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Patients undergoing hyperbaric oxygen therapy and divers engaged in underwater
activity are at risk of central nervous system oxygen toxicity. An algorithm for predicting
CNS oxygen toxicity in active underwater diving has been published previously, but not
for humans at rest. Using a procedure similar to that employed for the derivation of
our active diving algorithm, we collected data for exposures at rest, in which subjects
breathed hyperbaric oxygen while immersed in thermoneutral water at 33°C (n = 219)
or in dry conditions (n = 507). The maximal likelihood method was employed to solve for
the parameters of the power equation. For immersion, the CNS oxygen toxicity index
is K = t2 x PO,1998 where the calculated risk from the Standard Normal distribution
is Z; = [In(K,%%) — 8.99)/0.81. For dry exposures this is Kp = t2 x PO»'299  with risk
Zp = [IN(Kp®-®) = 11.34))/0.65. We propose a method for interpolating the parameters at
metabolic rates between 1 and 4.4 MET. The risk of CNS oxygen toxicity at rest was
found to be greater during immersion than in dry conditions. We discuss the prediction
properties of the new algorithm in the clinical hyperbaric environment, and suggest it
may be adopted for use in planning procedures for hyperbaric oxygen therapy and for
rest periods during saturation diving.

Keywords: hyperbaric oxygen treatment, diving, algorithm, convulsions, saturation

INTRODUCTION

Patients undergoing hyperbaric oxygen (HBO) therapy and divers engaged in underwater activity
breathe pure oxygen at greater than atmospheric pressure. In such situations, there is always
an imminent risk of central nervous system oxygen toxicity (CNS-OT). Symptoms range from
hearing and vision disturbances to vomiting, dizziness, muscle twitching, convulsions, and loss
of consciousness (Donald, 1992; Harabin, 1993). We previously proposed the power equation and
exponential recovery algorithm to predict the risk of CNS-OT in an active diver expending energy at
4.4 metabolic equivalents of task (MET) (Arieli et al., 2002). In further studies (Arieli, 2003, 2019),
we elaborated ways of alleviating the risk.
The power equation for underwater activity takes the form:

K = *POS?® 1)

Abbreviations: CNS-OT, central nervous system oxygen toxicity; HBO, hyperbaric oxygen; In, log-normal; MET, metabolic
equivalent of task; PO,, partial pressure of oxygen.
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where K is the index of CNS-OT (CNS-OT index), t is the time in
min, and PO; is the oxygen pressure in bar. When the CNS-OT
index reaches a critical value Kc, toxicity may appear.
Recovery of the CNS-OT index (Krec) was calculated by the
equation:
Krec = K x e—0.079trec (2)

where trec is the recovery time in min. The risk of CNS-OT may
then be derived from the Normal distribution of the CNS-OT
index:

Zss = [In(K)*° — 9.63]/2.02 (3)

In contrast to diving, most exposures at 1 MET are conducted
in dry conditions in the hyperbaric chamber. There have been
claims that immersion carries a higher risk of oxygen toxicity
than dry exposure (Donald, 1992; van Ooij et al., 2011; Ciarlone
etal., 2019). Underwater exposures are generally conducted at an
environmental temperature which drives up the metabolic rate.
It therefore seems necessary to clarify the distinction between
the effects of metabolic rate and the dry or immersed state.
We have previously shown, in the power equation for the rat,
that as metabolic rate increases there is a linear decrease in the
power of the PO, and in In(K.) (Arieli, 2003). The question
arises as to whether this may be extrapolated to humans. If
this is indeed the case, knowing two points on the metabolic
scale, one may then calculate the parameters for any other level
of metabolic rate.

However, no algorithm has been developed for the risk
of CNS-OT in humans at rest (1 MET). A large number
of hyperoxic-hyperbaric exposures are conducted in resting
conditions, and for that reason, as we recently suggested (Arieli,
2020), such an algorithm is sorely needed. In our report, we
explained the advantage of an air break between oxygen sessions,
and how the recovery function may be used to calculate the
appropriate time for this break. Formulating the power equation
for 1 MET, together with the recovery function, may enable more
precise planning of exposures such as clinical treatment in the
hyperbaric chamber, and the long stay in an underwater habitat,
a saturation diving system on the surface, or a diving bell, among
other applications.

MATERIALS AND METHODS

Data Derivation

Data for hyperoxic exposures at rest in immersion or in dry
conditions - exposure time, partial pressure of oxygen (PO;),
and appearance or absence of CNS-OT, were extracted from
a number of studies compiled by Harabin (1993), and from
Koch et al. (2008). Evidently there are ample data on hyperoxic
exposures at rest which were not reported in a proper way for
our analysis (exact condition for each single exposure). This is the
best model science can generate at this moment with the limited
data available. We considered only immersion in thermoneutral
water (32.8 & 1.2°C), and thus a metabolic rate of 1 MET. The
time scale was 4-120 min in the immersed state, and 6-180 min in
dry conditions. PO, ranged from 2.26 to 3.24 bar in immersion,

and from 2.55 to 3.67 bar in dry exposures. The data compiled
by Harabin (1993) do not contain demographic information
such as age, sex, or state of health. However, because these were
gathered from naval oriented studies, we believe that the subjects
were healthy males. Koch et al. (2008) state that their data were
from healthy, elite Navy combat divers. As in our previous study
(Arieli et al,, 2002), we selected the symptoms suggested by
Harabin et al. (1995) as indicating a positive finding of CNS-
OT: nausea, numbness, dizziness, twitching, hearing and visual
disturbances, convulsions and unconsciousness. Symptoms were
noted in 105 of the 219 immersed, and in 136 of the 507 dry
exposures (Table 1).

Statistical Evaluation

To derive parameters for the power equation, a survival
parametric regression model was fitted to the meta data
(Appendix). We applied the maximum likelihood method to
solve for the parameters in this model, as in our previous
report (Arieli et al., 2002). We also applied the Wald test and
the maximum likelihood ratio test for equality/inequality of
immersed to dry exposures.

RESULTS

There was no difference in either the cumulative probability for
“life distribution” between data for 1946 in Harabin (1993) and
the data from Koch et al. (2008), or in the fitted risk using the
final model as a function of the risk estimated by the individual
models for each study. Thus the data from these two reports
may be combined.

Both the Wald test (p < 0.001) and the maximum likelihood
ratio test (p < 0.001) indicated inequality between immersed and
dry conditions, demonstrating a greater risk in immersion. We
therefore chose to separate immersed from dry exposures when
solving for the parameters of the power equation.

One group of 14 exposures (PO, = 2.54 bar, time 120 min),
in which there were no symptoms of CNS-OT and which
thus differed from all the other groups in the goodness-of-fit

TABLE 1 | Hyperoxic exposures compiled from Harabin (1993) and Koch et al.
(2008), and used in the present analysis.

Immersed/Dry PO,, bar Time, min mean (SD) n CNS-OT
Immersed 4.08 18.4 (12.5) 13 11
3.44 33.0 (23.0) 51 46
2.83 57.2 (22.8) 155 48
Dry 2.83 117.6 (17.0) 17 14
3.44 62.1 (36.0) 54 52
4.08 15.8 (6.7) 8 1
2.83 122.0 (45.4) 6 5
3.74 28.4 (20.8) 36 36
4.05 26.3(11.2) 17 17
2.8 29.9(1.0) 369 11

PO,, partial pressure of oxygen; SD, standard deviation; CNS-OT, Number of
subjects presenting central nervous system oxygen toxicity.
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assessment, was excluded from the analysis. One possibility may
be that these were well selected and oxygen-adapted divers.

The distribution fitted to Z is Standard Normal, which was
found to be the best fit. The population standard deviation - ¢
of Normal distribution fitted to the In(t) of survival times from
the diverse experiments, was quite different for the various data
sets. It may well be that the conglomeration of different groups of
subjects in a diversity of experimental setups and countries was
the underlying cause of this effect. No specific trend was observed
for this variation, and on the assumption that it would not change
over all values of PO,, we averaged this o for our model. We
observed previously, both in rats (Arieli et al., 2005) and in divers
(Arieli et al., 2006), that individual sensitivity to CNS-OT remains
the same at different PO;s.

The outcome of the analysis is given in Table 2. For immersed
exposures, the power equation and the critical CNS-OT index are:

K; = t* x PO} (4)
Kcp = 6.42 x 107
and the risk of CNS-OT is:
Z1 = [In(K??) — 8.99)1/0.81 (5)

For dry exposures, the power equation and the critical CNS-OT
index are:

Kp = t* x PO} (6)
Kep = 7.1 x 10°
and the risk of CNS-OT is:
Zp = [In(K%) — 11.34)1/0.65 (7)

The iso-risk lines are depicted in Figures 1, 2 for both dry and
immersed exposures. It is evident that immersion carries a higher
risk than dry conditions.

DISCUSSION

For a complex, hyperoxic exposure at rest with intervening air
breaks, one may employ the previously suggested procedure
(Arieli, 2019), using the same recovery function which appears
as Eq. 2 in the present report.

We have previously demonstrated in the rat, that there is a

4.0
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PO, (bar)

4 %

1% 2%

0 30 60 920 120 150 180

Time (min)

FIGURE 1 | Calculated risk of CNS oxygen toxicity at 1 MET for dry
exposures, as a function of time and PO».

4.0

Immersed

PO, (bar)

1% 2% 4%
2.0 1 1 1 1 1

10 15 20 25
Time (min)

30

FIGURE 2 | Calculated risk of CNS oxygen toxicity at 1 MET for immersed
exposures, as a function of time and PO».

In(Kc), and metabolic rate (Arieli, 2003). In the rat, the power
of PO, dropped from 5.90 to 2.61 as metabolic rate increased
from 1 to 3 MET. In immersed humans, the power c fell from
10.93 to 6.80 with the rise in metabolic rate from 1 to 4.4
MET. The change in the power per unit metabolic rate for

linear relationship between both the power ¢ of the PO, and the rat, (2.61-5.90)/2 = —1.6, is similar to that for humans
TABLE 2 | Solution for the parameters of the power equation Kc = t2PO,°.

Approximate parameter distribution Dry/Immersed Term Estimate SE Lower 95% Upper 95%
Log-normal D Kc 7.10 x 10° 7.5 x 108 6.6 x 1010
Normal D c 12.99 0.98 11.06 14.92
Normal D o 0.65 0.04 0.58 0.72
Log-normal I Ke 6.42 x 107 8.4 x 100 4.9 x 108
Normal I c 10.93 1.12 8.72 13.12
Normal | o 0.81 0.06 0.69 0.93

Details and explanation are in Appendix. SE, standard error; o, population standard deviation.
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(6.80-10.93)/3.4 = —1.21. This may be indicative of a similar
mechanism. We are unaware of the existence of any data for
other metabolic rates in humans or other mammals. If indeed
we assume the same linear relationship for humans as we noted
in the rat, we may calculate the power of PO, and In(Kc) for
different metabolic rates in the submerged state:

c=—1.21 x MET 4 12.14

However, In(Kc) was very similar at 1 and 4.4 MET, namely 17.98
and 18.02, respectively. Thus, the power equation for submerged
humans as a function of time, partial pressure of oxygen, and
metabolic rate would be:

K = {2pQf214-1.21x MET)

where Kc = 6.57 x 107. Nevertheless, we have no knowledge of
how o changes with metabolic rate, and therefore risk calculations
are available only for 1 and 4.4 MET.

Any comparison with the effects of immersion on oxygen
toxicity was usually confounded by the influence of water
temperature on metabolic rate. Donald (1992) reported that at
the same PO, (2.5 bar), 3 of 6 divers suffered CNS-OT in dry
conditions compared with 6 of 6 in the immersed state. van Ooij
etal. (2011) demonstrated deterioration of lung diffusion capacity
only in underwater diving (slow swimming for 3 h at 1.5 bar
oxygen, in water at a temperature of 15°C and wearing a dry
suit), compared with exposure in dry conditions at rest. This is
the reason the limit of 2.4 bar for dry HBO exposure was reduced
to only 1.3 bar in diving (Ciarlone et al., 2019).

Our present analysis has demonstrated a clear difference in
sensitivity to oxygen between immersed and dry conditions
(Figure 1), where thermoneutral immersion increased the risk of
CNS-OT. The higher critical CNS-OT index (Kc) at which toxicity
occurs in dry compared with immersed exposures, 7.1 x 10°
vs. 6.4 x 107, is indeed in agreement with the increased risk of
CNS-OT in submerged conditions.

A comparison with the data on CNS-OT during hyperbaric
oxygen therapy is complicated by reports of convulsions, but
not other symptoms related to CNS-OT, those considered in our
previous study (Arieli et al., 2002) and in the present analysis. In
our study of CNS-OT in closed-circuit oxygen dives (Arieli et al.,
2006), the incidence of facial twitching which usually precedes
convulsions was 0.2%, and loss of consciousness 0.32%, whereas
the incidence of other symptoms was nausea 2.6%, dizziness
1.5%, tinnitus 0.9%, disorientation 0.6%, and tingling in the
limbs 0.4%. In the present analysis of dry exposures, we found
that in all of the exposures with demonstrated CNS-OT, 11.5%
had either convulsions or unconsciousness and 34% had muscle
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APPENDIX

Solution for the Parameters of the Power Equation
The power equation describes the increasing risk of CNS oxygen toxicity as K approaches

K. : K = *POS 8)

From the available data, in the ith individual exposed to PO, i, CNS oxygen toxicity occurs at time f;. There are individuals in whom
toxicity does not occur, so that ¢; may be censored. Formally, the observations are given in the following form:

(i, 81, PO2i),i=1,...,n )

or not. The goal is to fit the model (Eq. 8) to the censored data (Eq. 9) collected from different experiments.
Considering t as the response variable, one can write:

where y; = min(#;, ¢;) and 3; = I(t; < ¢;), ¢; is the censoring time, and §; is the indicator showing whether the observation is censored

Int; =14In(K,) — 1/2c x In(PO3)
Thus ¢ and K can be estimated by using parametric regression techniques for the survival data. The idea is that
Zi = [In(t;) + (¢/2) In(PO2;) — (/) In(K,)]/0

(where o is the population standard deviation) has some distribution f, where In ¢; can be censored. The likelihood function is written
as follows:

izuncensored

e ko) = | [ @ | [ TT ] ]

i:censored
Then —2In[L(c, K, 0)] is minimized over ¢, K., and o numerically. Distributions for Z; can be chosen from the following list:

(1) Gaussian, Z; ~ N(0,1), resulting in Log-Normal distribution for T;.
(2) Smallest extreme value, resulting in Weibull distribution for Tj;.
(3) Logistic, resulting in Log Logistic distribution for T}, which yields a closed form expression.

In our computations, we used the Normal distribution, which demonstrated the best fit.
The risk can then be calculated from the normal distribution thus:

Z=In(t) — nl/o (10)
w = E[In(H)] = 0.5In(K,) — (¢/2) In(PO;)
where ¢ is in minutes, and PO, is in bar.

Results
The equations for immersed (Egs. 4 and 5) and dry conditions (Egs. 6 and 7), can be mathematically transformed into the power
equation.
In Immersed conditions:
Z;i = [In(t;) 4+ 5.46 In(PO,;) — 8.99)]1/0.81

In Dry conditions:

Z; = [In(t;) + 6.49In(PO,;) — 11.34)]/0.65
Z; ~ N(0, 1)
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