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This study elucidates the effects of chronic pH stress on the growth and metabolic
response of juvenile Chinese mitten crab Eriocheir sinensis. Crabs were exposed under
normal pH (control, pH = 8.0 ± 0.20), low pH (pH = 6.5 ± 0.20), and high pH
(pH = 9.5 ± 0.20) in an 8-week trial. Both low and high pH suppressed weight gain but
low pH had more adverse effects. No difference was observed on survival, crude lipid,
and protein. Acidic stress significantly reduced protein efficiency. The malondialdehyde
(MDA) content in hepatopancreas was highest at low pH. The superoxide dismutase
(SOD) activity in hepatopancreas and total hemocyte counts (THC) in the stress groups
were higher than that in the control. Crabs under high pH had the highest ACP and AKP
activities, but there was no significant difference between the control and low pH groups.
In the transcriptome analysis, 500.0M clean reads were obtained from the control, low
pH, and high pH groups, and assembled into 83,025 transcripts. Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways were analyzed to obtain the significantly
changed pathways involving differently expressed genes. Ten and eight pathways in
metabolism were significantly changed in low pH vs control and high pH vs control
groups, respectively. According to the reported functions of these pathways, most
of them participated in carbohydrate metabolism. The metabolism pathway analysis
indicates the increases of stress resistance, glucose metabolism, and molting activities
under chronically pH stress. This study suggests that low pH has more negative impact
on crab growth, and oxidative phosphorylation is the main source of energy source
under low pH stress, while aerobic glycolysis supplies most energy under high pH stress.

Keywords: Eriocheir sinensis, pH stress, antioxidant capacity, metabolic pathways, transcriptome

INTRODUCTION

Unlike seawater, freshwater has poor buffering capacity and can experience a wider range of pH
fluctuation (Han et al., 2016). The level of pH in aquaculture pond fluctuates from 6.6 to 10.2
because carbon dioxide is removed by plants and algae through photosynthesis at daytime while
carbon dioxide is released through respiration in the water at night (Li and Chen, 2008). The pH of
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surface water may also be acidic either by the natural process of
organic acidity or inorganic acids from atmospheric deposition
(Spyra, 2017). The pH in aquaculture ponds can increase to above
9 during the red tide formed by the rise concentration of soluble
organic substances (Wang and Wang, 1995) and photosynthesis
at daytime (Hayashi et al., 2012).

Generally, the exposure of freshwater organisms to an
abnormal pH can lead to mortality and reduction in growth
and reproduction (Kim et al., 2015). An acidic environment
can reduce the pH in blood or hemolymph in aquatic animals,
resulting in low oxygen carrying capacity and physiological
hypoxia (Han et al., 2018a). Alkaline stress would corrode
the gills of aquatic animals, leading to the reduction of ion
absorption and mortality (Qian et al., 2012). Though crustaceans
have the ability to adapt to pH change in a certain range,
it is also evident that extreme pH especially lower pH would
trigger abnormal functions in physiological, molecular, and
biochemical pathways (Chen et al., 2015; Kawamura et al., 2015;
He et al., 2019).

Adaptability of animals to environmental stress largely
depends on the capacity of transcriptome response and gene
expression (Gracey, 2007; Xu et al., 2016). RNA sequencing
(RNA-Seq) has been widely applied for the transcriptome
research (Wang et al., 2009). This technology provides a platform
to study the stress response and adaptative mechanism for
a species even without its full genome referencing database.
The hepatopancreas of crustaceans is a key organ involved in
digestion and detoxification, and it is also a crucial metabolic
center for eliminating excess ROS and plays an important role
in the immune system (Vogt, 1994; Chen et al., 2017). Therefore,
in this study, hepatopancreas transcriptome analysis was taken to
investigate the effects of chronic pH stress on the metabolism of
crabs. The Chinese mitten crab Eriocheir sinensis is an important
species in aquaculture and its production reached 796,622 metric
tons in 2014 with a value of over 5.5 billion US dollars (Wang
et al., 2019). With the development of intensive farming, pH
stress has become a major concern in crab farming. Therefore,
a comparative study on the metabolic response to pH stress is
necessary to develop a strategy to prevent crab mortality and
subsequent economic loss under a chronic low or high pH stress.
Our motivation to investigate the response of crab to pH stress
was due to the development of saline-alkali water aquaculture
in island saline water, which has been practiced worldwide,
including in Thailand, Brazil, China, Mexico, Ecuador, the
United States, and Vietnam (Dinh, 2015). However, most studies
on crustacean aquaculture at low salinity are mainly focusing on
shrimp Litopenaeus vannamei (Wang et al., 2015, 2017; Chen
et al., 2019) and the cultivation of crabs has not been reported
(Roy et al., 2010).

MATERIALS AND METHODS

Experimental Animals
Juvenile crabs (E. sinensis) were obtained from a local crab
company in Shanghai, China. All crabs were acclimated in several
plastic tanks (100 × 80 × 60 cm) for 2 weeks in the Biological

Station of East China Normal University. Healthy crabs (450)
(2.10± 0.20 g) were randomly assigned into 15 tanks (300 L) with
five corrugated plastic pipes (12 cm long and 25 mm in diameter)
and five arched tiles as the shelters to avoid attacking. Three
treatments included a control (pH = 8.0 ± 0.20), low pH stress
(pH = 6.5± 0.20), and high pH stress (pH = 9.5± 0.20) with five
replicates each and 30 crabs in each replicate. A commercial diet
with 37% crude protein and 7% crude lipid was used in this study.
All the crabs were hand-fed to apparent visual satiation thrice
daily at 00:00, 09:00, 17:00, and 00:00 h for 8 weeks. The volume of
1/3 to 1/2 of the tank water was exchanged and the water pH was
adjusted to the target levels by adding 1 mol L−1 HCl or 1 mol L−1

NaOH stock solution. The pH was measured and adjusted every
8 h. The water quality parameters across all feeding treatments
were maintained at 24 ± 1.0◦C, dissolved oxygen > 7.5 mg L−1,
and ammonia-N < 0.05 mg L−1.

Sample Collection
At the end of the 8-week trial, all crabs in each tank were
counted and deprived of feed for 24 h before body weight was
determined. Six crabs at the stage of intermolt from each tank
were randomly collected and stored at −20◦C for the analysis of
whole-body composition. Other six crabs from each tank were
anesthetized on ice for 10 min. The 1 mL syringe with 1:1 pre-
cooled anticoagulant solution (510 mmol L−1 NaCl, 100 mmol
L−1 glucose, 200 mmol L−1 citric acid, 43.33 mmol L−1 citric
acid, 30 mmol L−1 Na-citrate, 10 mmol L−1 EDTA·2Na, pH 7.3)
was used to collect the hemolymph from the third pereiopod
of each crab. Part of hemolymph was used for total hemocyte
counts (THC), and the rest was centrifuged at 4000 × g for
20 min at 4◦C to collect the serum. Crabs were dissected to collect
the hepatopancreas, and all hepatopancreas and serum samples
were stored at −80◦C for further analyses. The protocols for
using animals in this study were approved by the Committee
on the Ethics of Animal Experiments of East China Normal
University (f20190201).

Growth Performance Evaluation and
Whole-Body Composition Analysis
Survival rate (SR), weight gain (WG), and protein efficiency rate
(PER) were calculated using the following formulae:

Survival rate (SR, %) = 100× (final crab number/initial crab
number);
Weight gain (WG, %) = 100 × (final weight – initial
weight)/initial weight;
Protein efficiency rate (PER) = wet weight gain/dry weight
of protein intake.

The body composition of crabs and the proximate
composition of diets were determined according to the
standard methods (AOAC) (Chem, 1992). The whole-body
proximate composition was measured in four crabs from each
tank and then the average per tank of the same set was used
for statistical analysis. Moisture was determined by oven dry at
105◦C to a constant weight. Crude protein was measured by the
Kjeldahl method using KjeltecTM 8200 (Kjeltec, Foss, Sweden).
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Lipid was quantified by the method of Bligh and Dyer (Folch
et al., 1951) using a vacuum drying oven (DZF-6050, Jinghong,
Ltd., Shanghai, China). Samples were digested with nitric acid
and incinerated in a muffle furnace (PCD-E3000 Serials, Peaks,
Japan) at 550◦C overnight for ash determination.

Total Hemocyte Counts (THC)
Total hemocyte counts were obtained by using a hemocytometer.
Each hemolymph sample was repeated three times and the mean
value was recorded for statistical analysis.

Biochemical Analysis
Superoxide dismutase (SOD) and malondialdehyde (MDA)
of hepatopancreas were measured by using the iodine-starch
colorimetric method with the commercial assay kits (Cat.
No. A001-1, A003-1 and A005, Jiancheng, Bioengineering
Institute, Nanjing, China). The acid phosphatase (ACP) and
alkaline phosphatase (AKP) activity of serum were measured
by the disodium phenyl phosphate hydrate method with
commercial assay kits (Cat. No. A060-1 and A059-1, Jiancheng,
Bioengineering Institute, Nanjing, China) according to the
manufacturer’s protocols.

RNA Extraction, cDNA Library
Conduction, and Sequencing
The hepatopancreas samples were ground in liquid nitrogen, and
total RNA was extracted using TRIzol R© Reagent in accordance
with the manufacturer’s instruction (Invitrogen, United States).
Extracted RNA was treated with DNase I (Takara, Japan) to
remove genomic DNA. The quality and quantity of total RNA
were assessed using a Nano Drop 2000 spectrophotometer
(Thermo, Wilmington, DE, United States).

The RNA-seq transcriptome library was prepared following
the TruSeqTM RNA sample preparation kit from Illumina
(San Diego, CA, United States) using 1 µg of total RNA.
mRNA was isolated according to the poly A selection method
using Oligo (dT) beads and then was fragmented using the
fragmentation buffer.

Single-stranded cDNA was synthesized with random
hexamers using RNA as a template. Double-stranded cDNA was
synthesized with the effect of dNTPs, DNA polymerase I, RNase
H, and buffer, and it was purified by AMPure XP beads. A single
(A) was added using Klenow buffer.

Adaptor-modified fragments were selected by AMPure XP
beads, and PCR amplification was performed for 15 cycles.
After quantification by Qubit 2.0, the sequencing library was
diluted to 1.5 ng/µL. The insert size of the library was tested
by Agilent 2100, and was quantified by the Q-PCR method
to guarantee the quality of the sequencing library. RNA-seq
sequencing library was sequenced using Illumina HiSeq 4000.
The raw sequencing data were evaluated by FAST-QC1 to remove
low-quality reads (i.e., Q value < 20), adapter sequences, reads
with ambiguous bases (“N”), and fragments < 20 bp in length.
As there was no reference genome for Chinese mitten crab, the

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

sequenced reads was spliced using Trinity first (Grabherr et al.,
2011), and the hierarchical cluster analysis was used with Corset2

(Davidson and Oshlack, 2014).

Gene Expression Analysis and
Functional Enrichment
To identify differential expression genes between the two
different treatments in two tissues, RSEM3 was used to
quantify gene abundance. The expression level of each transcript
was calculated according to the method of fragments per
kilobase of transcript sequence per millions base pairs (FRKM).
Differential expression analysis was conducted using DESeq2
with p-value ≤ 0.05. Gene Ontology (GO) analysis4 was
performed to facilitate elucidating the biological implications
of unique genes in the significant or representative profiles of
the differentially expressed genes; 19 significantly changed genes
were randomly chosen for validation by real-time quantitative
PCR (qRT-PCR). Kyoto Encyclopedia of Genes and Genomes
(KEGG) was performed for functional-enrichment analysis in the
metabolic pathways at FDR ≤ 0.05. KEGG pathway analysis was
carried out using KOBAS5.

Statistical Analysis
All results were tested for normality and homogeneity of
variance by Levene’s equal variance test. Data were presented
as means ± standard error (SE). Each variable was analyzed by
one-way analysis of variance (ANOVA) followed by Duncan’s
multiple range test (SPSS 19.0 package; SPSS Inc., New York,
NY, United States). The levels of statistical difference were
set at P < 0.01 as extreme difference and P < 0.05 as
significant difference.

RESULTS

Growth Performance and Whole-Body
Composition
The weight gain of the crab was significantly affected by pH
stress. The crabs at pH 9.5 gained more weight than those at pH
6.5 (Figure 1A). There was no significant difference in survival
rate, crude lipid, and crude protein (Figures 1B,C). The PER
at low pH was lower than the control and the high pH group
(Figure 1D), but there was no difference between the control
and high pH group.

Antioxidant Capacity and Immune Status
The MDA content in hepatopancreas was highest in the pH 6.5
group and there was no significant difference between the control
group and high pH group (Figure 2A). The SOD activity in
hepatopancreas was higher in the high pH group than the other
two groups (Figure 2B). THC in the pH stress groups were higher

2https://code.google.com/p/corsetproject/
3http://deweylab.biostat.wisc,edu/rsem/
4http://www.geneontology.org/
5http://kobas.cbi.pku.edu.cn/home.do
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FIGURE 1 | Effects of acidic and alkaline stress on the weight gain (A), survival rate (B), whole-body composition (C), and protein efficiency rate (D) of E. sinensis.
The results were presented as mean ± SE and different lowercase letters mean significant differences by Duncan’s test (P < 0.05).

than those in the control group (Figure 2C). Crabs at pH 9.5 had
the highest ACP and AKP activities (Figures 2D,E). There was
no significant difference between the control group and low pH
group in the ACP and AKP activities.

Transcriptome Sequencing and de novo
Assembly
A total of 175.7M, 156.2M, and 168.1M clean reads were obtained
from the control, low pH, and high pH group, respectively, after
the removal of low-quality reads. The mean GC (%) of these three
groups was 56.80, 55.79, and 55.92%, respectively. In total, 83,025
transcripts were obtained and analyzed by de novo assembly
(Table 1). The summary of the RNA-Seq results is shown in
Table 1 and the accession number of de novo was PRJNA554226.

Analysis of Gene Expression
The mean mapping ratio of the control, low pH, and high pH
groups was 82.77, 82.27, and 82.56%, respectively. The expression
of 2459 genes (1344-up and 1115-down) was significantly
different in the hepatopancreas between the low pH and the
control groups (L pH vs Control) (P < 0.05, Figure 3A).
The expression of 1645 genes (775-up and 870-down) was
significantly different between the high pH and the control
groups (Figure 3B). Log FCs from qRT-PCR were compared with

the RNA-seq expression analysis results and these two results had
a correlation coefficient of 0.8 demonstrating the credibility of the
RNA-Seq results.

GO and KEGG Analysis
Based on the GO analysis, the functions of the differently
expressed genes could be classified into three main categories:
biological process, molecular function, and cellular component.
KEGG pathways were analyzed to obtain significantly changed
pathways involving the differently expressed genes. Ten out of
23 significantly changed pathways were related to metabolism in
the low pH vs control group, while there were 19 significantly
changed pathways in the high pH vs control group and eight of
them were in metabolism. According to the reported functions
of these pathways, most of them participated in carbohydrate
metabolism (Tables 2, 3).

DISCUSSION

A pH value between 6.5 and 9.0 is satisfactory for most freshwater
animals in long-term of farming practice (Alabaster and Lloyd,
1980). Moreover, a high pH value of 9.5 is quite common in ponds
for crab farming (Kong et al., 2012). In this study, there was no
significant difference in growth performance parameters between
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FIGURE 2 | Effects of acidic and alkaline stress on the content of malondialdehyde (A), the activities of superoxide dismutase (B), total hemocyte counts (C), acid
phosphatase (D), and alkaline phosphatase (E) of E. sinensis. The results were presented as mean ± SE and different lowercase letters above each column mean
significant differences by Duncan’s test (P < 0.05).

TABLE 1 | Basic information of the transcriptome analysis.

Min length Max length Mean length Percent GC N50 Total nucleotides Total numbers

Transcripts 201 20,188 1027 46.92 1624 85,306,988 83,025

Genes 201 20,188 904 46.67 1389 58,750,515 64,995
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FIGURE 3 | Transcriptional profiles of different expressed genes between two pair-wise comparisons in the hepatopancreas of crab revealed by Volcano plots. (A) L
vs Control group. (B) H vs Control group. For volcano plots, the X-axis represents log (fold change), and the Y-axis is p-value. The differently expressed genes are
shown as mazarine (down, p-value < 0.01), sky blue (down, p-value < 0.05), red (up, p-value < 0.01), and yellow (up, p-value < 0.05).

any pH groups after 8 weeks, indicating the Chinese mitten crab
can survive in pH 6.5–9.5. But there was also a study showing
that 40% healthy crabs (about 50 g) died after exposure to pH
9.5 for 2 weeks (Pan et al., 2017). That is because smaller crabs
have greater tolerance to environmental stress than bigger ones
(Tood and Dehnel, 1960). Weight gain was reduced by water
pH stress, and the acidic pH had more negative effect, which is
consistent with the result of pH effect on protein utilization. The
negative effect of pH stress may be mediated by the disruption
of metabolic regulation, extra energy expenditure, and reduction
of nutrient absorption (Leal et al., 2011), which may explain why
weight gains in the low pH and high pH groups are low in the
current study. The other possible reason may be that acidification
may alter the dynamics of muscle water content, which would
lead to the changes of weight gain.

Environmental stress can trigger the over production of
reactive oxygen species (ROS) and result in a severe damage to
cells (Du et al., 2013). MDA is one of the most known products of
lipid peroxidation and is a well-established marker of oxidative
stress, which can be induced by a wide range of environmental
stress (Wang et al., 2004). Therefore, the increase of MDA is
usually associated with various environmental stress and the
pathological state of animals (Zhang Y. et al., 2015). Aquatic
crustaceans lack an adaptive immune response and mostly rely on
innate immune responses, among which the antioxidant defense
system is important to reduce ROS damage (Muta and Iwanaga,
1996; Zhang W. et al., 2015). SOD is a key antioxidant enzyme
directly participating in the removal of ROS (Kobayashi et al.,
2019). ACP and AKP are highly conserved enzymes and play an
important role in the non-specific immunity of crustaceans (Yang
et al., 2007; Gisbert et al., 2018). Thus, higher ACP and AKP
activities have a positive effect on the defense against external
microbial invasion (Wu et al., 2019). Total hemocyte numbers
of crustaceans can vary greatly after exposure to environmental

stress and infections by bacteria, fungi, and viruses (Truscott and
White, 1990; Vargas et al., 1997; Iwanaga and Lee, 2005; Vazquez
et al., 2009). Any increase in THC could lead to an increase of
immune defense ability (Min et al., 2015). The results of the
present study reveal that all three immune parameters of the
crabs were significantly affected after exposure to alkaline acid
stress. Also, an increase of OH− concentration seems to have
more stimulative effects on immune function of the crabs than
those at a high H+ concentration, which may be the reason why
the MDA content in the high pH group was lower than that in
the low pH group.

When suffering in environmental stress, crustaceans require
additional energy to maintain homeostasis (Wang et al., 2016).
Carbohydrates are often included in artificial diets to serve
as an energy source, and they can also meet the high
energy demand of aquatic animals under stress (Tseng and
Hwang, 2008; Wang et al., 2017). Mitochondrial oxidative
phosphorylation provides over 90% of the energy produced
by aerobic organisms; therefore, the regulation of oxidative
phosphorylation is a major issue for coping with the environment
changes to meet more energy need (Bermejo-Nogales et al.,
2015). However, animals would use glycolysis to produce
energy in the absence of adequate oxygen. In the presence
of adequate oxygen levels, the intracellular pH might be
a factor that determines which way to obtain energy. For
instance, oxidative phosphorylation could be driven in an
acidic condition and aerobic glycolysis is driven in an alkaline
condition (Khalifat et al., 2008; Calderon-Montano et al., 2011).
Similar to these findings, the significant changes in oxidative
phosphorylation, TCA cycle, and pyruvate metabolism pathways
at low pH may be driven by the acidic medium, and the
glycolysis/gluconeogenesis pathways can be driven by high pH.
However, the primary response in aquatic animals is usually
accompanied with high levels of plasma glucose and anaerobic
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TABLE 2 | Significantly changed genes and KEGG pathways involved in metabolism response in the hepatopancreas of Chinese mitten crab under pH 6.5 vs in the
control group for 8 weeks.

Pathway term Involved genes P-value

Oxidative phosphorylation CYC1, CYT1, petC| SDHA, SDH1| NDUFA12| COX5B| ATPeV1H| NDUFS7ATPF1D, atpH|
ATPeF1B, ATP5B, ATP2| QCR2, UQCRC2| ATPeV1F, ATP6S14| UQCRFS1, RIP1, petA| QCR8,
UQCRQ| SDHC, SDH3| ATPeF0B, ATP5F1, ATP4| NDUFA4| NDUFAB1| COX5A| NDUFS3|
ATPeF0O, ATP5O, ATP5| ATPF0C, atpE| NDUFB2| ATPF1B, atpD| ATPeF1D, ATP5D, ATP16|
ppa| NDUFB7

3.30E-06

Glycolysis/gluconeogenesis frmA, ADH5, adhC| PDHX| LDH, ldh| E4.1.1.32, pckA, PEPCK| PGK, pgk | ENO, eno| DLAT,
aceF, pdhC| PTS-Glc-EIIA, crr| GPI, pgi| ACSS, acs| PDHA, pdhA| GAPDH, gapA| DLD, lpd,
pdhD| FBA, fbaA

6.07 E-04

Citrate cycle (TCA cycle) PDHX| IDH1, IDH2, icd| E4.1.1.32, pckA, PEPCK| SDHC, SDH3| | DLAT, aceF, pdhC | MDH2|
SDHA, SDH1| PDHA, pdhA| ACO, acnA| DLD, lpd, pdhD

8.39 E-04

Pyruvate metabolism PDHX| LDH, ldh| E4.1.1.32, pckA, PEPCK| MDH2| DLAT, aceF, pdhC| ACSS, acs| PDHA, pdhA|
DLD, lpd, pdhD

0.011

Starch and sucrose metabolism UGT| UGDH, ugd| E3.2.1.28, treA, treF| E3.2.1.4| MGAM| SI| PTS-Glc-EIIA, crr| UGP2, galU,
galF| GPI, pgi| TPS

0.011

Taurine and hypotaurine metabolism CSAD| GADL1, CSADC, ADC 0.034

Glutathione metabolism IDH1, IDH2, icd| GST, gst | E1.11.1.9| GCLC| E4.1.1.17, ODC1, speC, speF 0.042

Amino sugar and nucleotide sugar metabolism E3.2.1.14| PTS-Nag-EIIC, nagE| HEXA_B| PTS-Glc-EIIA, crr| UGP2, galU, galF| GPI, pgi 0.045

Steroid biosynthesis E1.14.13.72, SC4MOL, ERG25| DHCR24 0.046

Pentose and glucuronate interconversions UGT| UGDH, ugd | DHDH| UGP2, galU, galF| DCXR 0.050

TABLE 3 | Significantly changed genes and KEGG pathways involved in metabolism response in the hepatopancreas of Chinese mitten crab under pH 9.5 vs in the
control group for 8 weeks.

Pathway term Associated genes P-value

Starch and sucrose metabolism MGAM| E3.2.1.1, amyA, malS| E3.2.1.28, treA, treF| SI| | PTS-Glc-EIIA, crr| GPI, pgi| TPS 1.75 E-04

Glycolysis/gluconeogenesis ENO, eno| E4.1.1.32, pckA, PEPCK| GAPDH, gapA| ADPGK| FBA, fbaA| LDH, ldh| PTS-Glc-EIIA,
crr| PGK, pgk| GPI, pgi| GAPDH, gapA| gpmI

8.07 E-04

One carbon pool by folate FTCD| MTHFS| metF, MTHFR 0.010

Amino sugar and nucleotide sugar metabolism nagA, AMDHD2| PTS-Nag-EIIC, nagE| PTS-Glc-EIIA, crr| GPI, pgi| manA, MPI 0.010

Linoleic acid metabolism PLA2G, SPLA2| CYP2J| CYP3A 0.015

Galactose metabolism MGAM| SI 0.025

Glycosaminoglycan degradation NAGLU| SGSH 0.043

Taurine and hypotaurine metabolism CSAD 0.048

glycolysis (Arends et al., 1999; Acerete et al., 2004; Fazio et al.,
2015). This may explain why both oxidative phosphorylation
and glycolysis/glycogenesis pathways were upregulated in the low
pH group. Due to the enhanced glucose activities, the digestion
of carbohydrates was increased in terms of the upregulated
starch and sucrose metabolism pathways in both acidic and
alkaline groups.

Except for conventional carbohydrates, the presence of non-
glycogenic carbohydrates also contributes to the concentration of
total carbohydrates in the hepatopancreas of most crustaceans
(Chang and O’Connor, 1983). The amino sugar glucosamine
(GlcN) and N-acetylglucosamine (GlcNAc) are prevalent in the
biosphere. For instance, amino sugars are the major component
of the exoskeleton of crustaceans (Zeng et al., 2016). The changes
in the amino sugar pathways in the current study indicate
that acidic and alkaline stress might affect the molt activity of
Chinese mitten crab. Similarly, some other studies also found
that environmental stress would change molting frequency in
ammonia-exposed Penaeus monodon, saponin-exposed Penaeus

japonicus, copper sulfate- exposed P. monodon, nitrite-exposed
P. monodon, and acid-exposed Macrobrachium rosenbergii (Chen
and Chen, 1992, 2003; Chen and Lin, 1992). In the current study,
the finding is further verified by the changes of pentose and
glucuronate interconversions, galactose metabolism pathways,
and steroid biosynthesis pathways in low pH and high pH groups.

Glycosaminoglycans are heteropolysaccharides composed
by a repeat disaccharide unit in which one of the two
monosaccharides always contains an amino sugar (N-
acetylgalactosamine or GlcNAc) (Antonio et al., 2013).
A previous study reported that the crayfish Orconectes virilis
might depend on the pentose pathway during intermolt
and glycolysis during premolt in carbohydrate metabolism
(Mcwhinnie, 1962). The glycolytic, pentose phosphate, and
glucuronate pathways are operated as catabolic pathways for
glucose utilization in intermolt crayfish, Pacifastacus leniusculus
(Puyear et al., 1965). Galactose also appears frequently during
the premolt of period to satisfy the carbohydrate need of molting
(Vernberg and Vernberg, 1972).
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As a member of gonad stimulatory hormones, steroid plays
a pivotal role in molting and reproduction in crustaceans
(Subramoniam, 2017). Steroid hormones also have antioxidant
and free radical scavenging activities and the physiological
metabolisms involved in steroid in the hepatopancreas of
crustacean would promote SOD activity (Cai et al., 2002;
Wu et al., 2016). The SOD activity of the crab in low pH
group was enhanced in the current study. Enzymes such as
SOD, glutathione peroxidases (GPx), and some non-enzymatic
defense such as glutathione (GSH), tocopherols, taurine, and
urate constitute the first line of defense to inactive ROS and
scavenge free radicals (Sharma et al., 2004; Wang et al., 2019).
The thiol group in the cysteine moiety of GSH is a reducing
agent and can be reversibly oxidized and reduced (Meister
and Anderson, 1983). However, GSH is an acidic molecule
characterized by a γ-linked amino acid, and the cysteine residue
can reduce its stability in an alkaline environment (Anik
et al., 2016; Giustarini et al., 2016). That is why the GSH
metabolism pathways were significantly changed in the low
pH group but not in high pH group. Taurine, hypotaurine,
and their metabolic precursors (cysteamine, cystic acid, and
cysteinesulfinic acid) may protect the organisms against a variety
of oxidants (Konukoglu et al., 1999). As antioxidants could
protect the crustaceans from oxidative stress, the taurine and
hypotaurine metabolism pathways were significantly changed in
both low and high pH groups.

Some crustaceans could also convert the linolenic acid to the
highly polyunsaturated fatty acids such as eicosapentaenoic acid
in the similar way to what has been reported in fish (Kabeya
et al., 2018). Long chain polyunsaturated fatty acids (LC-PUFA,
involved in eicosapentaenoic acid) have an important role in
physiological processes such as immune and stress responses
(Tocher, 2010; Norambuena et al., 2015). The changes of the
linoleic acid metabolism in the high pH group indicate that
alkaline stress may stimulate de novo synthesis of EPA, and
improve the ability of stress resistance in crab.

In general, the crab growth was suppressed by both acidic
and alkaline stress, especially at pH 6.5. The increase of OH−
concentration seems to have a more stimulative effect on
antioxidant ability and immunity and stronger ability of stress
resistance than the crabs under acidic stress. Environmental stress
would increase the metabolic activity of animals to compensate
the change and maintain homeostasis (Koehn and Bayne, 1989).
In the current study, data of transcriptome reveal that the

main metabolic changes were the pathways related to glucose
metabolism as carbohydrates can rapidly provide energy to meet
the high energy demand of aquatic animals in a stress condition.
Oxidative phosphorylation might be the main source of energy
under acidic stress, while the aerobic glycolysis supplies most
energy during alkaline stress. The pathway analysis indicates that
pH stress may affect the molting process, but this claim needs a
longer term field study to confirm.
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