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Many drugs investigated for the treatment of glioblastoma (GBM) have had disappointing

clinical trial results. Efficacy of these agents is dependent on adequate delivery to sensitive

tumor cell populations, which is limited by the blood-brain barrier (BBB). Additionally,

tumor heterogeneity can lead to subpopulations of cells with different sensitivities to

anti-cancer drugs, further impacting therapeutic efficacy. Thus, it may be important

to evaluate the extent to which BBB limitations and heterogeneous sensitivity each

contribute to a drug’s failure. To address this challenge, we developed a minimal

mathematical model to characterize these elements of overall drug response, informed

by time-series bioluminescence imaging data from a treated patient-derived xenograft

(PDX) experimental model. By fitting this mathematical model to a preliminary dataset

in a series of nonlinear regression steps, we estimated parameter values for individual

PDX subjects that correspond to the dynamics seen in experimental data. Using these

estimates as a guide for parameter ranges, we ran model simulations and performed a

parameter sensitivity analysis using Latin hypercube sampling and partial rank correlation

coefficients. Results from this analysis combined with simulations suggest that BBB

permeability may play a slightly greater role in therapeutic efficacy than relative drug

sensitivity. Additionally, we discuss recommendations for future experiments based on

insights gained from this model. Further research in this area will be vital for improving

the development of effective new therapies for glioblastoma patients.

Keywords: glioblastoma, blood–brain barrier, drug sensitivity, epidermal growth factor receptor (EGFR), parameter

estimation

1. INTRODUCTION

Glioblastoma (GBM) is an aggressive primary brain cancer that is notoriously difficult to treat
due to its diffuse infiltration into surrounding normal-appearing brain (Giese et al., 2003). These
diffusely invading GBM cells cannot be completely resected surgically (Baldock et al., 2014), and
are difficult to target with radiation therapy while sparing normal brain (Corwin et al., 2013).
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As a result, clinicians rely on chemotherapy to treat the full extent
of the tumor. However, chemotherapeutic efficacy can be limited
in two main ways: there may be insufficient delivery across the
blood–brain barrier (BBB), and the tumor may not be uniformly
sensitive to the agent.

The BBB acts to keep pathogens and many toxins out
of the sensitive brain tissue. Angiogenesis in dense tumor
regions induces disruption of the BBB, potentially allowing
chemotherapeutic drugs to “leak” into these tumor regions.
Current dogma in neuro-oncology holds this as being
largely sufficient to treat the tumor, but GBM cells invade
beyond these regions into tissue where the BBB remains
rather intact (Van Tellingen et al., 2015). Further, tissue
interstitial pressure and drug properties such as lipophilicity
and polarity may influence the delivery of drugs across
angiogenesis-induced BBB “leaks” (Ningaraj, 2006). Due
to these factors, it remains unclear whether the delivery of
BBB-impermeable antineoplastic agents reaches adequate
concentrations throughout the tissue to provide the anticipated
therapeutic effect.

Drug insensitivity (which includes, but is not limited to
resistance) of tumor subpopulations is also a key suspect behind
unsuccessful molecularly-targeted therapy results (Wen and
Kesari, 2008; Ene and Holland, 2015). GBMs frequently present
with genemutations and/or amplification for a number of targets,
such as epidermal growth factor receptor (EGFR). However, due
to the spatial heterogeneity of GBM, these targets may have
been identified for a subpopulation that is predominant in the
dense tumor core, but less common in the invading portions of
the tumor. There may also be activated compensatory signaling
pathways in some cells or tumor regions that confer reduced
responsiveness to the drug. Thus, while therapies already exist
for molecular targets identified in GBM (Nagane et al., 1996;
Brennan et al., 2013; Eskilsson et al., 2017; Reardon et al.,
2017; van den Bent et al., 2017), a significant proportion of
tumor may be less sensitive to these drugs, potentially explaining
why they have failed in clinical trials (de Groot et al., 2008;
De Witt Hamer, 2010; Reardon et al., 2010; AbbVie, 2019).
However, it has been difficult to separate the possible insensitivity
related causes of drug failure from that of inadequate delivery
across the BBB and distribution throughout the tumor, since
the majority of these drugs were not developed specifically
for brain.

In order to explore both the contributions of inadequate
delivery of therapy across the BBB and drug insensitivity, we
developed a minimal mathematical model based on experimental
data from preclinical subjects treated with an EGFR-targeted
antibody drug conjugate (ADC). First, we describe model
development based on this data, which consists of two tumor
subpopulations with high vs. low sensitivity to the ADC therapy,
and steps to estimate parameter regimes via data-fitting. Next,
we explore the global model parameter sensitivity to understand
how these parameters impact model outcomes. Finally, we
run model simulations for the data-derived parameter regimes
to assess the relative contributions of drug distribution and
sensitivity, and discuss how it might be useful in assessing results

from future experiments comparing different tumor models or
different drugs. Overall, our model suggests that the degree
of drug exposure may be more impactful than the relative
sensitivity to therapy between the tumor subpopulations. Thus,
in order to improve treatment outcomes, it is critical to determine
predictors of drug distribution in individual patients’ tumors
and surrounding brain tissue to ensure invading tumor cells are
adequately exposed to the therapy.

2. METHODS

Our ordinary differential equation (ODE) model of tumor
growth and treatment response accounts for both variable
treatment exposure and differential sensitivity to treatment by
different tumor subpopulations. Development of this model was
informed by experimental observations, which were also used to
determine relevant parameter regimes for running simulations.

2.1. Experimental Data
The form of our model was based on experimental data from
testing an EGFR-targeted antibody drug conjugate (ADC) in a
patient-derived xenograft (PDX) model of GBM (Marin et al.,
2018). These experiments were performed in full accordance
with the guidelines of the Mayo Clinic Institutional Animal
Care and Use Committee. The GBM12 PDX line used in this
model is derived from a primary GBM in a male patient, and
is EGFR amplified, MGMT methylated, and IDH1 and IDH2
wildtype. Full detail regarding this PDX line is available from the
Mayo Clinic Brain Tumor Patient-Derived Xenograft National
Resource (https://www.mayo.edu/research/labs/translational-
neuro-oncology/mayo-clinic-brain-tumor-patient-derived-
xenograft-national-resource/), where the line was developed
and is maintained. These cells were implanted intracranially
into 10 female athymic nude mice, and into the flank of 10
additional mice. After tumors were established, a subset of
the surviving mice in each group was treated with either 10
mg/kg of a sham control antibody (Ab-095; four mice in
each), or with 5 mg/kg of ABT-414 (an ADC also known as
depatuxizumab mafodotin; five mice in each), administered via
tail vein injection every 7 days. Tumor growth was monitored
via bioluminescent imaging (BLI, Figure 1). Since BLI flux is
linearly correlated with tumor cell number (Hartung et al.,
2014), this provided us with a close approximation of tumor
cell populations across time. Importantly, the data from PDX
tumors grown in the flank and brain allowed us to compare
treatment effect in tumors with and without BBB impediments
to drug distribution.

2.2. Treatment Exposure and Sensitivity
Model
Our model consists of three coupled ordinary differential
equations describing the dynamics of both cell populations (H,
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FIGURE 1 | Example bioluminescence images for patient-derived xenografts. Colors represent the BLI radiance (in photons/second/cm2/steradian), which is related

to the BLI flux (measured in photons per second) for the total area.

L) and the ADC (A):

dH

dt
= ρH

︸︷︷︸

proliferation

− γµHAH
︸ ︷︷ ︸

drug-induced apoptosis

(1a)

dL

dt
= ρL

︸︷︷︸

proliferation

− γµLAL
︸ ︷︷ ︸

drug-induced apoptosis

(1b)

dA

dt
=

N
∑

n=1

Adose(n)δ (t − 7n)

︸ ︷︷ ︸

drug dose given at time t

− λA
︸︷︷︸

drug decay

(1c)

where parameters and their definitions are outlined in Table 1,
and their derivations can be found in section 2.3.

In the absence of the ADC, both highly sensitive (H) and
less-sensitive (L) tumor populations grow exponentially, at
proliferation rate ρ. However, the two populations differ in
sensitivity to the ADC, A, which is captured by the drug-induced
apoptosis rates µH and µL (for populations with high and low
sensitivity, respectively). The terms for tumor cell death due to
ADC are further modified by factor γ , which represents the
proportion of cells exposed to ADC. We assume that the ADC is
readily distributed to flank PDXs such that tumor cell exposure
is high (γ = 1), but that the BBB limits this distribution for
intracranial PDXs (0 ≤ γ ≤ 1). In order to capture the
ADC dynamics, we let Adose(n) represent the nth dose, with
doses administered every seven days, as noted by the dirac delta
function δ(t − 7n). The ADC then decays at rate λ. These
dynamics are schematized in Figure 2.

The model as described incorporates several assumptions that
are useful to note explicitly. (1) While in theory there may be
many groups of cells with varying levels of therapeutic sensitivity
(some of which may even encapsulate resistant subpopulations),
the model divides these into two main groups: those of relatively
high therapeutic sensitivity and those with lower sensitivity to the
therapy. (2) Any drug effect on proliferation rate is captured by
the cell death rate parameter, as these effects are indistinguishable
with the available data. (3) The effects of the tissue environment
in the flank vs. the brain on tumor growth are encapsulated in
environment-specific cellular proliferation rate parameter values
(ρflank and ρIC, as described in section 2.3). (4) Relatedly, the cell
death rate due to therapy for the sensitive tumor subpopulation,

TABLE 1 | Model parameter definitions and values.

Symbol Definition Value range Units

ρ cellular proliferation rate 0.2–0.5 day−1

µH ADC-mediated high sensitivity cell kill rate 1–10 mg−1day−1

µL ADC-mediated low sensitivity cell kill rate zµH mg−1day−1

q proportion of implanted cells with low

sensitivity

0–1 unitless

z relative sensitivity (µL/µH ) 0–1 unitless

λ rate of ADC decay ln(2)/7 day−1

γ proportion of tumor exposed 0–1 unitless

Adose ADC given in a single dose 0.1 mg

Parameter value ranges were estimated through fitting the model to experimental data

or parameters were confined to a value range by their theoretical meaning, except in the

case of ADC parameters, as described in section 2.3.

µH , is assumed to be the same intracranially as in the flank
setting, only modified by drug exposure after crossing the BBB
in intracranial tumors. That is, the model assumes that the only
environmental effect on treatment is its distribution. (5) ADC
and tumor subpopulations are well-mixed. In reality there is
likely spatial variation in both flank and intracranial sites due to
the tumor microenvironment and different blood vessel densities
in particular tumor regions, but in the absence of spatially–
resolved data, we assume well-mixedness and use an ODEmodel.

This model can be solved analytically, as shown in Appendix.
For simplification, at any given time t, C(t) represents the total
number of cells, calculated by the sum of high sensitivity H(t)
and low sensitivity L(t) cells. This total cell number was used
in section 2.3 for comparing with bioluminescence imaging
data, which shows the total tumor cell population. The initial
proportion of total implanted cells with low sensitivity is denoted
by q = L0/C0. Similarly, the extent to which these cells L are
less sensitive to the agent than the highly sensitive cells H is
denoted by the relative sensitivity ratio z = µL/µH , which is
bounded between 0 and 1 to ensure that µL is a fraction of µH in
the regression-based parameterization in section 2.3. With these
notational changes, we can then write the analytical solution
(derived in Appendix) as

C(t) = C0e
ρt

(

qe−γµH
∫

A(t)dt + (1− q)e−γ zµH
∫

A(t)dt
)

, (2)
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FIGURE 2 | Schematic of patient-derived xenograft response to an antibody drug conjugate, including key variables and parameters of the mathematical model.

where

∫

A(t)dt =

N
∑

n=1

2nAdose(n)

(

e7nλ − eλt
)

θ(t − 7n)

λ
. (3)

Using this solution (2), the model can be parameterized through
comparison of simulations to time-series BLI data.

2.3. Data-Based Parameter Estimation
Most model parameters were unknown, with the exception of
ADC-specific parameters: the timing of dose administration and
dose amounts [Adose(n)], as well as the half-life of the drug, which
allowed us to solve for the drug decay rate (λ). Dose amounts
were adjusted for the weight of each animal (5 mg/kg), so we
applied the average initial animal weight of 20 g to obtain the
constant ADC dose, Adose = 0.1 mg used in simulations. All
of the remaining model parameters were determined through
several iterations of fitting the model via least squares regression
to preliminary BLI data from an experiment. The various arms of
the experiment included untreated and treated groups of subjects,
as well as flank and intracranial tumor sites to separate out BBB
influences. By fitting the model to these various subgroups, we
were able to identify and estimate each of the parameters, as
described below.

Step 1: Fit to untreated data to estimate growth rate, ρ.

When fitting the model to untreated data, since the ADC is
not injected (A = 0), the model’s treatment components
zero out and only an exponential growth function remains:
C(t) = C0e

ρt . Fitting this model function to untreated data
via least squares regression with the lsqcurvefit function
in MATLAB R© (MATLAB Release 2018b, The MathWorks, Inc.,
Natick, Massachusetts, United States), we were able to obtain
estimates of the tumor proliferation rate, ρ, and the number of
viable implanted PDX cells, C0 (Figure 3). (While a consistent
number of cells are initially implanted for each subject, C0 is
in fact unique for each, as a variable number of cells die off,
possibly due to an inability to establish themselves in the proper
microenvironment for growth.) This yielded subject-specific
values for ρ and C0 (which were bound on the intervals [0, inf)
and [102, 1010], respectively), and the mean ρ was recorded as
the net proliferation rate for the cells of the particular PDX line
used in the experiments grown in either the flank (ρflank) or
intracranial (ρIC) setting. As noted in the model assumptions,
these site–specific ρ parameter values from untreated tumors are

used to help to account for microenivironmental effects on PDX
growth in the two different locations that are independent of the
BBB.

Step 2: Fit to treated flank data to estimate µH , z, and q.
Using the estimated net proliferation rate ρflank from the previous
step, we proceed to fit the treated data in the flank. We assume
the estimate of ρflank remains the same in the treated case as
untreated, since the microenvironment remains similar and any
differences should be encapsulated in the treatment effect term.
Additionally, since the tumor was injected in the flank, there is no
BBB effect to limit the proportion of tumor exposed to the ADC,
such that the exposure parameter γ = 1. The initial condition C0

is fit using the initial untreated time point and the passed mean
ρflank value. Pairing these with other known parameters (see
Table 1), the only remaining three unknown parameters to be fit
to the data are the cell death rates due to drug,µH andµL, for the
two cell populations and the proportion of implanted cells that
have low sensitivity, q. Using the definition z = µL/µH and the
analytical solution of themodel (2), we can then apply a nonlinear
least squares regression (again using lsqcurvefit) to fit
subject-specific parameters for parameters µH , z, and q (bound
on the intervals [1, 10], [0, 1] and [10−10, 10−2], respectively).

Step 3: Fit to treated intracranial data to estimate γ , z, and
q. Proceeding to fit the data from treated intracranial tumors, we
apply the same approach to estimate parameters as in the flank,
this time assuming that the estimate of ρIC from the untreated
setting remains the same for the treated intracranial tumors due
to a similar microenvironment. Again we determine the initial
condition C0 by fitting the untreated model with the passed mean
ρIC value to the initial untreated time point. Because we assume
that the cell death rate due to ADC for the highly sensitive tumor
subpopulation (µH) is the same intracranially as in the flank
setting, we pass the average µH value determined in Step 2 and
estimate parameter γ , the fraction of tumor exposed to therapy,
in addition to parameters z and q.

At the conclusion of these steps (summarized in Figure 3), all
unknown model parameters had net and individual estimates.
Note that no more than three parameters were fitted with any
experimentally-derived data set, in order to reduce the potential
for overfitting. To examine this further, initial parameter guesses
for lsqcurvefit were selected from within the value ranges
listed inTable 1, and we hadmostly consistent convergence using
low, middle, and high values (see Supplementary Material).
Additionally, as we show in the Figure 3 plots with dash–dot
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FIGURE 3 | Summary of the series of steps used to estimate model parameter values through fitting the model to different experimental data sets. Step 1 consists of

two separate fittings for the two different tumor locations, and the mean ρ values are passed for use in subsequent steps in the respective tumor sites, while the mean

µH value from the flank found in Step 2 is passed for use in Step 3. Shaded regions for Steps 2 and 3 indicate time prior to initiation of treatment with the ADC. Black

dash–dot lines in each plot are simulations using the averaged fitted parameter values across all subjects within the group. It is worth noting that at each step, no

more than three parameters are fitted to the data, in order to ensure identifiability and prevent overfitting.

lines, the simulations that result when using the averages of
the fitted parameter values across all the subjects capture the
dynamics of the data well. Thus, the averaged ρflank, ρIC, and
µH values that we pass for later fitting steps correspond well
with the group as a whole. Using these values then allowed us
to run simulations in a reasonable range of parameter values, as
well as to perform a model sensitivity analysis to understand how
variability in these values affect model outcomes.

3. RESULTS

3.1. Parameter Sensitivity Analysis
Due to the uncertainty and variability in our parameter estimates,
it was important to better characterize the effects of parameters
on model results. To do this, we conducted a parameter
sensitivity analysis via Latin hypercube sampling (LHS) and
partial-rank correlation coefficients (PRCC) (McKay et al., 1979;
Iman and Helton, 1988; Blower and Dowlatabadi, 1994). To
perform the LHS analysis, we first drew 1,000 equiprobable
samples for each unknown parameter, including the initial
condition C0, from a statistical distribution of values. These
distributions were informed by our fits of the preliminary data
when available; in the case of the unitless parameters, we assumed
a uniform distribution on the interval [0, 1]. These samples
were then randomly paired in a Latin hypercube scheme to
run a series of 1,000 Monte Carlo simulations. Using these

simulation results, we then computed PRCCs between each
parameter and two different model outcomes across all time
points: the total number of tumor cells and the fraction of
tumor that has low sensitivity (Figure 4). PRCC are computed
using partial correlation applied to value ranks, as opposed to
the actual values of the parameters and model outcome. Partial
correlation helps control for effects due to other covariates,
and ranks are used to evaluate the associative relationship
between high and low values of parameters and the model
outcomes, rather than the values themselves. Thus, the PRCC
values at a given time point indicate how closely a high model
outcome value relates to a high or low parameter value given
at that time in the simulation. A PRCC close to 1 indicates a
strong association between high parameter value and high model
outcome value, and a PRCC close to −1 indicates a strong
association between a low parameter value and a high model
outcome value. For PRCC values between −0.5 and 0.5, the
association is considered to be weak. Further details for about
this method and the code files used are available on GitHub:
https://github.com/scmassey/model-sensitivity-analysis.

3.1.1. Total Tumor Population Depends Most Strongly

on Proliferation Rate, Followed by Treatment

Response Parameters
At early time points, particularly before the initiation of therapy,
the tumor population is strongly positively correlated with both
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FIGURE 4 | Partial rank correlation coefficients (PRCC) of parameters with respect to (A) tumor cells and (B) fraction of cells with low sensitivity (L/(H+ L) = L/C),

visualized across simulation time.

the initial number of cells implanted, C0 and proliferation rate
ρ (Figure 4A). By 30 days, or after approximately three doses
of therapy, the population remains strongly positively correlated
with ρ but the effect of C0 begins to wane. At the same time, drug
sensitivity of the H cell population, µH , and exposure to drug, γ
are strongly negatively correlated with total tumor cells. Relative
sensitivity z, which determines the fraction of drug sensitivity
in the L cell population, is also negatively correlated with total
tumor, but less strongly, and only approaches a PRCC value of
−0.5 after 100 days. This suggests that relative sensitivity z is
less impactful than either the treatment response rate µH for the
subpopulation with high ADC sensitivity or the degree of tumor
exposure to ADC, γ .

Parameters γ and µH track together in the sensitivity analysis
(overlapping lines in Figure 4). This is expected given our
substitution µL = zµH , which results in the coefficient −γ zµH

in the term describing drug induced apoptosis for the equation
describing the L population (Equation 1b), mirroring that for the
H population (Equation 1a), −γµH . Thus, sensitivity analysis
is unable to compare the differential impacts of these two
parameters, and highlights a potential parameter identifiability
issue for our model. Since we had preliminary data in both the
treated flank as well as the treated intracranial PDX settings, we
were able to obtain parameter estimates for these by keeping
γ = 1 in the flank setting, and assuming that µH is the same
intracranially as in flank.

3.1.2. Less Sensitive Fraction of Tumor Driven by

Initial Proportion of These Cells, Followed by

Treatment Response Parameters
Prior to the initiation of therapy, only parameter q, the fraction
of initially implanted cells that have low sensitivity, is correlated
with the proportion of total tumor that has low sensitivity
(Figure 4B). Once treatment is initialized, q remains highly
positively correlated, and this correlation decreases slightly over
time during the course of treatment.

Three other parameters show correlation with the fraction of
tumor that has lower sensitivity following initiation of therapy,
all of which involve drug response. Parameters γ and µH ,
representing the degree of tumor exposure to ADC and the ADC-
induced cell kill rate of cells with high sensitivity, respectively,
are both positively correlated and track together, while parameter
z, representing the relative treatment sensitivity between the
cells with higher and lower sensitivity, is negatively correlated
with the fraction of tumor that has low sensitivity. Further,
the PRCC values do not vary over the time of the simulation
after treatment is initiated and sustained. These correlations are
consistent with expectations from the behavior of the system
described by the model.

3.2. Simulation Results
To more fully explore the effect of parameters on model
predicted outcomes, we ran simulations for varied values of the
parameters relating to treatment response: γ , µH , and z (degree
of ADC exposure, the ADC response rate in cells with high
sensitivity, and the relative sensitivity between the two tumor
subpopulations, respectively). Codes used to run simulations and
plot the results may be found on GitHub: https://github.com/
scmassey/treatment-exposure-sensitivity-model.

3.2.1. Treatment Exposure Impacts Tumor Burden

More Than Relative Sensitivity
Comparing simulation results across a range of values for
parameters γ and z while holding µH fixed, we see that γ

plays a larger influence on total tumor cells than does z. That
is, looking across rows of drug exposure values γ , we see that
for relative sensitivity z > 0.6, there is no variation in total
tumor burden. For lower levels of drug exposure, this is even
more pronounced, as tumor burden is quite high regardless of
the relative sensitivity. This is consistent with the parameter
sensitivity results of section 3.1.1, but shows the impact of this
dynamic in greater detail.
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FIGURE 5 | Simulation results for varied γ and z. (Left) Heatmap shows total tumor cells at 84 days (12 weeks) post tumor initiation, across 10 values each of γ and

z, for fixed µH = 5. (Right) Two particular simulations corresponding to the labels (A,B) in the heatmap.

3.2.2. Different Subpopulation Proportions Can Yield

Same Total Tumor Burden
Simulations also highlighted that there can be distinct differences
in the dynamics of the two subpopulations of cells underlying
predicted tumor burden (Figure 5). Looking at long time scales—
in this case at 12 weeks or 84 days, the average survival
time of the treated subjects—we observe the effect of an
extended time of treatment in the simulations. Comparing two
simulations with the same predicted tumor burden, we see that
one simulation retains a large proportion of cells with high
sensitivity (Figure 5A), while another is made up almost entirely
of cells with low treatment sensitivity (Figure 5B). Thus, while
the overall tumor may look similar at many points along its
trajectory if sampled sparsely, one is about to be “uncontrolled”
at later time points, while the other will stay relatively stable.

4. DISCUSSION

Failure of targeted therapies in glioblastoma can be attributed
to many different causes, many of which are driven by various
aspects of tumor heterogeneity. These include the potential
mismatch of treatment to target beyond the center of the tumor
and/or inadequate delivery of therapy to these cells invading
outlying brain parenchyma. Often these have been investigated
separately, focusing either on sensitivity (through optimizing
targets or overcoming resistance) (Cloughesy et al., 2014), or
engineering approaches for enhancing drug delivery (Liu et al.,
2010; Van Tellingen et al., 2015). Infrequently, elements of
both are combined (Stein et al., 2018), but even in those
cases the relative impact of these upon treatment outcomes
has not been compared. Thus, we created our Treatment
Exposure and Sensitivity model describing tumor growth and
treatment response incorporating both exposure and differential
sensitivity to therapy, based on experimental data, to investigate
the relationship between them. Through parameter sensitivity
analysis and simulation, we found that both can contribute
in similar ways, but exposure may have a greater impact
overall. In particular, for simulated tumors that were given

the same treatment responsiveness for the highly sensitive
population, therapeutic exposure impacts tumor burden more
than the relative sensitivity between the two tumor populations.
Sensitivity analysis also revealed that parameter ρ is the
strongest positive influence on total cell population, as expected,
and distinguished between the effect of reduced therapeutic
sensitivity (z) and exposure to therapy (γ ) in reducing the
total tumor population. Not only is there a difference in the
magnitude of correlation between parameters γ and z with
total tumor burden, there is also a difference in the temporal
dynamics of the change in these correlations over time. The
correlation coefficients between parameters and the fraction of
the tumor with lower treatment sensitivity, however, is quite
stable over time.

4.1. Limitations
Our model is relatively minimal by design, as the amount of
available data constrains the number of model parameters we
can fit. Thus, this model does not compare potential sources of
differential treatment sensitivity (such as various mechanisms of
resistance). Although tumor heterogeneity may actually provide
for many populations with varying levels of sensitivity to therapy,
as described in section 2.2 we assumed that these cluster toward
more or less sensitive, reducing them to two. Larger data sets
generated by similar studies in the future may support including
more populations and additional mechanistic differences or
interactions between them. Related to this, we were also limited
in distinguishing BBB impacts from other microenvironmental
effects when comparing data from tumors grown in the flank
vs. the intracranial setting beyond the proliferation rate, ρ. For
example, microenvironmental effects, such as vascular density,
likely create regions of differential drug exposure (as well
as regions of different tumor subpopulations). Experiments
generating larger data sets and greater spatial detail would
facilitate adding these features in future modeling efforts. Finally,
while our present analysis of the model enables us to understand
the overall dynamics between the parameters, we are not able to
conclude anything with respect to efficacy of this particular drug
among patients due to the use of a single PDX line. As we discuss
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below, however, by using the parameter fitting method presented
to estimate drug sensitivity and exposure across multiple PDX
lines in future studies, it may be possible to gain insight in these
factors across patients with this heterogeneous disease.

4.2. Model Recommendations for Future
Experiments
Parameter sensitivity analysis of the model highlighted the
necessity of having the flank and intracranial treatment groups
for practical identifiability in obtaining estimates for therapeutic
sensitivity (µH) and exposure (γ ). This “tradeoff” between γ and
µH was also observed in simulations and is expected given our
model formulation. However, the emergence of this dynamic in
the creation and parameter estimation of our model underscores
that this relationship should be carefully considered in the design
of experimental studies for new glioma therapies. Sensitivity
analysis revealed that correlation coefficients between parameters
and total tumor burden change most dramatically at earlier
time points, and after approximately 50 days, change relatively
little. This suggests that experiments conducted to examine
the relationship between exposure and sensitivity to therapy
should focus on collecting time course data more densely for
the first 7 weeks as compared to longer times. As shown by
simulations, there can be several parameterizations that fit tumor
burden data at any single time which correspond to different
proportions of cells with high and low sensitivity to treatment.
Thus, time series data is essential for detecting differences in
these and the contributions of the BBB (parameter γ ) and relative
sensitivity (z).

Because our Treatment Exposure and Sensitivity model
is minimal and reduces mechanisms down to a few key
parameters, it has great utility for fitting experimental data
to estimate these parameters for individuals. Having these
individual parameterizations is key to understanding the
extent to which drug exposure and resistance each contributed
to variations in outcome. In particular, quantifying drug
sensitivity and exposure parameters for individual subjects
within and between groups with additional therapies and PDX
lines (better capturing interpatient, as well as intrapatient,

heterogeneity) may be a promising avenue for future research.
This will provide further insights for developing novel
approaches to therapy optimization—including delivery—for
individual patients.
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