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The abundance and/or location of tumor infiltrating lymphocytes (TILs), especially CD8+

T cells, in solid tumors can serve as a prognostic indicator in various types of cancer.
However, it is often difficult to select an appropriate threshold value in order to stratify
patients into well-defined risk groups. It is also important to select appropriate tumor
regions to quantify the abundance of TILs. On the other hand, machine-learning
approaches can stratify patients in an unbiased and automatic fashion. Based on
immunofluorescence (IF) images of CD8+ T lymphocytes and cancer cells, we develop
a machine-learning approach which can predict the risk of relapse for patients with
Triple Negative Breast Cancer (TNBC). Tumor-section images from 9 patients with poor
outcome and 15 patients with good outcome were used as a training set. Tumor-section
images of 29 patients in an independent cohort were used to test the predictive power
of our algorithm. In the test cohort, 6 (out of 29) patients who belong to the poor-
outcome group were all correctly identified by our algorithm; for the 23 (out of 29)
patients who belong to the good-outcome group, 17 were correctly predicted with
some evidence that improvement is possible if other measures, such as the grade of
tumors, are factored in. Our approach does not involve arbitrarily defined metrics and
can be applied to other types of cancer in which the abundance/location of CD8+ T
lymphocytes/other types of cells is an indicator of prognosis.

Keywords: triple negative breast cancer (TNBC), relapse prediction, immunofluorescence images, tumor-
infiltrating T cells, machine-learning
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INTRODUCTION

In nearly all cancer types, it has been demonstrated that patients
with higher numbers of tumor infiltrating lymphocytes (TILs)
in their solid tumors usually have better prognosis in term of
the overall survival as well as the disease-free survival (Gooden
et al., 2011). Most studies focused on CD8+ T lymphocytes (Sato
et al., 2005; Galon et al., 2006; Sharma et al., 2007; Mahmoud
et al., 2011; Rahbar et al., 2015; Carstens et al., 2017), which can
recognize and kill cancer cells with specific antigens (Martínez-
Lostao et al., 2015). For example, in colorectal cancer and
melanoma (Pagès et al., 2009; Galon et al., 2016), the ratio of
T-cell density in the core of a tumor (CT) to that at the invasive
margin (IM), i.e., the Immunoscore, has demonstrated its power
to indicate prognosis.

However, due to the heterogeneity of the abundance of TILs
within tumors, selection of the threshold-value for defining
patient categories can be ambiguous. Furthermore, the exact
threshold-value as well as the choice of a suitable metric (such
as the Immunoscore defined in colorectal cancer) can vary
from one type of cancer to another. In order to reduce such
ambiguities, a machine-learning approach can be helpful due to
its parameter-free formulation. Indeed, there have recently been
a few successful applications of machine-learning approaches in
cancer research: Agarap (2017) compared six machine-learning
(ML) algorithms on the Wisconsin Diagnostic Dataset for a
binary prediction problem of benign vs. malignant tumor;
Heidari et al. (2018) developed a machine-learning approach
to predict short-term cancer risk by comparing asymmetry
of the left vs. right breasts; Saltz et al. (2018) trained a
convolutional neural network (CNN) to recognize TILs in
the H&E histological images from the TCGA database and
generated TIL maps of TCGA samples; here the authors showed
that TIL densities and spatial structure can be associated with
features such as tumor types, immune subtypes, and tumor
molecular subtypes.

In this work, using immunofluorescence (IF) images of CD8+
T lymphocytes and cancer cells, we developed a machine-learning
approach to predict the risk of relapse for patients with Triple
Negative Breast Cancer (TNBC). We first used tumor-section
images of 24 patients with either poor or good outcome to train
a specific convolutional neural network (CNN) called MXNet.
Subsequently, the trained CNN was applied to predict whether
a patient is expected to have a good or poor outcome in an
independent test set. This test set is a distinct cohort of TNBC
patients (29 of them) from a different medical center.

An overall workflow of our approach is shown in Figure 1.
Our results, to be detailed below, show that the 6 patients
(out of 29) who belong to the poor outcome group are
all correctly predicted by our procedure; for the 23 patients
(out of 29) who belong to the good-outcome group, 17 of
them are correctly predicted. This number might increase if
additional factors such as tumor grade or nodal involvement are
taken into account.

Compared to other metrics, such as the overall CD8+ T-cell
density or the infiltration level into tumor islets of CD8+ T
cells, we show that our machine-learning approach has better

predictive power. Due to the automatic nature of our procedure,
we believe this approach could be readily applied to other types
of cancer where the abundance/location of CD8+ T lymphocytes
(or any type of non-cancer cells) is likely to be an indicator
of prognosis. Furthermore, our algorithm does not rely on
clinical training or experience, which means this method could
be widely adopted.

MATERIALS AND METHODS

Patients and Specimens
There are two independent cohorts in our study: one from the
City of Hope (CH, 24 patients in total) and the other from McGill
University (MG, 29 patients in total). All these patients had
TNBC and underwent surgery. All 55 patients were treatment-
naive before the surgery. Details of the sample collection for the
two cohorts are described in the following.

For the City of Hope cohort, samples from patients diagnosed
with triple-native breast cancer, invasive ductal carcinoma
(IDC) type, and treated at COH from 1994 to 2015 were
retrieved. At the time of surgery, none of the patients had prior
treatment. Archived formalin-fixed paraffin-embedded (FFPE)
tumor tissues were sectioned into 5 µm thick slides and
baked onto glass microscope slides and labeled with anti-pan
cytokeratin (AE1/AE3, Dako) and anti-CD8 (SP16, Biocare)
using the Opal TSA system (Akoya Bioscience). Stained samples
were further counterstained with DAPI, cover-slipped with
ProLong R© Gold Antifade mounting media, and imaged by Vectra
automated imaging system.

For the McGill cohort, it is a subset of the cohort published
in Gruosso et al. (2019). Samples were collected from patients
undergoing breast surgeries at the McGill University Health
Centre (MUHC) between 1999 and 2012. All tissues were
snap-frozen in O.C.T. Tissue-Teck Compound within 30 min
of removal. For the purposes of this study, samples were
selected according to the following criteria: therapy-naive
at time of surgical excision, clinically documented lack of
expression/amplification of ER, PR and HER2, a histological
subtype assignment of invasive ductal carcinoma [not otherwise
specified) (IDC (NOS)] and availability of matched formalin-
fixed paraffin-embedded (FFPE) tumor blocks. Information
regarding clinical variables and disease course (follow-up) was
obtained through review of Medical Records at the MUHC.
Five micro meter sections from frozen tissue were prepared for
each sample, subjected to routine hematoxylin and eosin (H&E)
staining, and evaluated by an attending clinical pathologist
with expertise in breast tissue to identify invasive, in situ
and normal components. Cancer cells and CD8+ T cells
were labeled by pan-cytokeratin (PanCK) and CD8 immune-
fluorescence (IF) antibodies, respectively. Primary antibodies
for immunofluorescence (IF) as well as the IF protocol were
described and detail in Li et al. (2019).

Patients were divided into two outcome-groups: any patient
who had a relapse within 3 years of the surgery belongs to the
poor-outcome group; conversely, any patient who survived and
did not have a relapse within 5 years belongs to the good-outcome
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FIGURE 1 | The flowchart. Overall description of our machine-learning
approach.

group. Apparently, there is 1 year gap between the good and
poor outcome groups and rare individuals that fall in-between
are dropped. We chose this particular standard because we want
to ensure that patients in the two groups are well-separated.

Pre-processing of the
Immunofluorescent Images
The original resolution of our images is 0.5 µm (CH) and 0.975
µm (MG), respectively. We first binarize the two IF channels for
all images: pixels with an IF intensity in the top 90% (among all
pixels within an individual image) are assigned as 1 and others
are assigned as 0. Then the binary images of cancer cells are
labeled in white (1) and black (0) and the binary images of CD8+
T cells are labeled in red (1) and black (0). In addition, we
remove the isolated connected-areas with an area smaller than
200 µm2, which might be due to the noise in the IF signals.
Furthermore, for the binary images of cancer cells, since PanCK
is a cell-surface marker, the cytosol of cancer cells might be
black. In order to faithfully represent the area of cancer islets, we
automatically fill holes with an area smaller than 200 µm2. The
two corresponding binary images for cancer cells and CD8+ T
cells are subsequently merged together to generate images (Tie2)
for further processing.

For deep-learning, the suitable image-size is usually 32 to a
few hundred pixels in one dimension, while our original images
can be around 20,000 pixels in on dimension. Therefore, we
resize all Tie2 images to the same scale for the two independent

cohorts so that 1 pixel in each image (Tie3) corresponds to 10
µm. Next, each image (Tie3) is divided into smaller (adjacent)
patches (64 × 64 pixels). If the patch has a number of white
(PanCK+) pixels that is less than a quarter of the total number
of pixels in this patch, it will be discarded. If the patch has no
CD8+ pixels in it, it will also be discarded. After this step, we
now have final images (Tie4) for the machine-learning procedure
later. Note that according to our standard, some of the areas at
the invasive margin of a tumor might be discarded because of the
lack of cancer cells, though some parts of the invasive margins are
kept in the analysis. An example illustrating the areas kept in the
analysis is shown in Supplementary Figure S1. Furthermore, in
the Supplementary Material, we tested the effects of changing the
spatial resolution of patches in detail (Supplementary Table S1).
The results indicate that our baseline procedure is optimal for
the current dataset. Finally, we also demonstrated that discarding
patches without T cells does not substantially change our original
results (Supplementary Table S2).

Training
For the training set, we use patches from patients in the CH
cohort. A detailed table of the total number of small patches for
each patient in the training set can be found in Table 1. Briefly,

TABLE 1 | Number of patches derived from the images of the training set and
clinical information.

ID Patch # Outcome Rtn Grade Nodal-status

P1 44 Good 0.17–0.41 III No

P2 811 Good 0.92–0.97 III No

P3 810 Good 0.87–0.99 III No

P4 220 Good 0.98–1 III No

P5 834 Good 0.99–1 III NA

P6 226 Good 0.93–1 III No

P7 171 Good 0.72–0.84 II Yes

P8 92 Good 0.77–1 III No

P9 30 Good 0.80–0.87 III No

P10 387 Good 0.68–0.77 III No

P11 471 Good 0.75–0.94 III Yes

P12 228 Good 1 III No

P13 260 Good 0.29–0.58 II No

P14 30 Good 0.33–0.59 II NA

P15 243 Good 0.31–0.45 III Yes

P16 218 Poor 0 III No

P17 84 Poor 0–0.22 III No

P18 129 Poor 0.04–0.31 NA Yes

P19 82 Poor 0.06–0.11 III No

P20 290 Poor 0–0.02 III No

P21 113 Poor 0–0.06 III No

P22 144 Poor 0.08–0.24 III Yes

P23 256 Poor 0.13–0.22 III No

P24 235 Poor 0–0.08 III No

Column 4 is range of Rtn derived from the validation set (20% of patches from each
patient in the CH cohort) after 5 rounds of testing using randomly selected patches.
For each patient, Rtn is the percentage of the patches that is predicted to be from
patients with the good outcome.
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there are 9 patients with the poor outcome and 15 patients with
the good outcome.

For the CH cohort, 80% of the small patches from each
patient are used for training. The other 20% are used for the
threshold-selection procedure (validation) described later. There
are more patches from patients with the good outcome in the
training set (4857 vs. 1551); hence, in order to make the training
balanced between samples from poor and good outcomes, we
generated 3 additional copies of each small patch from patients
with the poor outcome and added them to the training set.
Examples of patches are shown in Figures 2A, B. In addition,
to test whether generating additional copies would bias the
model prediction, we investigated other methods of balancing
the number patches from the two prognostic groups in the
training set (Supplementary Table S3). The details can be found
in the (Supplementary Table S4), and there was no substantial
difference between the two balancing methods, thus overfitting
was less of a concern.

For the deep-learning network, we use “deepflow” from
MXNet (Chen et al., 2015; Krizhevsky et al., 2017) for this
project. The code that we developed can be found at https:
//github.com/xun6000/deepflow. Note that the procedure to
feed these images into MXNet is a bit complex, and the
github file contains the command line instruction to do so

properly. In the following, we will describe the procedure of the
training algorithm.

With one input small patch (64 × 64 pixels), a probability
can be computed by MXNet to determine whether this patch is
from a patient with the poor outcome. Since we know a priori
where this patch comes from, based on the difference between
this probability and its known value (0 for the good outcome
or 1 for the poor outcome), the internal parameters of MXNet
are updated automatically using the optimization algorithm
called RMSProp (Ruder, 2016). We choose the input parameters
for RMSProp as learning_rate = 0.0005, weight_decay = 0.01,
factor_epoch = 10, lr_factor = 0.25. In addition, the mini-batch
size for RMSProp is related to the performance of network, i.e.,
larger mini-batch size will make the net harder to find the global
minimum (Keskar et al., 2016). The mini-batch size is the number
of images that are fed together to MXNet for one round of update
for the internal parameters in MXNet. Specifically, we use 20
images as our mini-batch size.

One epoch is defined as the process in which all patches were
served as the input to train the MXNet based on the defined
outcome (the other input information). We run 100 epochs to
train the MXNet after which the accuracy should have been
stabilize (Figure 2C). If we select the cut-off probability between
a poor-outcome patch and a good-outcome one to be 0.5, i.e.,

FIGURE 2 | Training images and accuracy. (A,B) Representative patches (64 × 64 pixels) from patients with the poor and good outcome, respectively. While and red
pixels represent PanCK-positive (cancer cells) and CD8-positive (CD8+ T cells) areas, respectively. (C) Evolution of the accuracy on training patches as a function of
Epochs. (D) The fraction of correctly-predicted patients as a function of the cut-off percentage (Rc) of patches that are classified as arising from a patient with the
good outcome.
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probability >0.5 means that the patch is from a patient with
the poor outcome, then the training and validation accuracy
are around 0.9 and 0.85, respectively. This is understandable
because individual patches from patients with the good outcome
may resemble those from patients with the poor outcome,
and vice versa. The whole training process takes 3–4 h on a
Tesla K80 NVIDIA GPU.

RESULTS

Patient Stratification Criteria Based on
Deep-Learning Predictions
After training, the network can predict whether a small patch is
from a patient with the good or poor outcome, which is named
as a “good” or “poor” patch. We then used the trained CNN to
predict the remaining small patches (the 20% mentioned before)
so that we can determine the percentage (Rtn) of the “good”
patches in each patient. For a given cut-off percentage Rc, we
discover whether Rtn of a patient is higher or lower than Rc.
If we assume that any patient whose Rtn < Rc is predicted to
have the poor outcome (and vice versa), we will achieve some
degree of accuracy of the prediction (Ac) by the trained MXNet.
We then change Rc until Ac reaches the maximum, selecting the
percentage (Ropt) that best-separates the two groups of the 24
patients in the training cohort.

Since the 20% of small patches from the CH cohort are
randomly selected and the CNN can also have some randomness,
the Rtn for each patient can vary for different realizations
(column 4, Table 1). Furthermore, for each realization, there is
a range of Rc that gives the same accuracy. After going through
5 realizations, we find the Ropt should be between 0.14 and
0.40. Most of the times (4 out 5), we can find a Ropt that
makes a perfect separation (Figure 2D). Specifically, we select the
average of the values that can give a perfect separation in those 5
realizations, which is Rc =0.30.

Predicted Prognosis for the Independent
Cohort
Next, the percentage (Rt) of good patches can be determined for
each patient in the test set (MG cohort). Thus, these patients
will be predicted to have the poor (Rt < Rc) or good (Rt > Rc)
outcome. Our results show that for the 6 patients (out of 29)
who belong to the poor-outcome group, they are all correctly
predicted by our approach; for the 23 patients (out of 29) who
belong to the good-outcome group, 17 of them are correctly
predicted (Table 2).

Furthermore, the imperfect prediction could be due to factors
other than the CD8+ T cells. For example, if we also integrate
other clinical information such as the nodal status and the tumor
grade, for the 6 patients that are not correctly predicted by our
approach, there are 2 of them (Patients 18 and 19) whose tumor
grade is lower (grade II). Note that all other 27 patients in the
MG cohort have grade III tumors (Table 2); and all 3 patients
with grade II tumors in the CH cohort belong the good-outcome
group (Table 1). In addition, it is valuable to notice that the Nodal

TABLE 2 | Predicted vs. actual outcome for the test set (MG cohort).

ID Predicted-
outcome

Ground-
truth

Half Quarter Grade Nodal-
status

P1 Poor Poor Poor Poor III Yes

P2 Poor Poor Poor Poor III Yes

P3 Poor Poor Poor Poor III NA

P4 Poor Poor Poor Poor III NA

P5 Poor Poor Poor Poor III No

P6 Good Good Good Good III No

P7 Good Good Good Good III No

P8 Good Good Good Good III Yes

P9 Poor Good Poor Poor III No

P10 Poor Good Poor Good III NA

P11 Poor Good Good Good III No

P12 Good Good Good Good III NA

P13 Good Good Poor Good III No

P14 Good Good Good Good III No

P15 Good Good Good Good III No

P16 Good Good Good Good III NA

P17 Good Good Good Good III NA

P18 Poor Good Poor Poor II No

P19 Poor Good Poor Poor II No

P20 Good Good Good Good III No

P21 Good Good Good Good III No

P22 Poor Poor Poor Poor III Yes

P23 Good Good Good Good III No

P24 Good Good Good Good III Yes

P25 Good Good Good Good III No

P26 Good Good Good Good III No

P27 Good Good Good Good III Yes

P28 Good Good Good Good III Yes

P29 Poor Good Poor Good III NA

The actual outcome of individual patient is shown in column 3. Prediction of our
machine-learning approach using the full-, half-, and quarter-size section samples
are shown in columns 2, 4, and 5. Information on the Grade and Nodal status of
the tumors is shown in columns 6 and 7. Rows that are labeled in blue are for
patients with Grade II tumors. Rows that are labeled in red are for patients with a
poor-outcome prediction (column 2) but a good-outcome in reality (column 3). NA
stands for not applicable.

status of the other 4 incorrect predictions (rows highlighted in
red in Table 2) is either No or NA, whereas the Nodal status
of correctly-predicted poor-outcome patients is mostly Yes or
NA with only one exception (P5) out of 6 patients (P1–P5
and P22). However, in the poor-outcome group of the training
cohort (CH), only 2 out of 9 patients have a positive Nodal
status. Therefore, combining the prediction using our approach
with the information on the tumor grade and the nodal status,
the accuracy might be improved significantly. This needs to be
tested in the future for a data-set with more complete annotation
regarding Nodal status.

In addition, we tested the degree to which the accuracy of
our prediction is diminished if the size of the section samples
decreases to half or a quarter of the original samples (columns
4 and 5 in Table 2). For 3 of the patients (out of 29), because of
the inhomogeneity of the tumors, the prediction is not perfectly
robust to the region of selection.
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When defining poor outcome as positive, the confusion matrix
equals as follows:

ground truth 1 ground truth 0

predict 1 6 6 (Type II error)

predict 0 0 (Type I error) 17

The recall = 6/6 = 1, precision = 6/12 = 0.5

Comparison of the Prediction-Accuracy
Between the Deep-Learning Method and
CD8+ T-Cell Number or Infiltration Level
The machine-learning approach gives a reasonably good
prediction of the 3 year relapse likelihood. We tried to compare
the accuracy of this prediction with other possible metrics, such
as the density of CD8+ T cells inside cancer-cell islands, the
absolute numbers of CD8+ T cells and cancer cells, etc. In
Figure 3, there exists an apparent overlap between the poor-
and good-outcome group using the density of CD8+ T cells
inside cancer-cell islands (Figure 3A) or the absolute numbers
of CD8+ T cells and cancer cells (Figure 3B). Note that for
the CH cohort, using our deep-learning approach (Figure 2D),
we can have a perfect separation between the two groups of
patients. Nevertheless, if we manually select the “perfect” cut-
offs according to the data, as demonstrated by the dash lines in
Figure 3, the maximum stratification accuracy considering the
density of CD8+ T cells inside cancer-cell islands or the absolute
numbers of CD8+ T cells and cancer cells will be 85 and 87%,
respectively. Even though the accuracy using these methods is
comparable to our deep-learning approach, the selection of the
cut-off is not statistically justified.

To further test whether other clinical data could better predict
the outcome, we performed hierarchical clustering and principal
component analysis based on the clinical characteristics collected
for the CH cohort (see Supplementary Tables S5, S6). In

short, these analyses did not give an adequate separation of the
two prognostic groups, whereas our current baseline procedure
was successful. More details are provided in section 5 of the
Supplementary Material.

Information Extracted by Our
Machine-Learning Approach in
Determining the Outcome
Finally, we describe the information extracted by our machine-
learning approach in determining the outcome. The results
suggest that the absolute density or number of CD8+ T cells
might not be the most important factor but instead the (relative)
infiltration of CD8+ T cells is more crucial. As demonstrated in
Figure 4, we generally observe that patches from patients with
the good outcome have more red pixels (CD8+) as compared
to their counterparts. However, for patches from patients with
poor outcome, we can still observe patch samples with many
CD8+ T cells (red pixels) but these pixels are outside of the
cancer islands (white areas); and we observe patches with fewer
red pixels (CD8+ T cell) but most of them are inside white
areas (cancer islands), from patients with the good outcome. In
summary, our results indicate that the relative infiltration level of
CD8+ T cells into cancer-cell islands is the most important factor
to determine whether a patch would be predicted to arise from a
patient with the good outcome.

DISCUSSION

In this work, we developed a machine-learning approach to
predict the 3 year relapse likelihood based on IF images of cancer
cells and CD8+ T cells. While the approach is effective with an
accuracy 86% or higher, there is still room to further improve the
accuracy of our approach by including additional features that
can be measured in addition to CD8 makers. In the following, we
will further discuss possible candidates.

First, the molecular states of CD8+ T cells can be diverse (Guo
et al., 2018), including different levels of exhaustion (Wherry
and Kurachi, 2015). Therefore, it would be more informative

FIGURE 3 | Statistics of CD8+ pixels in images. (A) The density of CD8+ pixels inside cancer-cell islands, i.e., the number of CD8 + pixels divided by the number of
PanCK+ pixels. (B) CD8-positive and PanCK-positive areas (in µm2) of the two cohorts. The black dash lines in each figure are selected manually to separate the
groups (poor- vs. good-outcome) of the patients which give rise to the highest accuracy when comparing to the actual outcome.
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FIGURE 4 | Examples of patches. Patches that are predicted to be from patients with the poor outcome (upper 50) or good outcome (lower 50). The size of each
patch is 64 pixels (64 pixels, with 1 pixel = 10 µm White and red pixels represent PanCK-positive (cancer cells) and CD8-positive (CD8+T cells) areas, respectively.
For the patches in the upper 50, we still observe many samples have a lot of red pixels (CD8-positive areas), however, compared to patches in the lower 50, most of
the red dots are in the tumor stroma (black areas) instead of cancer-cell islands (white areas).

to also assess the functional states of individual CD8+ T cells
via additional markers, such as Granzyme B, EOMES, T-bet,
PD-1, and so on. By incorporating these additional features of
CD8+ T cells, the prediction-accuracy of our approach could be
further improved.

Secondly, there are other types of immune cells beyond CD8+
T cells that have been demonstrated to have predictive power in
patient prognosis, such as tumor-associated macrophages (Zhang
et al., 2012) as well as Tregs (Shang et al., 2015). Having an image
with the information regarding several types of these immune
cells again might improve the accuracy of our approach.

Thirdly, properties of cancer cells also matter in predicting
outcome, in addition to the spatial information of cancer cells and
CD8+ T cells. For example, in our test cohort, we found that two
good-outcome patients who are predicted to have poor outcome
actually have Grade II tumors, where the proliferation rate of
tumor cells is low. In fact, all patients with Grade II tumors belong
to the good-outcome group. Another related possibility still to be
investigated is the EMT status of cancer cells. This is motivated
by the fact that markers for epithelial-to-mesenchymal transition
(EMT) of cancer cells are usually indicative for progression of
disease (Tsoukalas et al., 2017; Luo et al., 2018).

The current formulation of our algorithm is a binary class
problem in nature. We might imagine changing this binary
class problem to a triple class problem, where the 3rd class
is the patches that we currently discarded. This can make the
application of the algorithm much simpler. The details can be
found in the Supplementary Material.

Our final remark concerns one weak point of our approach.
Due to the heterogeneity of tumors, it is not currently possible
to accurately predict the outcome of a patient based on a
small sub-sample of one part of a tumor. For example, for P13
shown in Table 2, using half of the patches from the tumor
gives the opposite prediction, compared to using a quarter
or the whole section. Changing the location of the selection
of the half can also change the prediction; again this is due
to the heterogeneity of the tumor itself. Therefore, to predict
prognosis based on a limited number of patches, it is important
to sample multiple sites of a tumor instead of from only
one part.

In summary, we developed a machine-learning approach that
can predict the 3 year relapse risk of TNBC based on the IF
images of cancer cells and CD8+ T cells, with an accuracy 86%
or higher. The advantage of this approach is that the standards
to determine outcome are relatively objective. Therefore, it can
readily be applied to other types of samples. With more training
samples and more features measured, this approach should reach
even higher prediction accuracy and become useful for rapid
clinical prognosis.
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