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Background: A healthy individual has a high degree of functional connectivity between
organ systems, which can be represented graphically in a network map. Disruption of
this system connectivity is associated with mortality in life-threatening acute illnesses,
demonstrated by a network approach. However, this approach has not been applied to
chronic multisystem diseases and may be more reliable than conventional individual
organ prognostic scoring methods. Cirrhosis is a chronic disease of the liver with
multisystem involvement. Development of an efficient model for prediction of mortality
in cirrhosis requires a profound understanding of the pathophysiologic processes that
lead to poor prognosis. In the present study, we use a network approach to evaluate
the differences in organ system connectivity between survivors and non-survivors in a
group of well-characterized patients with cirrhosis.

Methods: 201 patients with cirrhosis originally referred to the Clinic five at the University
Hospital of Padova, with 13 clinical variables available representing hepatic, metabolic,
haematopoietic, immune, neural and renal organ systems were retrospectively enrolled
and followed up for 3, 6, and 12 months. Software was designed to compute the
correlation network maps of organ system interaction in survivors and non-survivors
using analysis indices: A. Bonferroni corrected Pearson’s correlation coefficient and B.
Mutual Information. Network structure was quantitatively evaluated using the measures
of edges, average degree of connectivity and closeness, and qualitatively using clinical
significance. Pair-matching was also implemented as a further step after initial general
analysis to control for sample size and Model for End-Stage Liver Disease (MELD-Na)
score between the groups.

Results: There was a higher number of significant correlations in survivors, as indicated
by both the analysis indices of Bonferroni corrected Pearson’s correlation coefficient and
the Mutual Information analysis. The number of edges, average degree of connectivity
and closeness were significantly higher in survivors compared to non-survivors group.
Pair-matching for MELD-Na was also associated with increased connectivity in survivors
compared to non-survivors over 3 and 6 months follow up.

Conclusion: This study demonstrates the application of a network approach in
evaluating functional connectivity of organ systems in liver cirrhosis, demonstrating a
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significant degree of network disruption in organ systems in non-survivors. Network
analysis of organ systems may provide insight in developing novel prognostic models
for organ allocation in patients with cirrhosis.

Keywords: network physiology, network medicine, cirrhosis, survival, mutual information

INTRODUCTION

A network approach in medicine represents a shift from a
reductionist approach, which considers involvement of distinct
physiological components in the disease process. Although such
a reductionistic approach has been fruitful in the development
of therapy for Mendelian disorders (e.g., haemophilia), it has
failed to uncover the true mechanism of complex disorders
such as sepsis and multiple organ failure. By contrast, a
network approach works on the basis that these components
interact non-linearly to coordinate robust integrated functions
(Higgins, 2002).

Network analysis has now been biologically applied on
multiple levels, including sub-cellular (e.g., gene expression and
protein dynamics) (Arodz and Bonchev, 2015; Kontou et al.,
2016; Joehanes, 2018), cellular (e.g., neural networks) (Rothkegel
and Lehnertz, 2014; Fernandes et al., 2015; Edwards et al., 2018)
and tissue level signaling (Oliveira et al., 2014; Taroni et al.,
2017). It is now also being applied to organ system analysis at
a functional level. A network approach also has non-biological
medical applications, including use in the prediction of evolution
of research communities (Yu et al., 2012; Shirazi et al., 2016) and
health informatics.

Fundamental research in the emergent modern field
of network physiology and network medicine has laid
the foundation for understanding and quantifying global
physiological behavior that results from networked interactions
across systems, coordinated over a range of space and
time scales. While this review by Ivanov et al. (2016)
presents an overview of the current focus and progress in
the field, there is no shortage of work that continues to
reinforce the link between physiological coupling, phase
transitions and phenotypic network states across our complex
physiological systems (Bartsch et al., 2012; Bartsch and
Ivanov, 2014; Liu et al., 2015; Lin et al., 2016). Such research
has yielded important findings, such as showing that the
network in specific physiological states are characterized by
specific topology and coupling strength between systems
(Bashan et al., 2012).

One of the first applications of a network approach to
organ system analysis in complex disorders was proposed
by Godin and Buchman (1996), who defined the role of
organs as biological oscillators that maintain orderly coupling
through system-wide communication networks such as
cytokines. They demonstrated the progression of the systemic
inflammatory response syndrome to multiple organ dysfunction
syndrome, with the impairment of interorgan connectivity
being modulated by excessive inflammatory stimuli. While
individual organ system dysfunction is well categorized

(Marshall et al., 1995), disruption of organ systems has been
found to bemortality-associated.

Recently, Asada et al. (2016) reported the first clinical
application of network analysis to evaluate interorgan
relationships between critically ill surviving and non-surviving
patients with multiple organ failure. They challenged the
reliability of conventional scoring methods, which sum up
degrees of individual organ dysfunction to represent systemic
illness pathophysiology and disease severity. Based on their
network analysis, the degree of organ system disruption was
associated with poor prognosis independently of conventional
scoring methods. Survivors consistently yielded a higher
number of edges and clusters compared to non-survivors in
their organ connectivity network structures. Such a network
physiology approach for the early detection of critical illnesses
facilitated by big data and novel analytic and computational
approaches has merit and is encouraging, even in light of
limitations (Moorman et al., 2016). More recently, Asada et al.
(2019) followed up exploring the differences in connectivity
between specific organ system clusters in critically ill patients.
These include the respiratory-renal-inflammatory system
cluster and the cardiovascular-hepatic-coagulation system
cluster. The study revealed that stability of organ clusters
was preserved in survivors as long as organ systems formed
an interactive network, regardless of severe dysfunction. In
contrast, organ cluster instability and organ system isolation was
associated with mortality.

While organ system network analysis has been applied to
critical illness of an acute nature, its application to critical
illness of a chronic nature has not been investigated. Liver
cirrhosis represents an interesting a candidate due to its
multiorgan involvement and prevalence of approximately
0.15% (Schuppan and Afdhal, 2008). This is characterized
by portal hypertension, ascites formation, hepatorenal
syndrome, hepatic encephalopathy, hyperdynamic circulation,
cardiomyopathy, autonomic dysfunction and an impaired
immune response (European Association for the Study of
the Liver, 2010; Licata et al., 2014; Vilstrup et al., 2014).
Cirrhosis is hence a multisystemic disease that affects the
hepatic, cardiovascular, immune, renal and neurological systems
(Schuppan and Afdhal, 2008).

Survival prediction is important in cirrhosis patients,
particularly for organ transplant allocation. The Model for End-
Stage Liver Disease (MELD) score has been used in recent
years to this aim, and has subsequently been refined with the
inclusion of serum sodium levels (MELD-Na) (Kamath et al.,
2007; Martin and O’Brien, 2015). This score comprizes of indices
including serum bilirubin, serum creatinine, serum sodium,
and coagulation factors. Recently, physiological markers (e.g.,
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EEG and heart rate variability indices) have been shown to
be independent of MELD in predicting survival (Montagnese
et al., 2015; Bhogal et al., 2019). Therefore, conventional
clinical scores still have room to improve in reflecting the
multisystem nature of liver cirrhosis. In the present study, we
aim to use a network approach to evaluate the differences
in organ system connectivity between liver cirrhosis survivors
and non-survivors.

MATERIALS AND METHODS

Participants and Ethics
The study protocol was approved by the Hospital of Padova
Ethics Committee. All participants provided written, informed
consent. This study was conducted according to the Declaration
of Helsinki (Hong Kong Amendment) and Good Clinical
Practice (European) guidelines. The study population consists of
patients with liver cirrhosis referred to the liver unit, Clinic five
of the University Hospital of Padova for assessment of hepatic
encephalopathy between 2009 and 2018. The exclusion criteria
include patients with hepatocellular carcinoma and patients
unconfirmed for hepatocellular carcinoma. Two hundred and
one patients (156 males, age ± SD: 57 ± 11 years) met the
inclusion/exclusion criteria. On the day of study, 26% patients
were classed as Child A, 52% as B, and 22% as C. The average
(±SD) MELD score was 14 ± 5 and the average MELD-Na
score 15± 6.

Follow-Up Time and Survivors vs
Non-survivors
Patients were classified into 3-, 6-, and 12-month follow-up
groups, corresponding to a follow-up time threshold of 90, 180,
and 360 days. These follow-up groups were then further classified
into a survivor group and a non-survivor group.

During each follow-up, the clinical variable measurements
and survivor status of patients were updated. Patients who died
during the follow-up periods formed the non-survivor group.
Patients who survived formed the survivor group.

Patients who had follow-up information less than a follow-
up threshold were censored from analysis as their survival
status is unconfirmed. For example, if a patient had a follow-
up at 150 days which confirmed they were alive, but had no
further update beyond that, they would be included in the
3 month follow-up group but censored from the 6 month
follow-up group.

Transplantation
During data collection of the study population, a number of
patients underwent successful liver transplantation for liver
failure. These patients are considered dead at the time of
transplantation.

Clinical Variables
Clinical and laboratory variables were chosen to represent
individual organ or system function. These clinical and

laboratory variables were derived retrospectively from a
preliminary study using a Random Forest machine learning
algorithm (Breiman, 2001). Variables which did not hold
any weight in contributing to the outcome of mortality in
patients were excluded to ensure that our study focused
on the variables that have weight in mortality prediction
and are hence included in the analysis in our study. Using
this approach redundant clinical variables were eliminated,
narrowing down the chosen clinical variables to 13. These
include C-reactive protein (CRP), serum albumin, total bilirubin,
prothrombin time, international normalised ratio (INR),
ammonia, hemoglobin, serum creatinine, serum sodium,
ascites and hepatic encephalopathy. Hepatic encephalopathy
was classified as (0) unimpaired: no clinical evidence of
hepatic encephalopathy and no defining EEG or psychometric
abnormalities; (1) minimal hepatic encephalopathy: no clinical
evidence of hepatic encephalopathy but abnormal EEG and/or
impaired psychometric performance; and (2) overt hepatic
encephalopathy: clinically evident neuropsychiatric disturbances
(Asada et al., 2019). An addition of the MELD-Na (Elwir and
Lake, 2016) and Child-Pugh (Child and Turcotte, 1964; Pugh
et al., 1973) scores were calculated. Table 1 indicates the list of
clinical variables with their physiological interpretation.

Generation of Network Maps
In the network maps, individual clinical variables are represented
as nodes. A significant correlation between two nodes is
represented by the formation of an edge.

There are many approaches using different indices to evaluate
the strength of edges between clinical variables in a network
map. This ranges from simple linear approaches such as
the Pearson’s correlation coefficient analysis to more complex
non-linear approaches such as the information theory Mutual
information analysis. In the present study, the approach of using
the Pearson’s correlation coefficient with Bonferroni’s correction
analysis (Armstrong, 2014) is compared against the approach
of using the Mutual information analysis (Steuer et al., 2002;
MacKay, 2005). An edge was formed between two clinical
variable nodes if the association between two clinical variables
was equal to, or greater than the determined cut-off value for
the analysis index. All values that did not reach the cut-off
threshold were considered zero in the adjacency matrix. For the
Pearson’s correlation analysis, the cut-off refers to the correlation
values that have passed the Bonferroni significance threshold
of 0.0038462, which is the result of an adjusted p-value of
0.05 taking into account the number of pairwise comparisons
made. For the mutual information analysis, the optimal cut-
off value to elucidate informative network connections was
determined to be 0.75 after testing a range of values. The
use of a lower threshold resulted in an over-saturation of
network connections, yielding no interpretable information,
while the use of a higher threshold resulted in a lack of
network connections.

The adjacency matrices for the survivor and non-survivor
groups were plotted for the follow-up times of 3, 6, and
12 months as network maps. An example is illustrated in
Figure 1. A force-directed graph drawing algorithm was used for
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TABLE 1 | The list of nodes (clinical variables) along with their physiological interpretation and associated major organ system(s) used in this study.

Clinical variable Physiological interpretation Major organ system(s)

CRP (C-reactive protein) An acute phase protein made by the liver that is released into the blood during
infection or systemic inflammation

Immune system

Alb (serum albumin) The most abundant protein in blood which is synthetized by the liver. It has
important function in microcirculation. It is a maker of synthetic liver function

Hepatobiliary system and microcirculatory
system

Tot Bili (total bilirubin) Bilirubin is a yellow pigment that occurs in the normal catabolic pathway that
breaks down haem in the body. It is excreted by the liver and is marker for
excretory liver function

Hepatobiliary system and Hematologic

PTcP (prothrombin time) A blood test that measures the time it takes for the blood to clot Coagulation system

INR (International Normalized Ratio) A blood test that measures the time it takes for the blood to clot Coagulation system

Ammonia A metabolic by-product which is eliminated after detoxification in the liver Hepatobiliary system and Metabolic system

Hb (hemoglobin) A protein in the red blood cells that carries oxygen Hematologic system

Creatinine (serum creatinine) An endogenous compound that is excreted by the kidneys Renal system

Na (serum sodium) The major cation in plasma. Its concentration is tightly regulated by renal and
endocrine systems

Renal system and Endocrine system

Ascites Abnormal accumulation of fluid in the abdomen (peritoneal cavity) Microcirculatory system

HE (hepatic encephalopathy) Decline in brain function that occurs as a result of severe liver disease Central nervous system

Pugh (Child-Pugh score) A scoring system for assessing the severity of chronic liver disease Hepatobiliary system, Coagulation system
and Central nervous system

MELD (model for end-stage liver
disease-sodium)

A scoring system for assessing the severity of chronic liver disease Hepatobiliary system, Coagulation system
and Renal system

network visualization. This algorithm minimizes edge crossings
and facilitate clear identification of clusters in the network graph.

Software Development
All computation and analyses were carried out using MATLAB
build R2018b (The MathWorks Inc, 2018). The software
developed to compute organ system network analysis
requires patient data input in CSV file format. Omitting
headings, clinical variables occupy rows and patient data
occupies columns. Where pair-matching is utilized, the
software generates two equally sized datasets with samples
drawn from the original dataset and pair-matched based
on the chosen matching criteria. There is an element of
randomization where there is more than one possible match
to a given sample.

The chosen analysis index is applied and an [n × n]
adjacency matrix is generated, where n represents the number

FIGURE 1 | (A) Illustration of nodes and edges (B) example of an adjacency
matrix (C) the network map corresponding to the adjacency matrix in (B).

of clinical variables. Fully labeled and color distinguished
weighted correlation networks of survivors and non-survivors
are generated as graph subplots for each follow-up timeframe.
The thickness of edges reflects the weight or strength of
correlation. The software has been designed to include flexibility
of customization of parameters such as node labels, edge widths,
node colors, node sizes, edge colors, node layout types and titles.

Furthermore, a quantitative summary table of network
parameters including number of edges, degree of connectivity,
betweenness and closeness is generated (Freeman, 1978; Valente
et al., 2008). An adjacency matrix of shortest paths between nodes
is also included.

The written software, which code can be found in this GitHub
repository (Tan, 2019), executes the following algorithm:

1. Retrieve CSV format datasets for survivor and non-
survivor groups. The option to pair-match datasets with
randomization based on an existing column criterion can
be selected at this stage (see section: Pair-matching).

2. Execute a correlation analysis selected by user input
on the datasets.

3. Output a weighted correlation adjacency matrix.
4. Generate a network map based on this adjacency matrix.
5. Calculate network quantification parameters.

Pair-Matching
During follow-up timeframes, the number of patients in
the survivor and non-survivor groups continually change.
As a result, the comparisons made between survivor and
non-survivor group datasets drew unequal sample sizes,
which could lead to a clearer observed effect in the larger
sample size group. Furthermore, there may have been a
difference in the severity levels of liver disease between
survivor and non-survivor groups resulting in the observed
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effects. Pair-matching was hence implemented as a further
step after initial general analysis to control for sample size
and MELD-Na score (McClatchey et al., 1992). The option
to pair-match can be included in step 1 of the software
algorithm, using the additional pair-matching algorithm outlined
in Supplementary Appendix A.

After pair-matching, the original algorithm detailed in the
previous software development section will continue executing
step 2 to 5. With the removal of the pair-matched criteria
column, the number of clinical variables becomes 12. To
prevent confusion, non-pair-matched analyses will be termed
general analysis.

Correlation Analysis
Pearson’s correlation is a good measure to evaluate linear
correlation between two variables, given the normal distribution
of underlying data (Mukaka, 2012). This represents a simplified
approach in getting a preliminary, general overview of
interorgan relationship in patients. However, it is widely
known that biological signaling and regulatory networks
are dynamic and complex (Higgins, 2002; Janson, 2012;
Blokh and Stambler, 2017). Information theory measures
account for the quantity of biological information transmitted
independently of network complexity, and are hence robust
and sensitive to non-linear relationships and better suited
for organ system network analysis (Steuer et al., 2002;
Rhee et al., 2012).

Mutual information is one measure that calculates the
reduction in the uncertainty of information transmitted between
two variables, widely used in network reconstruction and reverse
engineering (Basso et al., 2005; Ziv et al., 2007; Iglesias, 2013;
Mousavian et al., 2016). It is defined as the difference between
the joint entropy of X and Y and the joint entropy under
the assumption of independence of X and Y, with the formula
(MacKay, 2005):

I (X;Y) = H (X)+H (Y) − H (X, Y)

The higher the mutual information between two variables,
the more dependent the two variables are to each other. The
mutual information analysis was computed using an external
script (Mikhail, 2020). The cut-off for this analysis index was
I(X;Y) ≤ 0.75.

Network Analysis
The differences in organ system interaction between survivor
and non-survivor groups was evaluated quantitatively and
qualitatively for the follow-up timeframes of 3, 6, and 12 months
using the Bonferroni corrected Pearson’s correlation and mutual
information analysis indices.

Quantitatively, organ system interaction was evaluated using:

1. Total number of edges. This is the conventional method
of comparison for differences in network structure (Tichy
et al., 1979; Rowley, 1997).

2. Average degree of connectivity. A node’s degree of
connectivity is the total number of edges connected to the
node (Freeman, 1978; Valente et al., 2008).

3. Average closeness. A node’s closeness measure is the inverse
sum of distances from the node to all other nodes in the
network graph and is otherwise a measure of centrality
(Freeman, 1978; Valente et al., 2008).

Qualitatively, we attempt to explain the clinical significance of
notable organ system interactions and changes observed in the
network maps of patients.

RESULTS

Patient Groups
The number of patients in the survivor and non-survivor groups
over a follow-up timeframe of 3, 6, and 12 months is outlined
in Table 2 for general, MELD-Na pair-matched Bonferroni
corrected Pearson’s correlation analysis and for MELD-Na pair-
matched mutual information analysis.

Network Structure
Figures 2 and 3 refers to the network structure of the
3- and 6-month Bonferroni corrected Pearson’s correlation
analysis. There is a clear central cluster in survivors consistently
throughout both months, with a lack of any substantial clusters
in non-survivors.

Figures 4 and 5 refers to the network structure of the 3- and
6-month mutual information analysis. In survivors, there is a
central cluster of high interconnectivity in the 3 month network,
but this cluster fails to materialize in the 6 month network.
Conversely in non-survivors, there are no substantial clusters
that are detected.

Figure 6 refers to the network structure of the 6-month pair-
matched Bonferroni corrected Pearson’s correlation analysis.
In survivors, there is a substantial central cluster with edges
branching out of the central node CRP. Conversely in non-
survivors, there are no substantial clusters that are detected.

Figure 7 refers to the network structure of the 3-month pair-
matched mutual information analysis. There is a central cluster of
high interconnectivity in survivors compared to a lack of network
in non-survivors.

TABLE 2 | Number of patients for (A) general analysis, (B) pair-matched correlation
analysis, and (C) pair-matched mutual information analysis.

Follow-up time Survivors Non-survivors Total

(A) General analysis

3 months 187 14 201

6 months 141 21 162

12 months 75 31 106

(B) Pair-matched Bonferroni corrected Pearson’s correlation analysis

3 months 11 11 22

6 months 13 13 26

12 months 17 17 34

(C) Pair-matched mutual information analysis

3 months 14 14 28

6 months 13 13 26

12 months 17 17 34
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FIGURE 2 | 3-month Bonferroni corrected Pearson’s correlation analysis network map.

FIGURE 3 | 6-month Bonferroni corrected Pearson’s correlation analysis network map.

Overall, the network structure in survivor groups show
consistent central clustering with high connectivity, in line with
the overall higher number of edges compared to the non-survivor

groups. Quantification of the networks are covered in the next
section. The network structure for all follow-up times (3-, 6-, and
12-month) can be found in Supplementary Appendix B.
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FIGURE 4 | 3-month mutual information analysis network map.

FIGURE 5 | 6-month mutual information analysis network map.

Network Analysis Quantification
The network parameters measured for each network
map in the general analysis is summarized in Table 3

for Bonferroni corrected Pearson’s correlation analysis,
mutual information analysis, and the respective
pair-matched analysis.
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FIGURE 6 | 6-month pair-matched Bonferroni corrected Pearson’s correlation analysis network map.

FIGURE 7 | 3-month pair-matched mutual information analysis network map.

DISCUSSION

The novel approach of organ system network analysis seeks to
elucidate the complex mechanisms underlying life-threatening

diseases of multisystem nature, in recognition that current linear
clinical scores can be improved upon in assessing and reflecting
(Bartsch et al., 2015; Holder and Clermont, 2015). By choosing
clinical variables to represent organ systems, our study evaluated
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TABLE 3 | Network parameters for (A) correlation analysis, (B) mutual information analysis, (C) pair-matched correlation analysis, and (D) pair-matched mutual
information analysis.

No. of edges Average degree
of connectivity

Average closeness t-test p-value (degree) t-test p-value (closeness)

(A) Bonferroni corrected Pearson’s correlation analysis

3 months Survivors 26 4.00 0.0383 1.10E-04 1.44E-06

Non-survivors 1 0.15 0.0011

6 months Survivors 20 3.08 0.0293 1.28E-03 8.26E-05

Non-survivors 2 0.31 0.0021

12 months Survivors 12 1.85 0.0193 3.26E-02 8.46E-03

Non-survivors 5 0.77 0.0070

(B) Mutual Information analysis

3 months Survivors 16 2.46 0.0182 1.53E-03 1.45E-03

Non-survivors 0 0.00 0.0000

6 months Survivors 1 0.15 0.0011 1.86E-01 1.86E-01

Non-survivors 2 0.31 0.0021

12 months Survivors 0 0.00 0.0000

Non-survivors 0 0.00 0.0000

(C) Pair-matched Bonferroni corrected Pearson’s correlation analysis

3 months Survivors 0 0.00 0.0000

Non-survivors 0 0.00 0.0000

6 months Survivors 14 2.33 0.0494 9.38E-03 1.73E-09

Non-survivors 2 0.33 0.0028

12 months Survivors 3 0.50 0.0041 0.5 0.5

Non-survivors 3 0.50 0.0041

(D) Pair-matched mutual information analysis

3 months Survivors 30 5.00 0.0413 2.22E-04 2.81E-04

Non-survivors 5 0.83 0.0079

6 months Survivors 15 2.50 0.0321 3.39E-04 1.93E-06

Non-survivors 6 1.00 0.0112

12 months Survivors 6 1.00 0.0106 1.55E-02 7.75E-03

Non-survivors 2 0.33 0.0028

the differences in organ system connectivity between survivors
and non-survivors of a group of 201 liver cirrhosis patients.

Our results demonstrate that organ system interaction was
overall significantly higher in survivors compared to non-
survivors, quantified by the total number of edges, average
degree of connectivity and average closeness (Table 3). These
findings support the hypothesis that decreased organ system
interaction is associated with poor prognosis in chronic liver
failure. Our findings also continue to support previous studies
suggesting that systemic dysfunction in acute life-threatening
pathophysiology with multisystem involvement is attributed
to a loss of homeostatic interorgan connectivity (Buchman,
2002; Chovatiya and Medzhitov, 2014), most notably in
the recent studies published by Asada et al. (2016, 2019).
Although our study explores multisystem disease of a chronic
nature, the characteristics associated with poor prognosis
in non-survivors remain similar, namely the breakdown of
organ system connectivity, loss of homeostatic stability and
isolation of individual organ system clusters. The results
of this study validate the use of a network approach in
previously unexplored multisystem disease of a chronic nature
and continues to highlight the importance of organ system
network analysis in evaluating systemic stability of patients

to improve prognostic outcome. However, it must be duly
noted that this conclusion only applies to patients who
have followed up and thus have a confirmed outcome at
the end of the study. Patients with censored data (i.e.,
unknown outcome) may harbor bias within the network
outcome by having a specific phenotype that results in their
leaving of the study.

Current survival prediction and analysis scores such as the
MELD-Na and Child-Pugh score for liver cirrhosis patients
and their room for improvement in accountability of the
complex mechanisms of multisystem disease encourages the
consideration and investigation of alternate approaches such
as the network approach. This is especially important as these
scores form the basis of clinically important decisions such
as the allocation of organ transplantation priority. Indeed,
there has been a gradual shift toward a network approach
where the original MELD score’s failure to account for specific
pathophysiology and their effects on mortality risk prompted
the transformation of the MELD score into the MELD-Na
score (Xiol et al., 2009; Martin and O’Brien, 2015). Still,
it is recognized that the extension of this clinical score to
include renal biomarkers still leaves room to account for
the systemic pathophysiology of liver cirrhosis. Some studies
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have suggested the addition of further predictive components
such as in the proposal of the MELD-Plus score (Kartoun
et al., 2017), while other studies have identified physiomarkers
independent to the MELD score in mortality prediction.
Montagnese et al. (2015) has shown that the addition of an
EEG-based hepatic encephalopathy index to MELD improves
prognostic accuracy, while Bhogal et al. (2019) has defined
two heart rate variability indices that predict mortality in
cirrhosis patients independently to MELD. The liver remains
the primary site of initial pathophysiology development in
cirrhosis, and though it is important to include specific liver
biomarkers in survivor analysis, the progression of cirrhosis and
its downstream effects means that inclusion of involved organ
system biomarkers is paramount to reflecting the true complexity
of liver cirrhosis.

The use of the Pearson’s correlation and mutual information
analysis represent two approaches to defining the association
strength between variables. Pearson’s correlation performs well
under the assumption of linearity, but is widely used as
the general correlation analysis index to elucidate preliminary
information about a new dataset (Mukaka, 2012). In this study,
such an approach is useful for achieving a general overview
of the basic links within the network. Mutual information,
as previously specified, accounts for the quantity of biological
information transmitted independent of network complexity,
and is sensitive to non-linear relationships (Steuer et al.,
2002; Rhee et al., 2012). As biological networks operate in
a dynamic and non-linear manner, the mutual information
analysis presents a more robust measure in discerning and
evaluating the true network structure of organ systems. In present
study we observed that although both correlation and mutual
information analyses exhibited higher network connectivity
in survivors, some connections could only be detected by
mutual information analysis. For example, hemoglobin level
does not seem to be an important part of the correlation
network in patents with cirrhosis while mutual information
analysis indicates that hemoglobin is a hub in the survivor
group and shares mutual dependence with other clinical
variables such as serum albumin, creatinine, sodium and
markers of blood coagulation. This finding may shed lights
on possible adaptive mechanisms in cirrhosis which cannot
be easily discovered using simple linear analyses such as
Pearson’s correlation.

It is a possibility that the differences in networks between
survivors or non-survivors could have been attributed to
differences in the degree of liver cirrhosis severity across
both groups, such that non-survivors might have an overall
higher degree of disease severity. To correct for this, we
carried out an analysis with pair-matching patients for MELD-
Na scores. In the outcome of network graphs, there is a
clear difference in the network structure between non-pair-
matched and pair-matched analyses. Furthermore, the structural
evolution of the networks over time also differs between
non-pair-matched and pair-matched analyses. With regards
to the Bonferroni corrected Pearson’s correlation analysis,
the 6-month network structure of the pair-matched data
(Figure 6) yields the most information as opposed to the

3 month network structure of the non-pair-matched data
(Figure 3). From this, we can conclude that the degree of
severity of disease is not the only driver of prognosis as the
networks evolve.

We also sought to qualitatively analyse the clinical significance
behind notable interactions seen on the network maps of
patients. Such clinical significance can be expressed in the scope
of validated literature of known pathophysiology. However,
it is important to highlight that some of the interactions
between clinical variables are obvious and expected, such
as the [MELD-Na – total bilirubin] link and the [INR –
prothrombin time] link, as these variables are closely related with
a degree of dependency.

Of clinical significance are the difference in interactions
of CRP in the network maps of survivors and non-survivors
and the role of systemic inflammation. The survivor group
maintains integration of CRP within the central cluster, whereas
this interaction is lost or heavily isolated in the non-survivor
group (Figures 6, 7). Conclusively, survivors maintain a
link to the inflammatory and immune system, while non-
survivors experience uncoupling of systemic inflammation
from organ systems. CRP is an acute inflammatory protein
synthesized primarily in the liver and is a key component in
systemic inflammation (Sproston and Ashworth, 2018). Systemic
inflammation is associated with disease progression in liver
cirrhosis and patient mortality, accompanying the transition
from compensated to decompensated cirrhosis, otherwise known
as the systemic inflammatory response syndrome (SIRS) (Girón-
González et al., 2004; Mahassadi et al., 2018). SIRS is
triggered by systemic and life-threatening insults to the body
(Balk, 2014).

Like many other life-threatening conditions such as sepsis,
liver cirrhosis patients typically observe two phases associated
with systemic inflammation. The first phase involves an
increase in circulating cytokines, notably IL-6 and TNF-receptor
expression (Tilg et al., 1992; Le Moine et al., 1994), which result
in increased production of acute phase proteins such as CRP
(Meliconi et al., 1988; Sheldon et al., 1993). This increase in
circulating cytokines is largely attributed to hepatocyte death
and bacterial translocation from increased intestinal permeability
as a consequence of portal hypertension (Albillos et al., 2014;
Arroyo et al., 2014; Bruns et al., 2014; Jalan et al., 2014).
SIRS is hence characteristically observed in decompensated
cirrhosis patients regardless of the presence of bacterial infection
and is further associated with complications including hepatic
encephalopathy and variceal bleeding (Shawcross et al., 2004;
Thabut et al., 2007; Cazzaniga et al., 2009). SIRS acts in
the capacity of a compensatory mechanism in maintaining
systemic stability in the presence of other dysfunctional systems
against life threatening illness (Gabay and Kushner, 1999;
Asada et al., 2019).

The second phase occurs in the form of immune exhaustion,
and in the context of liver cirrhosis is known as cirrhosis-
associated immune dysfunction (CAID) syndrome (Albillos
et al., 2014). CAID syndrome manifests through excessive
activation of the inflammatory and immune system and loss of
liver immune surveillance, resulting in non-responsiveness to
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immune challenges, endotoxin tolerance and immunodeficiency
(Tiegs and Lohse, 2010; Giannelli et al., 2014; Sipeki et al., 2014).
Given the homeostatic role of the liver in systemic immunity,
progressive loss of liver function can consequently lead to
failure in regulating the inflammatory response (Christou
et al., 2007). Examples of such mechanism involve the
breakdown of gp130-STAT3 signaling in hepatocytes and
production failure of acute phase proteins. These components
control the inflammatory response through mediation of
autoregulatory myeloid-derived suppressor cells, an innate
immune response in sepsis (Wong et al., 2005; Sander et al.,
2010). The onset of a bacterial infection can be encouraged
by the immunodeficient environment associated with CAID
syndrome, or conversely it can push the onset of CAID
syndrome. Regardless, the additional presence of bacterial
infection increases the probability of mortality four-fold
(Arvaniti et al., 2010) and likely represents the transition
point of a patient into an uncontrolled septic state. This
is significant as sepsis is responsible for 50% of deaths
in cirrhosis patients (Wong et al., 2005). This transition
point also likely reflects the loss of integration of the axis
of inflammation with organ systems in non-survivors as a
prognostic determinant, brought about by CAID syndrome
in conjunction to bacterial infection. Consequently, we
should expect to see the presence of peritonitis or infection
in non-survivors.

The presence of highly interlinked central clusters
observed in the network maps of survivors reflects
successful homeostatic organ system connectivity, yet
this is unlikely to be seen in normal, healthy people as
increased organ system connectivity has been established
as a compensatory mechanism to maintain homeostatic
stability in preventing mortality during life-threatening illness
(Gabay and Kushner, 1999; Asada et al., 2019). In fact, the
network structures observed may indeed be a reflection of
overcompensation, the same way the fight or flight reaction
is all or nothing.

A correlation analysis is appropriate for generating the
network map of a group of patients, given that multiple samples
are available for each pair of variables being analyzed. However,
this approach does not work with only a single patient, a
shortcoming of such network analysis for feasible application
in medicine. To make the network approach clinically viable,
there must be a method to analyze the network of a single
patient. This is made possible with a recently introduced network
type, termed a parenclitic network, which makes it possible
to represent a collection of isolated and heterogenous scalar
values as a network (Zanin et al., 2014). The basis upon which
this works is by calculating the deviation between the data of
a single patient with the pre-constructed reference model to
weight the link between corresponding nodes. This mathematical
framework involving high level analysis is suitable regardless of
relationship type or dataset, as long as features are numerical.
With this approach, the network map of a single patient can
be generated and analyzed mathematically, and with expert
domain knowledge input, presents a viable method in evaluating
multisystem disease.

Further models using a network approach should include
more physiological data, such as heart rate variability and
temperature variability indices. Reduced heart rate variability
and body temperature variability are known to be inversely
associated with increased mortality in cirrhosis patients, where
their prognostic value is independent of MELD or Pugh scores
(Mani et al., 2009; Bhogal et al., 2019; Bottaro et al., 2020).
In a subset of patients investigated, the uncoupling of the
autonomic nervous system and cardiovascular system was found
to be associated with mortality in liver cirrhosis patients.
Clinically, excessive inflammation during cirrhosis progression
is known to facilitate cytokine-induced autonomic neuropathy
and the uncoupling of the cardiac pacemaker regulation
(Hajiasgharzadeh et al., 2011). While such a physiomarker
adds immense clinical value to the model, further exploration
is required to determine the optimal subset and number of
clinical variables for organ system representation and network
analysis. A wide range of feature selection methods exist
that may be helpful in arriving at the optimal subset of
clinical variables (Maniruzzaman et al., 2018) and should be
further investigated. Future studies will benefit from including
larger number of patients from different hospitals. The low
number of patients used to construct the non-survivor networks
presents as a limitation in our study. Our data cannot be
generalized to all cirrhotic patients as our cohort of patient
data comes from a single hospital and our conclusions can
only apply to patients who have followed up throughout the
length of the study.

CONCLUSION

This is the first study to apply an organ system network
analysis approach to a multisystem disease of chronic nature,
providing quantitative and qualitative evidence of the role
of systemic stability in patient outcome. Such an evaluation
method of organ system interactions has high potential
in clinical application for improving patient outcomes with
proper implementation, given the room to improve within
our current clinical score methods for decision making
in the accountability of the complex pathophysiology of
multisystem disease.
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