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Atherosclerosis is the leading cause of vascular disease worldwide and contributes 
significantly to deaths from cardiovascular complications. There is a remarkably close 
relationship between atherosclerotic plaque formation and the activation of renin-angiotensin 
system (RAS). However, depending on which RAS pathway is activated, pro‐ or 
anti-atherogenic outcomes may be observed. This brief review focuses on the role of 
three of the most important pieces of RAS axis, angiotensin II (Ang-II), angiotensin 
converting enzyme type 2 (ACE2), and angiotensin 1–7 (Ang-1–7) and their involvement 
in atherosclerosis. We focused on the effects of these molecules on vascular function and 
inflammation, which are important determinants of atherogenesis. Furthermore, 
we highlighted potential pharmacological approaches to treat this disorder.

Keywords: angiotensin converting enzyme type 2, angiotensin II, angiotensin 1–7, atherosclerosis, endothelial 
dysfunction, inflammation

INTRODUCTION

Cardiovascular diseases remain the leading cause of adult death worldwide (Herrington et  al., 
2016). Nowadays, it is already established that hypertension is a modifiable risk factor for 
cardiovascular diseases and the reduction in blood pressure is accompanied by a reduction 
in cardiovascular risk (Herrington et  al., 2016). On the other hand, the persistent burden of 
cardiovascular events despite a highly effective control of conventional risk factors, suggests 
that other mechanisms might underlie a proportion of these events (Libby et  al., 2019).

Atherosclerosis can be considered the primary origin of most cardiovascular diseases (Husain 
et  al., 2015). As previously reviewed by us and by others, atherosclerosis consists of an 
inflammatory response of arterial wall to injuries. This inflammation is often initiated by 
endothelial dysfunction and progresses to cellular adhesion molecules (CAM) expression, adhesion 
of circulating leukocytes to the endothelial cells (Koleva et  al., 2016), leucocyte migration and 
the formation of a fibrous cap around a lipidic core, which compromises vascular lumen 
(Freitas-Lima et  al., 2015). In addition to its traditional role in hypertension, the long-term 
blood pressure control system (the renin-angiotensin system – RAS) is directly involved in the 
development of atherosclerotic lesions due to its mainly effects on endothelial function, inflammation, 
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fibrosis, coagulation balance, plaque stability, and structural 
remodeling (Montezano et  al., 2014; Husain et  al., 2015).

Along with the classic cascade in RAS, which involves the 
conversion of angiotensinogen to angiotensin I (Ang-I) by renin, 
followed by its cleavage to angiotensin II (Ang-II) by angiotensin 
converting enzyme (ACE), other peptides and enzymes related 
to RAS are important in atherogenesis (Figure  1; Montezano 
et  al., 2014). In this context, we  highlight the role of the 
angiotensin converting enzyme type 2 (ACE2), which is typically 
responsible to form angiotensin 1–7 (Ang-1–7) from Ang-II. 
The heptapeptide is described to oppose Ang-II effects by 
mediating vasodilation, growth-inhibition, anti-inflammatory 
responses, and anti-thrombotic effects (Montezano et al., 2014). 

Considering that, this review is devoted to summarize the 
effects of Ang-II, ACE2, and Ang-1–7  in atherosclerosis, 
highlighting the promising interventions that could lead to 
RAS modulation and atherosclerosis treatment.

ANGIOTENSIN II AND 
ATHEROSCLEROSIS

Ang-II is the main effector of RAS (Colafella et  al., 2019). 
The effects of Ang-II are mediated by its binding into the 
angiotensin type 1 and type 2 receptors (AT1R and AT2R, 
respectively). These receptors are G protein-coupled receptors 
that tend to present opposing activities (Kellici et  al., 2015). 
AT1R is primarily responsible for the classic pro-hypertensive 
activity of Ang-II, whereas the AT2R is reported to present 
antagonistic effects to the AT1R (Figure  1; Ding et  al., 2016).

It has been shown that Ang-II directly induces endothelial 
dysfunction and increases endothelial oxidative stress through 
the production of reactive oxygen species (ROS) such as 
superoxide anions (O2

−) derived from the complex enzyme 
nicotinamide adenine dinucleotide phosphate oxidase (NADPH 
oxidase). This occurs predominantly through interaction with 
endothelial AT1R (Ziegler et al., 2020), which mediates increase 
in Ca2+ concentration in endothelial cells, promoting activation 
of calmodulin and interaction with the Nox5/Ca2+ calmodulin 
binding domain (Montezano et  al., 2010; Piqueras and Sanz, 
2020). Nox5 is a member of the NADPH oxidase family which 
is not found in rodents but is highly expressed in coronary 
arteries obtained from individuals with coronary artery disease 
(Guzik et  al., 2008; Gray and Jandeleit-Dahm, 2015). In 
atherosclerosis, oxidative and inflammatory processes involve 
increased expression and activation of Nox5  in both vascular 
cells and resident macrophages (Touyz et  al., 2019).

Activation of Nox5 mediated by Ang-II produces O2
−, activates 

RhoA and leads to the subsequent stimulation of Rho-associate 
kinase in human umbilical arterial endothelial cells culture 
(Escudero et al., 2015). The RhoA/ROCK pathway is an upstream 
regulator of mitogen-activated protein kinases (MAPKs – 
p38MAPK and ERK1/2), which promotes transactivation of 
several transcription factors, including NF-κB (Piqueras and 
Sanz, 2020). NF-κB regulates the expression of numerous genes, 
such as cytokines, tumor necrosis factor alpha (TNF-α) and 
interleukin 6 (IL-6), chemokines (monocyte chemoattractant 
protein – MCP-1), adhesion molecules (P-selectin, ICAM-1, 
and VCAM-1), the inflammatory enzyme cyclooxygenase type 
2 (COX-2), and angiotensinogen (Durante et  al., 2012; Liang 
et  al., 2015). Moreover, activation of NF-κB seems to be  an 
important signal transducer involved in the upregulation of 
oxidized low-density lipoprotein (ox-LDL)–mediated AT1R 
expression (Figure  2; Li et  al., 2000).

It is likely that TNF-α, released upon Ang-II stimulation 
of the AT1R, in combination with IL-4 acts as a paracrine 
molecule, inducing selective adhesion of mononuclear cells 
to the arterial endothelium through increased expression of 
CAM, and the release of varied chemokines involved in the 
recruitment of mononuclear cells (Piqueras and Sanz, 2020).  

FIGURE 1 | Interactions between the renin-angiotensin system (RAS) and 
atherosclerosis. Angiotensin II (Ang-II) is formed from the angiotensin I (Ang-I) 
cleavage by angiotensin converting enzyme (ACE). Ang-II can bind to Ang-II 
type 1 (AT1R) or type 2 (AT2R) receptors. Ang-II undergoes the action of 
angiotensin converting enzyme type 2 (ACE2) to be converted into 
angiotensin 1–7 (Ang-1-7), which classically interacts with Mas receptor 
(MasR). Furthermore, Ang-1–7 can bind to AT2R or it can induce the 
β-arrestin pathway through its interaction with AT1R. Ang-1–7 also can 
be produced by neprylisin (NEP) from Ang-I. In summary, the ACE/Ang-II/
AT1R pathway induces atherosclerosis while the ACE2/Ang-1–7/MasR and 
Ang-II and Ang-1–7/AT2R pathways inhibit the atherosclerotic events. In 
addition, some pharmacological tools have been shown to interfere in some 
components of RAS cascade and prevent the atherosclerosis, such as 
statins, ACE inhibitors (ACEi), angiotensin receptor blockers (ARB) and 
diminazene aceturate (DIZE). Gray arrows indicate classic pathways while 
gray dotted arrows indicate alternative pathways. Black lines indicate 
potential pharmacological approaches to stimulate/increase (arrows) or block/
decrease (lines) components of RAS.
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Shu et  al. (2019) demonstrated that Ang-II induces monocyte 
chemotactic protein-induced protein expression (MCPIP1) 
through an AMPK/p38 MAPK dependent pathway. The increase 
in MCPIP1 expression triggered apoptosis in macrophages, 
contributing to atherosclerotic plaque vulnerability.

In addition, Ang-II induces the expression of osteopontin, 
a multifunctional protein found in many cell types, including 
macrophages, endothelial cells, smooth muscle cells (SMCs), 
and epithelial cells. Osteopontin is found in atherosclerotic 
lesions, especially in association with macrophages and foam 
cells, suggesting that this protein plays an important role in 
the development and progression of atherosclerosis (Ding et al., 
2016). The molecular mechanisms related to osteopontin involve 
recruitment of inflammatory cells and migration of foam cells 
through the binding to integrins (Giachelli and Steitz, 2000).

Ang-II also up-regulates the LOX-1 gene. LOX is a 
transmembrane glycoprotein that serves as a receptor for oxidized 
LDL (Lubrano and Balzan, 2016). In the endothelium, binding 
of oxLDL to LOX-1 causes increase in leukocyte adhesion 
molecules, activates apoptosis pathways, increases ROS and 
induces endothelial dysfunction. In a pro-inflammatory 
environment, LOX-1 is positively regulated in macrophages 
and is associated with more than 40% of oxLDL uptake, 
contributing to the formation of foam cells (Kattoor et  al., 
2019). In addition, oxLDL increases the generation of ACE, 
which in turn induces the Ang-II formation. This octapeptide 
increases the expression of LOX-1, which positively regulates 
the expression of AT1R, contributing to a self-perpetuating 

pro-atherogenic cycle. It has also been reported that ACE 
inhibitors and AT1R blockers (ARBs) decrease the expression 
of LOX-1 (Lubrano and Balzan, 2016).

According to experimental and clinical data, ACE inhibitors 
and ARBs appear to have beneficial anti-atherosclerotic effects 
(Tousoulis et  al., 2015). Studies have shown that enalapril 
ameliorated oxidative vascular injury, suppressed NADPH oxidase 
activity, decreased inflammatory mediators and regulated the 
antioxidant defense system in apolipoprotein E-deficient mice 
(ApoE-KO; Suarez-Martinez et  al., 2014; Husain et  al., 2015), 
an animal model commonly used to study atherosclerosis.

It has been shown that the ARB olmesartan significantly 
reduced vascular inflammation in hypertensive patients, with 
a significant reduction in serum levels of many inflammatory 
markers, such as C-reactive protein, TNF-α, IL-6, and MCP-1 
(Fliser et  al., 2004; Durante et  al., 2012). Moreover, long-term 
therapy with valsartan has been associated with atherosclerosis 
regression in individuals with thickening of the carotid wall. 
These effects were accompanied by concomitant improvements 
in oxidative stress markers, inflammation, and peripheral smooth 
muscle function (Ramadan et  al., 2016).

ACE2 AND ATHEROSCLEROSIS

The first evidence of a relationship between ACE2 and atherosclerosis 
was demonstrated by Zulli et  al. (2006). They have shown the 
immunolocalization of ACE2 protein in macrophages and SMC 

FIGURE 2 | Involvement of Ang-II, ACE2, and Ang-1–7 in atherogenic pathways. The Ang-II binding into AT1R can activate Nox5 through a calcium/calmodulin-
dependent pathway. The activated Nox5 induces the formation of ROS and stimulates the RhoA/ROCK pathway, which in turn, activates MAPKs and induces the 
transactivation of several transcription factors such as NF-κB. The expression of several genes is regulated by NF-κB, for instance cytokines (TNF-α and IL-6), 
chemokines (MCP-1), adhesion molecules (P-selectin, ICAM-1 and VCAM-1), which are involved in Ang-II-induced migration of mononuclear leukocytes. In addition, 
Ang-II is cleaved by ACE2 and produces Ang-1–7, an important RAS counter-regulator. Ang-1–7 shows the potential to negatively regulate atherogenic pathways, 
inducing anti-inflammatory effect, weakening monocyte migration and decrease of vascular lipids accumulation. These actions attributed to Ang-1–7 are related to 
the reduction of oxidative stress and the synthesis of inflammatory cytokines due to inhibition of the Nox4 and NF-κB-mediated pathways. Furthermore, Ang-1–7 
stimulates the PI3K/Akt pathway, leading to phosphorylation of eNOS and NO formation, which improves the endothelial function. Ang-1–7 is also capable of 
promoting endothelial activation of AT2R, which also stimulates the NO cascade. In VSMC, Ang-1–7 inhibits muscle cell migration and proliferation, in contrast to 
Ang-II which possess proliferative and hypertrophic effects.
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actin-positive cells from rabbit atherosclerotic plaques. After this 
study, several experimental and clinical evidence have confirmed 
the involvement of ACE2  in atherosclerosis, suggesting its anti-
atherogenic role (Dong et  al., 2008; Lovren et  al., 2008).

Dong et  al. (2008) have found that ACE2 overexpression on 
aortic plaques attenuate the progression of early lesions in rabbits 
that underwent to endothelial injury and received atherogenic 
diet, probably by conversion of Ang-II to Ang-1–7. In this scenario, 
there was a reduction in  local inflammation, lipid deposition, 
macrophage infiltration, and MCP-1 expression, in addition to 
an increase in collagen content, resulting in stabilized plaques. 
Similar results were found in rabbits fed with a high-cholesterol 
diet. The anti-atherosclerotic effects of ACE2 were associated with 
inhibition of proliferation and migration of vascular SMC and 
improvement of endothelial function. Additionally, ACE2 produced 
down-regulation of ERK1/2, p38 MAPK, JAK-STAT, and Ang-ll/
ROS/NF-κB signaling pathways and upregulation of the PI3K-Akt 
pathway (Zhang et  al., 2010).

Likewise, overexpression of ACE2 in ApoE-KO mice attenuated 
atherosclerotic lesion size and improved endothelial homeostasis, 
at least in part, through a mechanism that involves reduction 
of Ang-II-induced ROS generation (Lovren et  al., 2008). In 
accordance to these data, Zhang et al. (2015a) also have shown 
that inhibition of inflammatory response, such as reduction 
of Ang-II-induced expression of adhesion molecules and 
cytokines prevent atherosclerotic plaque evolution in ApoE-KO 
animals overexpressing ACE2.

The protective role of ACE2 on atherosclerosis was also 
supported by the use of ACE2-deficient mice model (ACE2-KO). 
ACE2-deficiency in both LDL receptor-deficient mice (LDLR-
KO) and ApoE-KO backgrounds resulted in larger atherosclerotic 
lesions when compared to their respective controls. Furthermore, 
the increased atherosclerotic vulnerability was associated to 
intraplaque inflammatory profile (Thomas et al., 2010; Thatcher 
et  al., 2011; Sahara et  al., 2014). On the other hand, the 
protective role of ACE2 on atherosclerosis in humans is not 
well-established yet.

In 2008, Sluimer and colleagues demonstrated the presence of 
ACE2  in humans. They detected ACE2 protein in human veins, 
healthy and atherosclerotic arteries, expressed in endothelial cells, 
SMCs, and macrophages. In addition, they found ACE2 messenger 
RNA (mRNA) and protein in early and advanced atherosclerotic 
lesion from humans. Despite total protein expression of ACE2 
was similar during all stages of atherosclerosis, ACE2 activity was 
lower in advanced lesions, suggesting differential regulation of 
ACE2  in progression of atherosclerosis (Sluimer et  al., 2008).

Anguiano et  al. (2016) have found that baseline circulating 
ACE2 activity was enhanced in chronic kidney disease patients 
with atherosclerotic plaques when compared to patients with 
no plaque, suggesting that higher circulating ACE2 activity is 
associated with higher risk for silent atherosclerosis. Accordingly, 
Zhou et al. (2020) have shown an increase in circulating ACE2 
protein levels in women with coronary heart disease (CHD) 
when compared to healthy group. This increase was associated 
with multi-vessel lesions, corroborating with the reports by 
Anguiano et al. (2016) and indicating the ACE2 as a compensatory 
mechanism in coronary atherosclerosis.

ACE2 is an integral cell membrane protein that can undergo 
cleavage or shedding and release its catalytically active ectodomain 
into surrounding milieu. The main promoter of ACE2 shedding 
is A Disintegrin and Metalloprotease 17 (ADAM17), which 
has been involved in atherosclerosis (Canault et al., 2006, 2007). 
This evidence and the results found by Zhou et  al. (2020) 
allowed these authors to conclude that the increase in circulating 
ACE2 level is due to increasing tissue ACE2 synthesis from 
mRNA and augmented ACE2 protein shedding followed by 
its increase in circulation. All together these data show the 
increased circulating ACE2 protein levels or activity as biomarkers 
of atherosclerosis and encourage further studies in this direction.

Some therapeutic strategies for atherosclerosis targeting ACE2 
have been thought, either with new drugs or drugs already 
used in the clinic. A recent study has demonstrated that 
overexpression of ACE by plasmid-mediated transfection in 
both primary monocytes and THP-1 cells leads to a marked 
decrease of ACE2 mRNA expression and induces a pro-atherogenic 
phenotype with elevated gene expression of the cellular adhesion 
molecules ICAM-1, VCAM-1, and macrophage colony-stimulating 
factor (MCSF). All these effects were partly reversed by captopril 
and losartan (Trojanowicz et  al., 2017).

In that context, Zhang et al. (2015b) have shown that losartan 
inhibited the evolution of atherosclerotic plaques in high-cholesterol 
fed rabbits as well as increased the ACE2 protein expression 
in the plaques. In addition, Ang-II downregulated ACE2 protein 
expression and activity in SMC cell culture and losartan 
significantly blocked Ang-II-induced reduction of both ACE2 
protein and activity. These data indicate that Ang-II generation 
by ACE can affect the expression and activity of ACE2 and 
ACE inhibitors or AT1R antagonists can upregulate ACE2 and 
favor its anti-atherogenic effects.

ACE2-activating drugs also seem promising, with emphasis 
on diminazene aceturate (DIZE) (Qaradakhi et  al., 2020), which 
has several protective effects, such as improvement of metabolic 
profile and reduction of lipogenesis in mice (Macedo et al., 2015),  
anti-hypertensive effects in renovascular hypertensive rats 
(De Maria et al., 2016), and improvement of pulmonary endothelial 
function in Sprague Dawley rats (Shenoy et  al., 2013). Thatcher 
et  al. (2014) have found that DIZE decreases formation and 
severity of Ang-II-induced abdominal aortic aneurysms (AAA). 
Ang-II-induced AAA is characterized by progressive leukocyte 
accumulation, extracellular matrix degradation, luminal expansion, 
and thrombus (Saraff et  al., 2003), being closely related to 
atherosclerosis. In addition, Fraga-Silva et  al. (2015) have 
demonstrated that DIZE enhances the stability of atherosclerotic 
plaques in ApoE-KO mice and reduces the expression of ICAM-1 
and VCAM-1. Although the mentioned studies have been performed 
on animal models, they suggest DIZE as a potential drug for 
the treatment of atherosclerosis and related cardiovascular diseases.

ANGIOTENSIN 1–7 AND 
ATHEROSCLEROSIS

Ang-1–7 was investigated three decades ago as an important 
counter-regulator component of RAS, promoting hypotension 
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and bradycardia after microinjection in dorsal motor nucleus 
of the vagus (Santos et  al., 1988; Campagnole-Santos et  al., 
1989). The classical formation of Ang-1–7 occurs through ACE2 
action on Ang-II. Alternatively, Ang-1–7 is formed by the cleavage 
of Ang-1–9 facilitated by ACE. Moreover, Ang-I can be  directly 
converted into Ang-1–7 by action of neutral endopeptidase 
(neprylisin – NEP; Santos et  al., 2003; Santos, 2014).

The formation of Ang-1–7  in vascular endothelium was 
first identified by Santos et  al. (1992) using human aortic and 
human umbilical vein endothelial cells (HUVEC; Santos et  al., 
1992). Robust studies have shown that Ang-1–7 induces MasR 
activation, a G protein-coupled receptor which stimulates the 
PI3K/Akt pathway leading to phosphorylation of endothelial 
nitric oxide (NO) synthase and consequent NO production 
and releasing (Sampaio et  al., 2007). Of note, Ang-1–7 is able 
to promote AT2R endothelial activation, which stimulates the 
bradykinin–NO cascade (Walters et  al., 2005; Villela et  al., 
2015). NO is one of the most important factors released by 
endothelium. This gas is involved in vascular homeostasis and 
its decrease induces endothelial dysfunction (Cheng et al., 2009; 
Forstermann and Sessa, 2012), which is the key factor in 
atherogenesis (Qaradakhi et  al., 2016).

Studies have demonstrated that Ang-1–7 stimulates endothelial 
cells function restoration by increasing NO bioavailability (Pignone 
et  al., 2007; Sampaio et  al., 2007). In addition, Ang-1–7 
downregulates adhesion molecules such as VCAM-1 and ICAM-1 in 
endothelium by preventing both the phosphorylation of p38 MAPK 
and the expression of NF-κB (Anton et  al., 2007; Zhang et  al., 
2013; Liang et al., 2015). Moreover, Ang-1–7 induces proliferation 
of endothelial progenitor cells in the injured vascular tissue triggered 
by atherogenesis (Wang et  al., 2010; Zhang et  al., 2015c).

During the vascular inflammation, many cytokines and 
inflammatory cells are required to begin and maintain 
atherosclerosis progression. In this context, Ang-1–7 has been 
described to induce anti-inflammatory phenotypes which 
contribute to restrain vascular lipid accumulation (Yang et  al., 
2013; Jiang et al., 2014). Yang et al. (2015a) found that Ang-1–7 
treatment reduced the oxidative stress and macrophage infiltration 
due to decreasing in Nox4 (a subunit of NADPH oxidase 
complex) and NF-κB in aorta from ApoE-KO (Figure  2; Yang 
et  al., 2015a). Another interesting study revealed that Ang-1–7 
administration induced a remarkable decrease in the expression 
of pro-inflammatory cytokines such as IL-6, TNF-α, and 
MCP-1 in both aortic plaque and macrophages from ApoE-KO 
(Yang et  al., 2013). Furthermore, in the same mouse model, 
pretreatment with AVE0991, a MasR agonist, reduced activated 
CD4+ T cells (Jawien et  al., 2012a) and IL-12 (Jawien et  al., 
2012b). All these findings corroborate with an anti-inflammatory 
effect of Ang-1–7/MasR pathway in atherosclerosis.

In contrast to Ang-II-induced proliferative and hypertrophic 
effects, Ang-1–7 inhibits the migration and proliferation of 
vascular SMCs (Jiang et  al., 2014; McKinney et  al., 2014). This 
effect was described by Yang et al. (2013), showing that Ang-1–7 
induces activation of MasR/ERK1,2/p38 and MasR/JAK/STAT 
pathways in vascular SMCs to mitigate the atherosclerotic plaque 
formation (Yang et  al., 2013). Furthermore, Ang-1–7 has 
demonstrated a potential to negatively regulate the vascular 

fibrosis, as can be noticed by decreasing in matrix metalloproteases 
(MMP) MMP-2/MMP-9  in atherosclerotic plaques (Yang et al., 
2013). Accordingly, Ang-1–7 treatment promoted a reduction 
in the neointimal layer growth by structural recovery of 
endothelium and showed atheroprotective properties attributed 
to its binding to both AT2R and MasR (Faria-Silva et  al., 
2005; Tesanovic et  al., 2010). In addition, Ang-1–7 reduced 
atherosclerotic lesion formation by decrease in collagen 
accumulation through activation of AT2R (Dandapat et  al., 
2008). Conversely, it was described an increase in collagen 
content after Ang-1–7 administration, resulting in the increase 
of plaque stability (Yang et  al., 2013). Similarly, the treatment 
with an Ang-1–7 antagonist, A779, induced a decline in plaque 
stability and reduction in collagen level (Yang et  al., 2015b). 
Moreover, the heptapeptide can play a role as a β -arrestin-
biased AT1R agonist without induce the Gq subunit activation, 
suggesting an additional anti hypertrophic effect attributed to 
this peptide (Teixeira et  al., 2017; Paz Ocaranza et  al., 2020)

Interestingly, increase in plasmatic Ang-1–7 has been involved 
in regulation of lipid metabolism. It promoted a reduction in 
triglycerides and cholesterol levels, together with a decrease 
in adipose tissue mass as well as an improvement of glucose 
metabolism (Santos et  al., 2010). The authors have suggested 
an involvement of adiponectin in the regulation of the glucose 
and lipid metabolism induced by Ang-1–7 (Santos et al., 2010). 
Curiously, the knocking out of MasR promoted opposing effects, 
once it augmented cholesterol and triglycerides levels and 
worsened the carbohydrate metabolism (Santos et  al., 2008).

THE ROLE OF STATINS ON RAS 
COMPONENTS AND ATHEROSCLEROSIS

Some therapeutic strategies have been validated to positively 
modulate the RAS. The statins, 3-hydroxy-3-methyl-glutaryl-
coenzyme A reductase (HMGcoA-reductase) inhibitors, have 
emerged due to its pleiotropic properties demonstrating additional 
effects apart from those of decreasing cholesterol levels (Zhang 
et  al., 2015c). Treatment with statins such as atorvastatin and 
rosuvastatin have promoted an upregulation of ACE2/Ang-1–7 
axis, reducing the proliferation of vascular SMCs and intimal 
thickening, respectively (Li et  al., 2000; Suski et  al., 2014), effects 
that are closely related to atherogenesis. The mechanisms by which 
the statins act to promote these effects are still unclear; however, 
studies have revealed that HMGcoA-reductase inhibitors decrease 
the activation of NF-κB induced by TNF-α and Ang-II, factors 
responsible to stimulate the migration and proliferation of vascular 
wall (Ortego et  al., 1999; Friedrich et  al., 2006; Tristano et  al., 
2007; Suski et al., 2014). Furthermore, authors have demonstrated 
that atorvastatin induced an increase in ACE2 protein expression 
in heart and kidney from high cholesterol-fed rabbits and augmented 
the occupancy of histone H3 acetylation (H3-Ac) mark on ACE2 
promoter region in heart, demonstrating direct or indirect ACE2 
epigenetic upregulation (Tikoo et  al., 2015).

The role of statins on RAS components also have been 
observed in clinical trials as showed by Schindler et  al. (2014) 
that identified, for the first time, an increase of Ang-1–7 level 
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in hypercholesterolemic subjects after atorvastatin treatment. 
Altogether, those responses suggest an important role of statins 
on RAS components, including a decrease in Ang-II and, 
apparently, an upregulation in the ACE2/Ang-1–7 axis. This 
fact could be  crucial to the atherosclerosis and cardiovascular 
diseases therapy.

CONCLUSION

In conclusion, here we  briefly reviewed the role played by 
RAS components such as Ang-II, ACE2, and Ang-1–7  in 
atherosclerosis development. According to what is expected to 
components of RAS, Ang-II is considered to have pro-atherogenic 
effects while ACE2 and Ang-1–7 anti-atherogenic profiles. In 
addition to the direct pressure-related roles of these peptides, 
their effects on atherosclerosis involve modulation of endothelial 
function, oxidative stress, inflammation, cellular migration and 
proliferation, as well as plaque stability. Pharmacological strategies 
currently used to modulate the pressor effects of RAS components 
can offer beneficial outcomes in atherosclerosis. Moreover, 
we  highlight the role played by statins, which have been 

identified to increase the RAS compensatory components (ACE2 
and Ang-1–7), and induce an additional effect against the 
plaque formation. For this reason, the HMGcoA-reductase 
inhibitors should be considered when clinical decisions are made.
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