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It is now well established that besides being the most common sustained arrhythmia, 
atrial fibrillation (AF) is a major healthcare burden. Risk of debilitating stroke is increased 
in AF patients, but even in the absence of stroke, this population is at heightened risk of 
cognitive decline, depression, and dementia. The reasons for this are complex, multifactorial, 
and incompletely understood. One potential contributing mechanism is cerebrovascular 
dysfunction. Cerebral blood flow is regulated by chemical, metabolic, autoregulatory, 
neurogenic, and systemic factors. The dysfunction in one or more of these mechanisms 
may contribute to the elevated risk of cognitive decline and cerebrovascular events in AF. 
This short review presents the evidence for diminished cerebral blood flow, cerebrovascular 
carbon dioxide reactivity (i.e., cerebrovascular vasodilatory reserve), cerebral autoregulation, 
and neurovascular coupling in AF patients when compared to control participants in sinus 
rhythm. Further work is needed to understand the physiological mechanisms underpinning 
these observations and their clinical significance in atrial fibrillation patients.

Keywords: atrial fibrillation, cerebral blood flow, carbon dioxide, hypertension, cerebral autoregulation, 
neurovascular coupling

INTRODUCTION

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia characterized by an 
irregularly irregular cardiac output that leads to disrupted peripheral blood flow kinetics. 
Recognized as a major healthcare burden (Ball et  al., 2013; Chugh et  al., 2014), incidence 
and prevalence of AF is increasing in part due to the aging global population, better management 
of acute myocardial infarcts, and increasing occurrence of obesity and obstructive sleep apnoea 
(Wolf et  al., 1996; Lane et  al., 2017). The lifetime risk of developing AF in individuals aged 
≥55 is currently reported as being 22 to 48% depending on the presence of risk factors 
(Heeringa et  al., 2006; Weng et  al., 2018).

AF is often accompanied by structural heart disease, vascular endothelial damage/dysfunction 
(Conway et  al., 2003; Freestone et  al., 2008), and abnormal blood constituents (Pourtau et  al., 
2017), which confer a prothrombotic hypercoagulable state. The risk of stroke is increased 5-fold 
in AF (Wolf et al., 1991) with cardioembolic events often being more severe, substantially increasing 
the risk of morbidity and mortality (Lin et al., 1996). However, AF patients, even if anticoagulated 
and with no clinical history of overt embolic ischemic stroke, present a heightened risk of 
cognitive decline, dementia, and depression (Bellomo et  al., 2012; Marzona et  al., 2012; Diener 
et al., 2019). This perhaps reflects silent infarcts (Conen et al., 2019), hypertension (Kim et al., 2020), 
systolic heart failure (Lee et  al., 2019), hypercholesterolemia (Chao et  al., 2015), and sleep apnoea 
(Leng et  al., 2017), conditions that are individually associated with AF and cognitive impairment, 
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necessitating holistic management of AF patients (Dagres et  al., 
2018). Nonetheless, one largely unexplored mechanism potentially 
contributing to the severe cerebrovascular events and cognitive 
dysfunction in AF patients is cerebrovascular dysfunction.

Cerebral blood flow is guided by the careful interplay of 
chemical, metabolic, autoregulatory, neurogenic, and systemic 
factors. The dysfunction in one or more of these mechanisms 
may contribute to the adverse cerebral events associated with 
AF. This mini-review will present evidence that AF modifies 
these aspects of cerebral blood flow regulation and the potential 
underlying mechanisms will be  briefly discussed.

CEREBRAL BLOOD FLOW

Compromised cerebral perfusion may increase the risk of white 
matter damage and lower cognition (Thome et al., 1996; Jefferson 
et  al., 2015). Lavy et  al. (1980) and Gardarsdottir et  al. (2017) 
documented a ~13% reduction in cerebral blood flow and 
cerebral perfusion in AF patients. Similarly, Junejo et al. (2019b) 
observed that cerebral perfusion, assessed using transcranial 
Doppler ultrasound measures of middle cerebral artery blood 
velocity (MVC Vm), was ~16% lower in AF patients [n  =  31, 
69 (64,72) years, median (interquartile range); 51.0 (12.9) cm s−1, 
mean (standard deviation)] when compared to healthy controls 
in sinus rhythm [n  =  30, 69 (66,73)  years; 60.9 (12.9)  cm  s−1; 
p < 0.01]. To assess AF irrespective of cardiac rhythm, comparisons 
were also made of AF patients diagnosed with paroxysmal 
(transient episodes that resolve spontaneously within 48  h) vs. 
persistent (untreated episodes last longer than 7  days) AF. 
Notably, fibrillating patients (55% of the total AF patients) 
exhibit a lower cerebral perfusion [44.4 (10.9)  cm  s−1] than 
non-fibrillating AF patients [59.2 (10.5) cm s−1; p < 0.01; Junejo 
et  al., 2019b]. This supports the contention that the decreased 
cerebral blood flow in AF is driven by cardiac rhythm per se. 
A potential limitation of Junejo et  al. (2019b) is that cerebral 
perfusion was assessed with transcranial Doppler ultrasound, 
which is limited to quantifying blood velocity but not blood 
flow, although a good correlation has been reported between 
transcranial Doppler ultrasound measures of velocity and cerebral 
blood flow (Clark et  al., 1996; Poeppel et  al., 2007). Similar 
findings regarding cerebral perfusion in fibrillating and 
non-fibrillating AF patients have been documented with phase-
contrast MRI in a cross-sectional study (Gardarsdottir et  al., 
2017). Moreover, longitudinal studies with Xenon inhalation, 
single photon emission CT, arterial spin labeling, and phase-
contrast MRI, where AF patients have undergone restoration 
of sinus rhythm, also demonstrate increases in global and regional 
cerebral perfusion (Petersen et  al., 1989; Efimova et  al., 2012; 
Gardarsdottir et  al., 2019).

CEREBRAL CARBON DIOXIDE 
REACTIVITY

The cerebral vasculature is very sensitive to changes in partial 
pressure of arterial carbon dioxide (CO2), with hypercapnia 

profoundly increasing cerebral blood flow and hypocapnia 
evoking cerebral vasoconstriction (Kety and Schmidt, 1946, 
1948). Impaired cerebrovascular reactivity to CO2 (CVRCO2), 
indicative of an attenuated cerebrovascular reserve, is recognized 
as an independent predictor of ischemic stroke (Silvestrini 
et  al., 2000; Markus and Cullinane, 2001) and cardiovascular 
mortality (Portegies et  al., 2014). A poor CVRCO2 may increase 
the risk of severe ischemic stroke and delay functional recovery 
in AF patients.

Junejo et al. (2019b) investigated whether CVRCO2 is impaired 
in AF patients [n = 31, 69 (64,72) years]. CVRCO2 was assessed 
using the slope of MCA Vm (transcranial Doppler 
ultrasonography) vs. partial pressure of end-tidal CO2 (PETCO2; 
capnograph) by two 4-min step-increases in inspired CO2 
fraction (4 and 7% CO2, respectively, ~21% oxygen and nitrogen 
balanced, open-circuit two-way valve method). Strikingly, CVRCO2 
was ~31% lower in AF patients [1.90 (1.13)  cm  s−1  mmHg−1] 
compared to healthy [n  =  30, 69 (66,73)  years; 2.73 
(0.69) cm s−1 mmHg−1; p < 0.001; Figure 1]. Given the potentially 
confounding effects of medications and comorbidities, 
comparisons were also made between AF patients and primary 
hypertension patients in sinus rhythm [n = 31, 68 (65,72) years] 
as a “disease” control group (Junejo et  al., 2019b). CVRCO2 
was documented to be  ~34% lower in AF patients compared 
to hypertension patients [2.90 (0.92) cm s−1 mmHg−1; Figure 1; 
Junejo et  al., 2019b]. The rationale for studying patients with 
hypertension was that hypertension heralds a 40–50% excess 
risk of developing AF (Benjamin et  al., 1994), and is the 
most common coexisting cardiovascular disease in AF with 
prevalence ranging from 20–80% in patients diagnosed with 
AF (Heeringa et  al., 2006; Miyasaka et  al., 2006; Nabauer 
et  al., 2009; Le Heuzey et  al., 2010; Weng et  al., 2018). To 
further control for comorbidities, all participants were free 
from left ventricular systolic dysfunction, valvular heart disease, 
history of myocardial infarction, stroke, secondary hypertension, 
insulin-dependent diabetes, malignancy, or uncontrolled thyroid 
disorders (Junejo et  al., 2019b).

FIGURE 1 | Cerebrovascular carbon dioxide reactivity (CVRCO2 slope) in 
healthy controls (HC: blue), patients with atrial fibrillation (AF: red), and 
hypertension (HT: green). Responses in AF-sub-groups (non-fibrillating and 
fibrillating AF patients) are shown on the right. Horizontal bars show mean 
and standard deviation (SD) for each group. *p < 0.05 vs. HC and HT. 
Reproduced from Junejo et al. (2019b; open access article – Elsevier figure 
reuse license: 4825301232885; license date: May 10, 2020).
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Whether the poor CVRCO2 identified in AF patients is 
primarily the result of cardiac rhythm per se, or is the result 
of damage caused by AF, is a key issue. One potential explanation 
for these findings is that a poor cerebral perfusion, secondary 
to the arrhythmia, may lead to a cerebral vasodilation that 
reduces the cerebral vasodilatory reserve (Aaslid et  al., 1989). 
Indeed, as described above, AF patients exhibited a reduced 
MCA Vm particularly when fibrillating. However, Junejo et  al. 
(2019b) observed that the attenuation in vasodilatory reserve 
of AF patients was unaffected by cardiac rhythm with no 
differences being observed between fibrillating [1.69 
(0.98)  cm  s−1  mmHg−1] and non-fibrillating AF [2.14 
(1.28)  cm  s−1  mmHg−1; p  =  0.707] patients (Figure  1). Thus, 
suggesting that cerebrovascular dysfunction and specifically 
attenuated CVRCO2 in AF patients are independent of the cardiac 
rhythm and baseline cerebral perfusion per se.

Evidence of age‐ and hypertension-associated decline in CVRCO2 
exists (Lipsitz et al., 2000; Walsh et al., 2009; Miller et al., 2019). 
However, findings of attenuated CVRCO2 in AF patients are novel 
and warrant further investigations. A potential explanation for 
the blunted CVRCO2 in AF patients is endothelial damage/
dysfunction. AF evokes a turbulent blood flow pattern, loss of 
shear stress (Frangos et al., 1985; Noris et al., 1995) and oxidative 
stress (Sovari and Dudley, 2012), which collectively decrease the 
bioavailability of nitric oxide (NO), and arachidonic-acid derived 
vasodilators. Further, in AF, an attenuated brachial artery flow 
mediated dilatation response (FMD) (Freestone et  al., 2008) and 
raised plasma von Willlebrand concentrations (Conway et  al., 
2003; Freestone et  al., 2008), a factor related to adverse 
cardiovascular outcomes (Conway et  al., 2003; Lip et  al., 2006), 
have been identified and indicate endothelial damage/dysfunction. 
Both NO and arachidonic-acid derivatives are important in 
controlling cerebral blood flow during hypercapnia (Schmetterer 
et  al., 1997; Kastrup et  al., 1999). Indeed, administration of a 
NO-donor improves CVRCO2 in patients at risk of cardiovascular 
disease (Zimmermann and Haberl, 2003). Therefore, reduced 
production and bioavailability of endothelium-dependent vasoactive 
agents may underpin observations of reduced CVRCO2 in AF.

Debate surrounds the optimal method of assessing CVRCO2, 
and despite the wide use of fixed gas fractions and their relative 
ease to administer, they have received some criticism (Fierstra 
et  al., 2013; Fisher, 2016). Junejo et  al. (2019b) reported that 
MCA Vm and CVRCO2 showed good between-day test-retest 
reliability, nonetheless issues regarding between-subject and 
inter-operator variability remain. PETCO2 is commonly used as 
a surrogate of arterial CO2 for measuring CVRCO2. Despite strong 
linear correlation between PETCO2 and partial pressure of arterial 
CO2 (Peebles et  al., 2007; McSwain et  al., 2010), arterial CO2 
concentrations can vary between participants and are dependent 
on multiple variables (e.g., metabolic state of individuals at the 
time of testing and alveolar ventilation variability), and PETCO2 
may underestimate arterial CO2 (Robbins et  al., 1990; Delerme 
et  al., 2010). Computerized sequential gas delivery offers fairly 
accurate estimates of arterial CO2 (Ito et al., 2008) and subsequently 
better estimates of CVRCO2. However, despite their advantages, 
financial setup costs and operator expertise (Fisher, 2016) have 
limited their widespread use. To date, only unidirectional 

(hypercapnic) cross-sectional comparisons of CVRCO2 using fixed 
gas fractions in AF patients either fibrillating or non-fibrillating 
have been made (Junejo et  al., 2019b). Further, the impact of 
AF burden on progression of cerebrovascular dysfunction is 
currently not known. Longitudinal investigations of cerebral 
blood flow and tissue oxygenation/metabolism, both before and 
after restoration of sinus rhythm, warrant undertaking in 
combination with advanced imaging modalities.

CEREBRAL AUTOREGULATION

The cerebral vasculature possesses intrinsic mechanisms that 
maintain adequate perfusion despite fluctuations in blood pressure 
(i.e., cerebral autoregulation), thereby mitigating the risk of 
ischemia or hemorrhage by preventing under‐ or over-perfusion, 
respectively. Cerebral autoregulation functions as a high-pass 
filter whereby slower changes in perfusion pressure (>0.02  Hz) 
appear to pass unhindered, but more rapid pressure oscillation 
(<0.02  Hz) are dampened more effectively (Diehl et  al., 1998).

Junejo et  al. (2019a) assessed cerebral autoregulation in AF 
patients [n  =  30, 69 (63,72)  years], primary hypertensives 
[n  =  29, 68 (65,72)  years], and healthy controls [n  =  24, 68 
(66,70)  years]. Cerebral autoregulation was determined using 
transfer-function analysis of the MCA Vm and blood pressure 
(finger photoplethysmography) responses to repeated squat-to-
stand maneuver. AF patients exhibited greater changes in MCA 
Vm for a given change in blood pressure [gain normalized 
to baseline; 1.46 (1.16–2.16)%  mmHg−1] compared to 
hypertensives [1.13 (1.00–1.45)% mmHg−1] and healthy controls 
[1.12 (0.99–1.37)%  mmHg−1; p  <  0.01], revealing impaired 
autoregulation. However, unexpectedly, sub-group comparison 
between AF patients showed that fibrillating AF patients (53% 
of total) were better able to delay blood pressure oscillations 
from transmitting into brain blood flow [phase; 0.63 
(0.25)  radians] compared to non-fibrillating AF patients [0.35 
(0.17)  radians; p  <  0.01], and more effective at damping blood 
pressure driven changes to absolute measures of cerebral 
perfusion [absolute gain; 0.64 (0.22) vs. 0.92 
(0.37)  cm  s−1  mmHg−1, respectively; p  =  0.02]. However 
importantly, normalized gain failed to show any group differences 
between fibrillating [1.39 (1.11–1.80)%  mmHg−1] and 
non-fibrillating [1.56 (1.30–2.23)% mmHg−1; p = 0.29] patients.

Impaired autoregulation may result from a number of 
interactive mechanisms, including mechanosensitive myogenic 
ion channels (Davis et  al., 1992; Tan et  al., 2013), neurogenic/
autonomic influences (Hamner et  al., 2012; Hamner and Tan, 
2014), metabolic influences (Panerai et  al., 1999), and NO 
(White et  al., 2000). More specifically, autonomic disturbances 
(Chen et  al., 2014), endothelial damage/dysfunction (Conway 
et al., 2003; Freestone et al., 2008), and diminished bioavailability 
of endothelial vasodilators (Minamino et al., 1997) in AF could 
contribute to autoregulatory dysfunction of AF. Further, the 
reduced cerebral blood flow and vasodilatory reserve observed 
in AF patients (Junejo et  al., 2019b) may also impair cerebral 
autoregulation. Further investigations into the mechanisms of 
impaired autoregulation of AF are warranted.
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Collectively, these observations suggest that cerebral 
vasculature in AF patients is less able to buffer blood pressure 
driven fluctuations in brain blood flow (i.e., cerebral 
autoregulation is impaired) in comparison with primary 
hypertensives and healthy individuals in sinus rhythm. The 
apparently conflicting finding of improved absolute gain in 
fibrillating AF patients may just reflect fibrillation itself, rather 
than an improvement in cerebrovascular health during fibrillation.

NEUROVASCULAR COUPLING

The regional metabolic needs of neuronal activation share a close 
spatial and temporal fidelity with local blood flow, as such ensuring 
commensurate functional perfusion within the brain (Phillips et al., 
2016). This phenomenon is commonly referred to as neurovascular 
coupling. An impaired neurovascular coupling, indicative of 
cerebrovascular dysfunction, has been reported post-stroke, 
associated with cognitive decline, and linked to endothelial 
dysfunction (Girouard and Iadecola, 2006; Graves and Baker, 2020).

Junejo et  al. (2019a,c) investigated whether neurovascular 
coupling is blunted in AF patients [n  =  12, 71 (66,72)  years] 
compared to primary hypertensives [n  =  13, 66 (65,69)  years] 
and healthy controls [n  =  12, 69 (57,70)  years]. Beat-to-beat 
posterior cerebral artery (PCA), MCA Vm (temporal transcranial 
Doppler ultrasonography), and vascular conductance (calculated 
as Vm/mean blood pressure) responses to repeated visual-stimuli 
(30  s eyes-open, 30  s eyes-closed for 5  min) were spline 
interpolated and then averages and percentage changes calculated 
(Phillips et al., 2016). This allowed account of changes to blood 
velocity and vascular diameter along with any inadvertent blood 
pressure fluctuations during testing. Neurovascular coupling 
was defined as the visually evoked increase in PCA conductance, 
since the PCA supplies the visual cortex.

A blunted peak PCA conductance was observed in AF [18 
(8)%] and hypertensive patients [17 (8)%] compared to healthy 
controls [26 (9)%; p < 0.05], indicative of blunted neurovascular 
coupling in people with either AF or hypertension, relative to 
control participants (Figure  2). However, the change in MCA 
conductance in AF patients [17 (6)%] was greater than 
hypertensives [10 (4)%; p  <  0.05], suggesting non-specific 
neurovascular engagement of cerebral areas in AF patients. 
To explore this issue further, visual stimulation related task-
specificity was calculated as the difference between the PCA 
and MCA conductance responses. This analysis revealed that 
the neurovascular coupling response was near-completely 
abolished in AF patients [1.0 (7.5)%] compared to hypertensives 
[6.6 (9.4)%] and healthy controls [12.9 (9.2)%; p  <  0.01].

These results indicate reduced neurovascular coupling 
responses in AF patients; however, the underlying mechanisms 
remain unclear. Neurovascular coupling is mediated by a complex 
array of feed-forward and feedback mechanisms, (e.g., hydrogen, 
potassium, adenosine, prostaglandins, NO, acetylcholine, 
glutamate, and dopamine; Girouard and Iadecola, 2006; Phillips 
et  al., 2016). Further, recent evidence from animal models 
also suggests an active role of nicotinamide mononucleotide 
in neurovascular coupling response (Tarantini et  al., 2019a,b). 

Evidence exists for age‐ and hypertension-associated decline 
in neurovascular coupling response (Girouard and Iadecola, 
2006; Lipecz et  al., 2019), alongside some conflicting reports 
(Stefanidis et al., 2019). However, mechanistic studies in humans 
are limited and it remains to be  investigated whether the 
attenuated neurovascular coupling responses reported in AF 
patients (Junejo et al., 2019a,c) reflect neurodegenerative blunting 
or disrupted coupling between neurons and vasculature. 
Moreover, to our knowledge, to date, neurovascular coupling 
has only been assessed in AF patients using visual stimulation 
(i.e., reading) and whether this diminished response persists 
during other stimuli (e.g., finger tapping) is unknown.

MITIGATION STRATEGIES

Improvements in cerebral perfusion and cognitive function 
have been observed with cardiac rhythm control following 
pharmacological (Damanti et al., 2018), cardioversion (Petersen 
et  al., 1989), ablation, and pacemaker treatments (Efimova 
et  al., 2012). Besides the improvements in ventricular filling 
and systolic function, rhythm control strategies offer 
improvements in endothelial function (Noris et al., 1995; Topper 
et  al., 1996; Skalidis et  al., 2007). Nonetheless, it is important 
that any rhythm control strategies employed in AF patients 
to improve cerebral and systemic perfusion, and vascular/
endothelial health are carried out alongside parallel and continued 
antithrombotic therapy. Indeed, the heightened risk of ischemic 
strokes continues even after cardiac arrhythmia correction in 
AF patients (Lip, 1995; Thibault et  al., 2004).

Increased concentrations of circulating inflammatory markers 
observed in AF suggest their contribution to endothelial damage 
and prothrombotic platelet activation (Patel et  al., 2010; Guo 
et  al., 2012). However, in a feedback loop, coagulation can 
also influence inflammation and encourage vascular dysfunction 
(Levi et al., 2004; Esmon, 2005). Thus, it is possible that besides 
the reduction in procoagulants and subsequent reduction in 

FIGURE 2 | Increase in PCA perfusion in response to neurovascular 
coupling observed in healthy controls (HC: blue), patients with atrial fibrillation 
(AF: red), and hypertension (HT: green). Lines on the left panel represent the 
mean responses; black bar indicates where eyes of the participants were 
open. Right panel shows the (%) peak posterior cerebral artery (PCA) 
conductance (CVCi) responses of individuals. Horizontal bars show mean and 
SD values for each group. *p < 0.05 vs. HC. Modified from Junejo et al. 
(2019a; open access article published under CC-BY 4.0 license).
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stroke risk (Members et  al., 2012), factor Xa, thrombin, and/
or vitamin K antagonists also help attenuate cerebrovascular 
and peripheral vascular dysfunction in AF.

Exercise training, whether endurance (Lautenschlager et  al., 
2008; Green and Smith, 2017) or resistance (Cassilhas et  al., 
2007), oral antioxidant (Wray et  al., 2012) and nitrite (Lara 
et  al., 2016) supplementation, ischemic preconditioning (Jones 
et  al., 2014), and heat therapy (Brunt et  al., 2016) have all 
been associated with improved cardiovascular and/or 
cerebrovascular health. Their employment to improve 
cerebrovascular function and mitigate the risk of cognitive 
decline in AF patients remains a valid proposition; however, 
objective evidence for their effectiveness in AF remains lacking.

CONCLUSION

AF is associated with an increased stroke risk, and even 
anticoagulated AF patients are at an increased risk of cognitive 
decline, depression, and dementia. Emerging evidence suggests 
impaired cerebral vasodilatory reserve, autoregulation, and 
neurovascular coupling in AF patients compared to “disease” 

(primary hypertension) controls and healthy controls in sinus 
rhythm. These findings may be  important in explaining the 
severity of ischemic strokes, morbidity, and mortality risk from 
such events, cognitive decline, and cerebral dysfunction in AF. 
Further cross-sectional and longitudinal studies are needed to 
better understand the pathophysiological underpinnings and 
clinical significance of these findings.
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