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In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior.

However, known synaptic conductance intensity can be insufficient to account for the

undesired synchronization. Due to this fact, we consider time delay in excitatory and

inhibitory conductances and study its effect on the neuronal synchronization. In this work,

we build a neuronal network composed of adaptive integrate-and-fire neurons coupled

by means of delayed conductances. We observe that the time delay in the excitatory and

inhibitory conductivities can alter both the state of the collective behavior (synchronous

or desynchronous) and its type (spike or burst). For the weak coupling regime, we find

that synchronization appears associated with neurons behaving with extremes highest

and lowest mean firing frequency, in contrast to when desynchronization is present when

neurons do not exhibit extreme values for the firing frequency. Synchronization can also

be characterized by neurons presenting either the highest or the lowest levels in the

mean synaptic current. For the strong coupling, synchronous burst activities can occur

for delays in the inhibitory conductivity. For approximately equal-length delays in the

excitatory and inhibitory conductances, desynchronous spikes activities are identified

for both weak and strong coupling regimes. Therefore, our results show that not only the

conductance intensity, but also short delays in the inhibitory conductance are relevant to

avoid abnormal neuronal synchronization.

Keywords: synchronization, integrate-and-fire, neuronal network, time delay, conductance

1. INTRODUCTION

Network physiology reveals how organ systems dynamically interact (Bartsch et al., 2015). The
human organism is a complex physiological and integrated system in which a fail in a specific
component can produce a range of biological effects (Bashan et al., 2012). One of the biggest
challenges is to understand how global behavior of the human organism emerges due to local
causes (Ivanov et al., 2016). Brain-brain and brain-organ networks have been considered to study
integrated physiological systems under neuronal control (Ivanov et al., 2009). Chen et al. (2006)
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investigated the relationship between the blood flow velocities
in the cerebral arteries and beat-to-beat blood pressure. Liu
et al. (2015) built a network of brain wave interactions. They
found complex brain dynamics, such as desynchronous and
synchronous activities (Xu et al., 2006) during quiet wake and
deep sleep, respectively.

Time delay has been considered in several problems of
biological interest (Glass et al., 1988), such as herbivore dynamics
(Sun et al., 2015), polymerization processes (Mier-y-Terán-
Romero et al., 2010), dynamics of tumor growth (Byrne,
1997; Borges et al., 2014), and dynamic behavior of coupled
neurons (Esfahani et al., 2016). One of the brain’s intrinsic
properties is the delay in the transmission of information among
separate brain regions (Deco et al., 2009). Stoelzel et al. (2017)
investigated the relation between axonal conduction delays and
visual information. They found that some conduction times
in corticothalamic axons exceed 50 ms. Conduction latencies
in mammalian brain about 100 ms are also reported by
Aston-Jones et al. (1985).

Dynamic brain behavior can be mimicked by means of
neuronal networkmodels (Protachevicz et al., 2019), for instance,
neuronal synchronous behavior (Borges et al., 2018). Neuronal
synchronization is found in task conditions (Deco et al., 2011).
Furthermore, many neurological disorders are also related to
synchronous behavior in the brain (Uhlhaas and Singer, 2006).
Network models have been used to study the effects of time delay
in synchronized neuronal activities (Stepan, 2009). Dhamala
et al. (2004) showed the enhancement of neuronal synchrony
by time delay in a neuronal network. Wang et al. (2016)
investigated synchronized stability in coupled neurons with
distributed and discrete delays. Kim and Lim (2018a,b) studied
synchronization in networks, where they considered plasticity
(Borges et al., 2017a) and time delays between the pre-synaptic
and post-synaptic spike times.

Neurons can be modeled by differential equations. In
1907, Lapicque (Lapicque, 1907) used a linear differential
equation (leaky integrate-and-fire) to simulate the neuron
membrane potential. A system of non-linear differential
equations was proposed by Hodgkin and Huxley (1952) to
describe the action potential. The Hodgkin-Huxley model
considers ion channels that open and close according to the
voltage. Different connectivities among the neurons have been
considered to form neuronal networks. The dynamics of coupled
neurons was investigated in networks with random connections
(Brunel, 2000), small-world (Tang et al., 2011), and scale-free
(Batista et al., 2007, 2010) topologies were used to study
neuronal synchronization.

We build here a network composed of adaptive exponential
integrate-and-fire (AEIF) neurons. The AEIF model was
introduced by Brette and Gerstner (2005). Depending on the
parameter values, the AEIF neuron can exhibit different firing
patterns (Naud et al., 2008). Synchronized firing patterns were
observed in coupled AEIF neurons (Borges et al., 2017b). Pérez
et al. (2011) studied the influence of conduction delays on
spike synchronization in Hodgkin-Huxley neuronal networks.
Previous works found that slow-rising inhibitory synaptic
currents can induce synchrony (Abbott and van Vreeswijk,

1993; van Vreeswijk et al., 1994) and affect the stability of
asynchronous state (e.g., splay state) (van Vreeswijk, 1996; Olmi
et al., 2014). Chen et al. (2017) reported that the competition
between coupling strength and synaptic time-constant leads to
rich bifurcation in pulse-coupled neuronal networks with either
excitatory or inhibitory synapses.

In this work, we study AEIF neurons randomly connected by
means of excitatory and inhibitory conductivities. The neurons
can exhibit not only spike but also burst activities (Santos et al.,
2019). Our results show that the delayed conductance in both
excitatory and inhibitory connections play an important role
in the neuronal synchronization. Furthermore, we demonstrate
that not only the values of the conductance intensity, but also
small delays in inhibitory conductances are important to prevent
abnormal synchronization.

The paper is organized as follows. In section 2, we introduce
the neuronal network composed of AEIF neurons and delayed
conductance. Section 3 shows our results about the effects of
conduction delays in neuronal synchronization. We draw our
conclusions in the last section.

2. MODEL AND METHODS

We construct a neuronal network with 100 AEIF neurons, where
the connections are randomly chosen with probability equal to
0.5. The connection probability is defined as

p =
NT

N · (N − 1)
, (1)

where NT is the total connection number of the network and
N · (N − 1) is the maximal possible number of connections for a

TABLE 1 | Standard parameter set.

Parameter Description Value

N Number of AEIF on the network 100 neurons

C Capacitance membrane 200 pF

gL Leak conductance 12 nS

EL Resting potential −70 mV

Ii Constant input current 2 · Irheo

1T Slope factor 2 mV

VT Potential threshold −50 mV

τw Adaptation time constant 300 ms

ai Level of subthreshold adaptation [1.9, 2.1] nS

b Level of triggered adaptation 70 pA

Vr Reset potential −58 mV

Vexc
REV Excitatory synaptic reversal potential 0 mV

V inh
REV Inhibitory synaptic reversal potential −80 mV

Aij Adjacent matrix elements 0 or 1

τs Synaptic time constant 2.728 ms

tfin Final time to analyses 10 s

tini Initial time to analyses 5 s

gs Chemical conductance gexc or ginh

dj Time delay dexc or dinh

Frontiers in Physiology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 1053

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Protachevicz et al. Delayed Conductance

network with N neurons without auto-connections. We consider
that each neuron has at least one connection. The network has
80 and 20% of excitatory and inhibitory connections, respectively
(Noback et al., 2005). The network dynamics is given by

C
dVi

dt
= −gL (Vi − EL) + gL1T exp

(

Vi − VT

1T

)

−wi + Ii + I
syn
i , (2)

τw
dwi

dt
= ai (Vi − EL) − wi, (3)

τs
dgi

dt
= −gi, (4)

where Vi, wi, and gi are the membrane potential, the adaptation
current, and the conductance of the neuron i, respectively. We
consider C = 200 pF (capacitance membrane), gL = 12 nS (leak
conductance), EL = −70 mV (resting potential), Ii = 2 · Irheo
(constant input equal to two times the rheobase current Naud
et al., 2008),1T = 2 mV (slope factor), VT = −50 mV (potential
threshold), and τw = 300 ms (adaptation time constant). The
level of subthreshold adaptation ai is randomly distributed in
the interval [1.9, 2.1] nS. This set of parameters corresponds to
the spike adaptation activity when neurons are uncoupled. In
the model, the adaptation mechanism is able to generate burst
activities when the neurons are connected by excitatory synapses
(Fardet et al., 2018). For weak coupling, the neurons exhibit
spike activities, while for strong, burst activities can occur for low
inhibition (Protachevicz et al., 2019). The current input I

syn
i is

calculated by the expression

I
syn
i (t) =

N
∑

j=1

[

V
j
REV − Vi(t)

]

Aijgj(t − dj), (5)

where dj is the time delay in the conductance. We consider
dj = dinh for inhibitory and dj = dexc for excitatory neurons.

V
j
REV is the reversal potential (VREV = 0 mV for excitatory

and VREV = −80 mV for inhibitory synapses). In the adjacency
matrix (Aij), the element value is equal to 1 when the presynaptic
neuron j and post-synaptic neuron i are connected, and 0 when
they are not connected. gj has an exponential decay with the
synaptic time constant τs = 2.728 ms. When the membrane
potential of the neuron i is above a threshold (Vi > Vthres) (Naud
et al., 2008), the state variables are updated according to the rules

Vi → Vr,

wi → wi + b, (6)

gi → gi + gs,

where Vr = −58 mV is the reset potential and b = 70 pA
is the triggered adaptation addition. The chemical conductance
gs assumes gexc and ginh for excitatory and inhibitory neurons,
respectively. We define a relative inhibitory conductance as
g = ginh/gexc. Table 1 shows the standard parameter set that we
use in our simulations.

As a diagnostic tool to identify synchronization, we use the
time average of the Kuramoto order parameter (Kuramoto, 1984;
Batista et al., 2017)

FIGURE 1 | (A) Mean order parameter (R), (B) mean firing frequency (F ), (C) mean coefficient of variation (CV), and (D) mean synaptic input (Is) as a function of the

excitatory delayed conduction dexc. Raster plots for dexc = 65 ms (E), dexc = 75 ms (F), and dexc = 85 ms (G) for gexc = 0.2 nS, g = 6, and dinh = 5 ms, and

according to the colored circles.
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R =
1

tfin − tini

∫ tfin

tini

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp(i8j(t))

∣

∣

∣

∣

∣

∣

dt, (7)

where the final time in the simulation and initial time for analyses
are tfin = 10 s and tini = 5 s, respectively. R ranges from 0 to 1
and approaches 1 for synchronous behavior. The phase of each
neuron j is calculated by Pikovsky et al. (1997)

8j(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (8)

where tj,m is the time at which neuron j suffers its m-th spike
(m = 0, 1, 2, . . . ) and 8 is defined between two spikes in the
interval [tj,m, tj,m+1].

The AEIF neuron can exhibit spike or burst activities. To
identify these activities, we compute the coefficient of variation
of the inter-spike interval (ISI)

CV =
σISI

ISI
, (9)

where σISI and ISI are the standard deviation and the mean value
of ISI, respectively. We identify spike activities when CV < 0.5
and burst activities when CV ≥ 0.5 (Protachevicz et al., 2018).

FIGURE 2 | Colors represent R, F and Is on the parameter space dexc × dinh

for gexc = 0.2 nS, where we consider g = 2 in (A,C,E), and g = 6 in (B,D,F).

We calculate the mean firing frequency F(Hz) of the neuronal
network by mean of the expression

F =
1

ISI
. (10)

We also compute the instantaneous Isyn(t) and themean synaptic
input Is (pA) of the network through

Isyn(t) =
1

N

N
∑

i=1

I
syn
i (t), (11)

Is =
1

(tfin − tini)

∫ tfin

tini

Isyn(t)dt, (12)

where I
syn
i (t) is described by Equation (5). In all diagnostics,

each point in the parameter space dinh × dexc is computed by
means of the average of 10 different initial conditions. The initial
conditions of Vi and wi are randomly distributed in the interval
Vi = [−70,−50] mV and wi = [0, 80] nA, respectively. The

FIGURE 3 | Magnifications of the parameter spaces shown in the right column

of Figure 2. (A) R, (B) F, and (C) Is for gexc = 0.2 nS and g = 6 on the

parameter space dexc × dinh.
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initial conductance gi is equal to 0 for all neurons. To solve the
delayed differential equations, we consider an initial profile of the
network (for t ∈ [−dj, 0]) in which the neurons are not spiking.

3. RESULTS

Neuronal conductances play a key role in network responses to
stimuli (di Volo et al., 2019). Conduction delays were observed
between the activities of the pre-synaptic and post-synaptic
neurons (Ermentrout and Kopell, 1998). Figures 1A–D display
R, F, CV, and Is, respectively, as a function of dexc for gexc =

0.2 nS, g = 6, and dinh = 5 ms. In Figures 1E–G (blue
points, red points, black points), we show the raster plots for
the parameters indicated by the respective filled colored circles.
In Figures 1A–D, increasing dexc from 65 ms (blue) to 75 ms
(red), the desynchronized spikes (Figure 1E) go to a synchronous
behavior (Figure 1F), however, the spikes desynchronize when

dexc is increased to 85 ms (Figure 1G). We find that a small
change of the delayed conductance value can improve or suppress
synchronous behavior.

Figures 2A,B display the parameter space dinh × dexc for
gexc = 0.2 nS (weak coupling), where the color bar corresponds
to the average order parameter R. The parameter space exhibits
synchronous (yellow region) and desynchronous (black region)
spike patterns (CV < 0.5). For g = 2 (Figure 2A), we
verify vertical domains of synchronization that can be reached
by maintaining dinh constant, and varying dexc. Increasing the
relative inhibitory conductance for g = 6, separated domains
with synchronized spikes appear, as shown in Figure 2B.
For the considered parameter space, the highest and lowest
values of F (Figures 2C,D) and Is (Figures 2E,F) appear in
the synchronized domain. In the domains with synchronized
activities, we observe that the neuronal network achieves and
maintains synchronized activities by means of changes in the
mean firing frequency and synaptic current. In the region

FIGURE 4 | Raster plot (top) and Isyn(t) (bottom) for gexc = 0.2 nS, g = 6, and dexc = 75 ms for different values of dinh (blue circles in Figure 3). We consider (A,B)

dinh = 70 ms (blue), (C,D) dinh = 60 ms (red), and (E,F) dinh = 10 ms (green).

FIGURE 5 | Raster plot (top) and Isyn(t) (bottom) for gexc = 0.2 nS, g = 6, and dinh = 30 ms for different values of dexc (blue squares in Figure 3). We consider (A,B)

dexc = 65 ms (blue), (C,D) dexc = 75 ms (red), and (E,F) dexc = 85 ms (green).
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with a desynchronous pattern, the excitatory and inhibitory
synaptic currents arrive in the neurons approximately at
the same time.

Figure 3 displays magnifications of the parameter spaces
shown in the right column of Figure 2 (40 ≤ dexc ≤ 110 ms and
0 ≤ dinh ≤ 70 ms). In the domain with a synchronous pattern,
we observe that dexc and dinh have a significant influence on the
mean firing frequency and mean synaptic current, respectively.
The dynamics of neurons for some values of dexc, indicated in the
vertical line (blue circles) in Figure 3 for dexc = 75 ms, are shown
in Figure 4 by means of the temporal evolution of i (A,C,E) and
Isyn (B,D,F), where we consider dinh = 70 ms (blue), dinh = 60
ms (red), and dinh = 10 ms (green).

FIGURE 6 | (A) R, (B) CV, (C) F, and (D) Is in the parameter space dexc × dinh

for gexc = 0.8 nS and g = 6. Symbols in dexc × dinh correspond to

dexc = dinh = 0 ms (cyan square), dexc = 0 ms and dinh = 50 ms (cyan circle),

dexc = 70 ms and dinh = 50 ms (cyan hexagon), and dexc = 110 ms and

dinh = 50 ms (cyan triangle).

In Figures 4A,B, we verify the existence of desynchronous
spikes when excitatory and inhibitory inputs arrive in almost the
same time (dexc ≈ dinh). Figure 5 shows raster plots (top) and
Isyn(t) (bottom) for dinh = 30 ms (blue squares in Figure 3),
where we consider dexc = 65 ms (blue), dexc = 75 ms (red), and
dexc = 85 ms (green). The parameters correspond to the region
where synchronization can occur. Furthermore, we observe that
depending on the excitatory delay value, synchronization can be
improved. We verify that the synchronization is improved for
dexc = 75 ms, namely certain values of the delay can optimize
the synchronization regime.

Increasing gexc from 0.2 to 0.8 nS (strong coupling), in
Figure 6, we observe in another range of the parameter space
dinh × dexc (Figure 6A) where the region with synchronous
behavior increases. Figure 6B displays the existence of regions
with spike (blue) and burst (red) through the coefficient of
variation value. Comparing Figures 6A,B, we verify that there
are not only synchronized spikes, but also synchronized bursts.
Moreover, desynchronous spike patterns are found for dinh ≈

dexc. Figures 6C,D show in color scale the values of F and
Is, respectively. We see that the synchronized spikes occur for
the values of dinh and dexc in which F and Is are low. The
synchronized bursts can be found with different values of F and
Is. In addition, we also observe desynchronized activities for
dinh ≈ dexc. Figure 7 displays the raster plot (top) and Isyn(t)
(bottom) for gexc = 0.8 nS, g = 6, and different values of dexc
and dinh, according to the parameters pointed by the symbols
in Figure 6. Different delay values can generate desynchronized
spikes (Figures 7A,B), synchronized bursts (Figures 7C,D,G,H),
and synchronized spikes (Figures 7E,F).

4. DISCUSSION AND CONCLUSION

In this paper, we investigate the influence of delayed conductance
on the neuronal synchronization. The study of neuronal
synchronization is of great importance in neuroscience, due to
the fact that it has been related to cognition, as well as to brain
pathology. The conductance between the neurons plays a crucial
role in the synchronous behavior. Many studies investigated the

FIGURE 7 | Raster plots (top) and Isyn(t) (bottom) for gexc = 0.8 nS, g = 6 for different values of dexc and dinh. Different delay values generate desynchronized spikes

(A,B), synchronized bursts (C,D), synchronized spikes (E,F), and synchronized bursts (G,H).
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effects of the conductance on the neuronal activities (Bezanilla,
2008; Kispersky et al., 2012).

We construct a network composed of adaptive exponential
integrate-and-fire (AEIF) neurons. The AEIF neuron has been
used to mimic spike and burst patterns. In our network, we
consider that the neurons are randomly connected by means
of inhibitory and excitatory synapses. We find that for some
network parameters, it is possible to observe spikes or bursts
synchronization. We use the mean order parameter (R) and the
mean coefficient of variation (CV) as diagnostic tools to identify
synchronization and spikes or bursts patterns, respectively. We
also calculate F and Is to analyse how they are related to
synchronous behavior.

In order to explore the effects of different delayed
conductances on the neuronal synchronization, in the
section 3, we consider delay in both inhibitory and excitatory
conductances. When all neurons are spiking (weak coupling), the
delays induce synchronization domains in the parameter space
dinh × dexc. Inside the parameter domains with synchronized
neurons, we observe separated parameter subdomains
representing neurons with higher and lower values of the
mean firing frequency F (Hz), as well as different values of the
mean synaptic input Is (pA). For the neuronal network with
strong coupling, we do not find domains with behavior similar
to weak coupling in the parameter space dinh × dexc. However,
we see synchronous and desynchronous activities with either
spike and burst activities. We also observe a range of high
values of F and Is when only inhibitory delayed conductance
is increased (dexc ≈ 0), responsible for turning desynchronous
spikes into synchronous burst patterns. For dexc ≈ dinh and
strong coupling, we also observed desynchronous spike activities.
Desynchronous spike activities can be associated with lower
mean firing frequency and synaptic currents for strong coupling.

For weak coupling, the size of the region with synchronized
behavior in dinh×dexc decreases when the number of connections
is decreased. In this situation, we observe that the size of the
small regions can be increased by increasing gexc. In addition,
for strong coupling and decreasing the number of connections,
there is no burst activity and we verify the existence of
synchronized and desynchronized spiking patterns, as shown
for weak coupling and no sparse connectivity. Therefore, the
connectivity and the synaptic conductance play an important role
in the synchronization.

In conclusion, we verify that the delay in the conductances
plays a crucial role in the behavior of the neurons in the neuronal
network. For weak coupling, we uncover that not only the
synchronous behavior, but also the mean firing frequency and

the mean synaptic input depend on the delayed inhibitory and
excitatory conductances. We identify which range of synaptic

current allow the neuronal network to achieve and maintain
synchronous activities. In the region with desynchronized
activities, excitatory and inhibitory currents arrive in different
times, consequently, high synchronization does not appear. For
strong coupling, we see that also spike and burst patterns depend
on the delayed conductances. The domain with synchronous
pattern is characterized by having different delays in the
inhibitory and excitatory conductances. Considering dexc ≈ dinh,
we observe desynchronous spikes activities for both weak and
strong coupling. In addition, our results demonstrate that not
only intensity of synaptic conductance, but also a short delay
in the inhibitory conductance are relevant to avoid abnormal
neuronal synchronization.

Our results can be useful to clarify how synchronous
and desynchronous activities are reached in a context of
neuronal population with delayed conductance. In future
works, we plan to analyse the influence of the connection
probability between excitatory and inhibitory neurons in
the neuronal synchronization, as well as the appearance of
clusters synchronization.
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