range and H and

networks built on Signal Range, energy of the alpha wave component, and H.

The AUC for the blue and red curves is 0.9882 and 0.9297, respectively.
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FIGURE 7 | Typical PSD curves for epileptiform discharges and normal EEG showing that the relative energy of the alpha wave component for epileptiform discharges

is often larger for that of normal EEGs.

the ROC is a good way to characterize imbalanced data sets.
The area below the ROC is called area under curve (AUC).
Its value takes from 0 to 1. A value of AUC being 0.5 means
the classification model has no predictive ability at all. On the
other hand, when the value of AUC reaches 1, it means that the
probability density functions of negative and positive classes are
completely separated, and the prediction ability is 100%. This is
equivalent to the ROC being a unit step function.

3. RESULTS

Recall that among the 640 EEG data sets analyzed here, 69, 82,
174, 72, 64, 77, and 2 data sets are for spike, sharp, spike and
slow wave complex, sharp and slow wave complex, polyspike
complex, polyspike and slow wave complex, and spike rhythm,
respectively, and 100 are for normal controls. Figures 3A,B

depicts examples of typical wave forms of epileptiform discharge
and the normal EEG. One easy way to appreciate their difference
is to construct 2-D phase diagrams shown in Figures 3C,D,
which are constructed using the summation of the 19 EEG
signals shown in Figures 3A,B. As one can easily understand,
the Signal Range can be conveniently estimated from such 2-
D phase diagrams. On average, we have observed that the
Signal Range is larger for epileptiform discharges than for
normal controls. However, this is only in terms of average.
Opposite situations also exist. An example is shown in Figure 4,
where we observe that the Signal Range for epileptiform
discharges can be much smaller than that of normal EEG.
Of course, such cases are well-known in the literature and
clinically, and motivate us to also account for other features of
EEG signals.

To complement the Signal Range, let us examine the long
range correlations captured by the Hurst parameter H. We have
calculated H for the 19 EEG signals shown in Figures 3, 4 and
then taken the average. In Figure 5, we have constructed scatter
plots using Signal Range and Hurst parameter H. We observe

that the three cases, the polyspike and slow wave complex and the
spike rhythm, are completely separated from the normal control
group, as shown in Figures 5F,G. The separations for the other
5 cases, although not 100%, are also quite good, as is evident
from Figures 5A–E. These plots highly suggest the classification
accuracy will be very high.

To compute the classification accuracy based on the Signal
Range and the Hurst parameter, we have employed the RF
classifier. We have randomly taken two-thirds of the data as
the training data and the remaining one-third of the total data
as the testing data. The class distribution of the samples in the
training and testing data set is summarized in Table 2. The test
performance of the classifier can be determined by computing
the metrics defined in section 2.7. The confusion matrix in
Table 3 (Method One) shows that 6 out of 34 normal subjects are
classified incorrectly by the RF as the epileptiform discharge, 5
out of 180 epileptiform discharges are classified incorrectly as the
normal subject. Table 4 shows classification performance. It can
be seen that it provides the accuracy of 94.86%, sensitivity and
specificity of 97.22 and 82.35%. Figure 6 (the red curve) shows
the ROC curve for the testing data of the RF classifier with all
seven types of epileptiform discharges grouped into one super
class. The AUC of the red curve is 0.9297.

To improve the accuracy of classification, we have developed
a brain network based approach. Specifically, three separate
networks are constructed, based on the Signal Range, the
energy of the alpha wave component, and H. Extracting the
Signal Range is straightforward. Extracting the energy of the
alpha wave component is a little more complicated, but can
be readily done (Gao et al., 2007). As shown in Figure 7,
we can see that typical PSD for epileptiform discharges and
normal EEG show significant difference in the energy of the
alpha wave component: it is often larger for epileptiform
discharges than for normal. Obtaining H has already been
done. Examples of heat maps for these networks are shown in
Figure 8. Each of these networks is further analyzed by SVD.
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FIGURE 8 | Heat maps illustrating the three types of networks described in section 2: (A,C,E) are for epileptiform discharges while (B,D,F) are for normal EEG.

We have focused on the square of the first singular value
as the final features. In Figure 9, we have constructed scatter
plots using the square of the first singular values of the
networks based on the Signal Range and the energy of the alpha
wave component. We observe that the difference between the
seven types of epileptiform discharges and the normal EEG is
very significant.

Again, let us input the square of the first singular values
of the networks based on the Signal Range, the energy of the
alpha wave component, and the H to the RF classifier. Table 3
(Method Two) shows that 1 out of 34 normal subjects are

classified incorrectly as the epileptiform discharge, while 2 out
of 180 epileptiform discharge is classified incorrectly as the
normal subject. Clearly, this network based method is much
improved over the first method, which is based on Signal Range
and the Hurst parameter, as the number of misclassifications
with this new method is much reduced. With this network
based method, the RF classifier has a sensitivity, specificity, and
accuracy of 98.89, 97.06, and 98.60%, respectively, in contrast
with that of 97.22, 82.35, and 94.86%, which are the basic
parameters for the method based on the Signal Range and the
Hurst parameter. These numbers are summarized in Table 4, and
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FIGURE 9 | Scatter plots using features from networks based on the Hurst parameter and the Signal Range, where (A–G), illustrates the different between the seven

types of epileptiform discharges (spike wave, spike and slow wave complex, sharp wave, sharp and slow wave complex, polyspike complex, polyspike and slow wave

complex, spike rhythm discharges) and normal EEG. These plots highly suggest the classification accuracy will be very high.
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TABLE 5 | The localization of the epileptiform discharges.

Epileptiform discharges The scape location

Spike F7; F4; T3; T4; T5;O1;O2

Spike and slow wave complex C4;T4;P3;P4; T6;O2

Sharp T3; T4;P3;O1;O2

Sharp and slow wave complex F8; T3;T4; T6;O1;O2

Polyspike complex F7; F4; F8; T3; T5;T6;O1;O2

Polyspike and slow wave complex Fp1; F8; T3;C4;T4; T6;O1;O2

Spike rhythm Fp2; Fz; F4; T3; T5;Pz

the blue ROC curve shown in Figure 6 (with all seven types
of epileptiform discharges grouped into one super class). While
the ROC curve is already close to a unit step function, the
result for the training data is even better (and thus not shown
here).

We have tried to infer the localizations of each type of
epileptiform discharges based on the approach described
in section 2.6, whose essence is to equate the sub-network
representing the localization of each type of epileptiform
discharge to the nodes which generate the most likely
alpha band energy, signal range, and the Hurst parameter
of that type of epileptiform discharge. The result is
shown in Table 5. We observe that while the channels
O1 and O2 have appeared in most of the epileptiform
discharges, the sub-networks representing the most likely
location of each type of epileptiform discharges are
different among the seven types of epileptiform discharges
studied here.

Finally, we have compared our results with that of Anh-
Dao et al. (2018), who developed an expert system employing
multiple state-of-the-art signal processing and machine learning
techniques including wavelet transform, spectral filtering, and
artificial neural networks for the purpose of automatically
detecting epileptic spikes. They achieved an AUC of 0.945,
which is slightly better than our Signal Range and the Hurst
parameter based method. This is understandable, since our
Signal Range and the Hurst parameter based method is so
much simpler than their method. Interestingly, our network
based approach, which is of similar simplicity with our Signal
Range and the Hurst parameter based method, is much more
accurate that their method, since our AUC is 0.9882. Most
importantly, both of our methods are based on fundamental
principles rather than the black-box approach, and therefore,
either of our method has the prospect of being widely deployed in
clinical setting.

4. CONCLUSION

In this paper, we have proposed two approaches for
distinguishing epileptiform discharges from normal EEGs,
with the aim of being able to use them widely in a clinical
setting. Our first method is based on Signal Range and the
Hurst parameter. Every component of our method can be

readily understood and implemented based on first principles.
Although simple, the approach already achieves a high detection
accuracy of 94.86%. To improve the accuracy of detection,
our second method employs the notion of network, with the
hope of capturing the functioning of human brain network to
some degree. Specifically, our approach involves three types of
networks, one based on the Signal Range, the second based on
the energy of the alpha wave component of EEG, and the third
based on the Hurst parameter. Each of the networks is analyzed
by SVD, and the square of the first singular value is utilized
to construct features to distinguish epileptiform discharges
from normal controls. This network based approach, while still
fully first principle based and readily understandable, achieves
a very high accuracy of 98.60%. This accuracy is higher than
a recent approach proposed by Anh-Dao et al. (2018), which
was an expert system employing multiple state-of-the-art signal
processing and machine learning techniques including wavelet
transform, spectral filtering, and artificial neural networks for
the purpose of automatically detecting epileptic spikes. Most
importantly, both of our methods are based on fundamental
principles rather than the black-box approach, and therefore, are
very promising to be used clinically.

We have also designed a network-based approach to infer the
localizations of each type of epileptiform discharges based on the
networks constructed using the three variables, the signal range,
the relative energy of the alpha wave component, and the Hurst
parameter. The essence of the approach is to equate the sub-
network representing the localization of each type of epileptiform
discharge to the nodes which generate the most likely alpha band
energy, signal range, and the Hurst parameter of that type of
epileptiform discharge. We have found that while the channels
O1 and O2 have appeared in most of the epileptiform discharges,
the sub-networks representing the most likely location of each
type of epileptiform discharges are different among the seven
types of epileptiform discharges studied here.

It is worth noting that the epileptiform discharges analyzed
here were provided in two batches: in the first batch, which was
about 2/3 of the data analyzed here, the accuracy was similar to
that reported here. Then more epileptiform data were given to us
by clinical doctors to examine whether the accuracy remained as
high. It was yes. Nevertheless, the data analyzed here were still
quite limited. It would be interesting and important to further
validate the proposed approaches with more data in different
clinical sets.
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