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Erythropoietin (EPO) boosts exercise performance through increase in oxygen transport
capacity following regular administration of EPO but preclinical study results suggest
that single high dose of EPO also may improve exercise capacity. Twenty-nine healthy
subjects (14 males/15 females; age: 25 + 3 years) were included in a randomized,
double-blind, placebo-controlled crossover study to assess peak work load and
cardiopulmonary variables during submaximal and maximal cycling tests following
a single dose of 60.000 IU of recombinant erythropoietin (EPO) or placebo (PLA).
Submaximal exercise at 40%/60% of peak work load revealed no main effect of EPO
on oxygen uptake (27.9 + 8.7 mlmin—'-kg~'/37.1 + 13.2 mI min—"-kg~") versus PLA
(25.2 £3.7mlImin~"-kg~"/33.1 + 5.3 mimin—'-kg~") condition (o = 0.447/p = 0.756).
During maximal exercise peak work load (PLA: 3.5 + 0.6 W-kg~ "' vs. EPO: 3.5 + 0.6 W
kg~', p = 0.892) and peak oxygen uptake (PLA: 45.1 + 10.4 ml-min—! kg~ vs. EPO:
46.1 £ 14.2ml-min~" kg~"', p = 0.344) reached comparable values in the two treatment
conditions. Other cardiopulmonary variables (ventilation, cardiac output, heart rate) also
reached similar levels in the two treatment conditions. An interaction effect was found
between treatment condition and sex resulting in higher peak oxygen consumption
(o = 0.048) and ventilation (p = 0.044) in EPO-treated males. In conclusion, in a carefully
conducted study using placebo-controlled design the present data failed to support the
hypothesis that a single high dose of EPO has a measurable impact on work capacity
in healthy subjects.
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INTRODUCTION

Erythropoietin (EPO), the master hormone regulating red blood
cell (RBC) formation is commonly used in the clinics to treat
anemia in patients with chronic kidney disease (Cernaro et al.,
2019), heart failure (Anand and Gupta, 2018), and cancer (Cornes
et al., 2007; Gilreath et al., 2014). In sports, EPO is well known
for its potential to increase aerobic exercise capacity, which
leads to its frequent misuse as performance enhancing drug
in endurance-related sport disciplines (Momaya et al., 2015;
Salamin et al., 2018). The “boosting” effect of EPO on exercise
performance is believed to be mediated via the stimulation
of erythropoiesis, which results in an increase in RBCs, total
hemoglobin mass and subsequently oxygen transport capacity
when administered regularly for several weeks (Lundby et al.,
2008). However, in recent years other potentially ergogenic
mechanisms, namely non-erythroid effects of EPO came into
research focus and these effects were discussed to eventually
affect exercise performance (Sgro et al, 2018). In this context,
a recent preclinical study reported that both chronic cerebral
EPO overexpression and a single high dose of systemic EPO
treatment leading to elevated cerebral EPO levels were able to
improve maximal and submaximal exercise performance in mice
without alterations in RBC blood parameters such as blood
volume, total hemoglobin mass and hematocrit (Schuler et al.,
2012). It was concluded that EPO might exert its ergogenic effect
potentially by central, none specified mechanisms within the
brain. Indeed, EPO and its receptor were shown to be expressed
in various non-erythroid tissues including the brain (Marti et al.,
1997). Furthermore, it was shown that circulating EPO is able
to cross the blood brain barrier and to elevate brain EPO levels
as measured in the cerebrospinal fluid when administered as
systemic single high-doses, ranging from 667 to 1500 IU-kg ™!
(Xenocostas et al., 2005). Of importance, short-term high-dose
EPO treatment was also reported to be safe and generally well
tolerated with potential neuroprotective properties and anti-
depressant-like effects in humans (Miskowiak et al., 2012). In this
context, Miskowiak et al. (2008) could show that a single high
EPO dose (40.000 IU) was able to increase cognitive function and
emotional processing and furthermore improve mood ratings
for three consecutive days in healthy volunteers. On the other
hand, psychological factors such as mood state and motivation
are known to modulate human exercise performance at a central-
brain level (Lane and Terry, 1999, 2000). Thus, mood changes
triggered by increased cerebral EPO concentrations may also
have the potential to affect exercise performance. However, these
findings were challenged by a recent randomized, double-blind,
placebo-controlled crossover trial reporting that short-term high-
dose EPO treatment (30.000 IU-day_1 for 3 consecutive days) -
in contrast to the “classical” chronic EPO treatment regimen -
had no ergogenic effect on exercise performance in healthy men
(Rasmussen et al., 2010).

In the present study, we addressed this controversial aspect
by performing a human trial with a comparable study design
to test the hypothesis that a single — but higher - dose of EPO
(60.000 IU) is able to improve mood, peak exercise capacity and
endurance exercise performance in healthy males and females.

MATERIALS AND METHODS
Ethical Approval

The study was approved by the Cantonal Ethical Commission of
Zurich (KEK-ZH-NR: 2011-0170) and conducted in accordance
with the declaration of Helsinki. All study participants gave
their informed oral and written consent prior to the start of
the experiments.

Study Design and Study Subjects

The current investigation (exercise performance part) was part
of the EPOPERF-project, a phase I/II randomized, double-blind,
placebo-controlled, crossover single center study investigating
the effects of a single high dose of 60.000 IU of EPO on
cognitive function, respiratory control and exercise performance
in healthy individuals (NCT01889056). During the first visit
(screening visit) at the study site, a physician performed a short
anamnestic interview with the study subjects, followed by a
physical examination and a first venous blood sample was taken
to assure inclusion criteria were met. Inclusion criteria were:
Healthy males and females (age range of 18-35 years), non-
smokers (>1 year) with a normal body mass index of 18.5-24.9 kg
m~2 and training state (no elite competitive athletes), able to
perform cycling exercise. Main exclusion criteria were: Abnormal
serum ferritin levels according to sex- and age-dependent
laboratory reference values (normal reference values for age 18-
60 years, males: 30-400 pg-1~1, females: 13-150 pug1~1), a high
hematocrit (>55%), pre-existing genetic homeostatic disorders
(factor V Leiden mutation, prothrombin mutation), history of
venous thromboembolic events, prolonged exposure (>5 days)
to high altitude (>2,500 m) within the last 6 months prior to
the study, non-compliant behavior, pregnant or breast feeding.
On this first visit, subjects also performed the exercise tests to
familiarize themselves to the testing regimen.

EPO vs. Placebo Treatment and Health
Monitoring

The study participants were randomly assigned, according to a
2 x 2 crossover design, to receive a short (15 min) intravenous
infusion of either 60.000 IU of recombinant human (rh) EPO
(Epoietin beta, Recormon, Roche Pharma AG, Switzerland)
diluted in 250 ml1 0.9% saline solution as EPO treatment condition
(EPO), or an infusion of 250 ml 0.9% saline solution only as
placebo treatment condition (PLA), 24 h prior to the start of
testing. After a washout period of > 4 weeks, subjects received
the alternate treatment and, on the following day, all tests were
repeated in the same order as performed on the first test day. The
EPO-treatment dose chosen in the present study was based on
previous studies, which reported that comparable doses of EPO
were well-tolerated and safe to administer in healthy subjects
while leading to increased cerebral EPO levels as previously
shown by elevated EPO levels measured in the cerebrospinal fluid
(Miskowiak et al., 2008; Rasmussen et al., 2010). Nevertheless,
the subjects were health-monitored by regular measurement
of blood pressure, heart rate, arterial oxygen saturation and
subjective rating of well-being during the infusion period and
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for further 2 h post infusion. On the testing day (24 h after
EPO- or placebo infusion), in the morning, subjects were
asked to rate their sleep quality, mood and motivation. Then,
cognitive tests and respiratory assessments were performed. In
the afternoon, maximal exercise performance and endurance
exercise performance were measured.

Measurements

Subjective Rating of Sleep Quality, Mood, and
Motivation

Subjective ratings (ranging from lowest = 0% to highest = 100%)
of sleep quality, mood state and motivation level were assessed by
use of visual analog scales (VAS). Additionally, the self-reported
mood state was assessed by use of the positive (PAS) and negative
(NAS) association scale (PANAS) (Watson et al., 1988), the scales
previously used to assess the mood state after EPO treatment
(Miskowiak et al., 2008).

Exercise Performance

Maximal and submaximal exercise performance tests were
performed as described below and shown in Figure 1. All devices
were calibrated according to manufacturer’s reccommendations.

Incremental Exercise Test

The incremental exercise test was performed on an electronically
braked bicycle ergometer (Ergoline Ergometrics 800, Germany).
The subjects were wearing a facemask covering mouth and nose
(Hans Rudolph, Kansas City, United States). Ventilation and gas
exchange was measured breath by breath (Innocor, Innovision,
Denmark). Additionally, subjects were monitored via a 12-lead
ECG (Padsy, Medset, Germany). Subjects rested for 5 min on the
bicycle. Then, the test started with a 5 min warm-up phase at a
work load of 100 W (males) or 70 W (females) after which the
work load was increased by 30 W every 2 min until exhaustion.
During the final phase, the subjects were verbally encouraged
in a standardized manner to perform to exhaustion. At peak
work rate, subjects rated their perceived exertion on the 6-20
point Borg scale (Borg, 1982). The individual peak oxygen uptake
(VOzpeak) was calculated by averaging 15 s intervals during
the final phase. The highest 15 s VO, interval was considered
as VOzpeak as proposed (Martin-Rincon et al., 2019). The
same principle was applied to determine peak cardio-respiratory
variables. The cardio-respiratory parameters were also related
to body mass (BM). Peak work load (Wpeak) was calculated as
follows: Wpeak = Weompt + 30 X (t/120), Weompr: last completed
workload stage, : number of seconds at final work load.

Submaximal Exercise

Submaximal exercise was performed after a 30 min recovery
phase from the incremental test. First, baseline cardiorespiratory
variables were recorded for 5 min prior to cycling for 5 min
at 40% of Wy, achieved in the incremental test (Wapopeak)
followed by cycling for 5 min at 60% W pear (W09 peak)- At rest,
data of the last 1 min prior to the start of exercise were averaged.
During cycling, 2 min averages were calculated starting 1 min
after the beginning of each loaded stage.

The cardiac output (CO) was measured at rest and during the
final minute of each work load stage by use of the minimally
invasive lithium indicator dilution technique (LiDCOplus,
LiDCO cardiac sensor systems, London, United Kingdom), a
method which uses lithium chloride as an indicator of cardiac
output. The LiDCO plus technique has been extensively validated
at rest and during exercise (Linton et al., 1993, 2000; Hadian et al.,
2010; Elliott et al.,, 2012) and provides a comparable accuracy
as the thermodilution method via Swan-Ganz catheter (Hadian
et al,, 2010). Briefly, a standard arterial catheter was placed into
the radial artery of the subject using the Seldinger technique
(Pancholy et al,, 2012) under sterile precautions and local
anesthesia with 1% lidocaine solution. Prior to the catheterization
of the radial artery the Allen’s test was applied to guarantee
redundant blood supply. To measure the CO 0.30 mmol of
the non-diffusible indicator lithium chloride was injected via a
peripheral venous catheter; the resulting arterial lithium chloride
concentration was measured and the concentration-time curve
was recorded. The cardiac index (CI) was calculated as follows:
CI = CO/BSA (BSA: body surface area, du Bois formula; Du Bois
and Du Bois, 1989).

Time Trial Performance

The submaximal exercise described above also served as warm-
up for the following 20 min self-paced time trial (TT59), which
was performed on a road bike equipped with a power meter
(SRM Science power meter, Germany) and attached to an indoor
trainer (Tacx, The Netherlands). Subjects were instructed to cover
as much distance as possible during the 20 min. Heart rate
was measured by a chest-belt heart rate monitor system (Polar
Vantage NV, Oulu, Finland). Subjects’ RPE was assessed via the
Borg scale after 5, 10, 15, and 20 min of cycling.

Venous Blood Sampling and Analysis

Venous blood samples were taken from an antecubital vein 24 h
post infusion at rest prior to the start of the testing day. All
blood samples were analyzed in the GLP-certified hematological
laboratory of the University Hospital Zurich (Switzerland).
Hematological parameters (Hb, Hct) were assessed and serum
EPO concentrations were measured by use of a quantitative
ELISA-assay (Human Erythropoietin Quantikine IVD ELISA Kit,
R&D Systems, United States).

Statistical Analyses

Statistical analysis was performed using SPSS V25.0 (IBM,
United States) software package, GraphPad Prism V8 (Graph
Pad, United States) and R Statistics V3.5.0 software package. For
statistical analysis, only data of subjects that completed exercise
tests on both testing days were considered. Data were tested for
normal distribution by Q-Q-plots and the Shapiro-Wilk test. The
homogeneity of variances was tested with Levene’s test. A linear
mixed effect model (R package: nmle) was applied to test for a
main effect of treatment condition (PLA vs. EPO) on primary
outcome variables considering presence of potential period (first
test day vs. second test day) — or carryover (treatment sequences:
PLA-EPO, EPO-PLA) effects: Y ~ tm + pd + seq + tm * sex + id;
Y: Outcome variable. Fixed factors: tm: treatment; pd: period; seq:
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FIGURE 1 | Exercise performance test protocol: Incremental exercise (IE), Submaximal exercise (SME), 20 min time trial (TTog), WU: Warm-up (males: 100
W/females: 70 W), Rest: Resting condition (baseling), 40%Wpeax: 40% of peak work load achieved during IE, 60%Wpeax: 60% of peak work load achieved during IE,
Voluntary pacing: Work load based on voluntary pacing, EXH: Exhaustion, P30: 30 min recovery brake, P5: 5 min brake.

sequence. Random factor: id: subject identifier, factor interaction:
treatment versus sex, tm * sex.

For repeated measures a fixed time factor (t) was added to test
for a time dependent treatment effect (interaction): Y ~ tm +
pd + seq + tm * sex + tm * t + id; Data are presented either as
averages = SD or as mentioned otherwise in the text. A two-tailed
P-value less than 0.05 was considered significant.

RESULTS

Main Characteristics of Study Subjects
In total, 29 young and healthy subjects participated in the study
and main characteristics are presented in Table 1.

Treatment and Hematological

Parameters

The treatment (short infusion) was well-tolerated by the study
participants and no severe adverse reactions were observed
during the intervention and thereafter. The average serum
erythropoietin levels 24 h post EPO treatment were almost 200-
fold increased [1901 + 659 IU-17! (coefficient of variation, CV:
34.7%)] in comparison to PLA [10 & 4 U171 (CV: 46.3%)].
There was no main effect of EPO treatment on Hb [PLA:

TABLE 1 | Main characteristics of study patients.

Parameter Values

N total (f/m) 29 (14/15)

Age (years) 25 4+ 3(21 - 32)
Height (cm) 174 + 9(160 — 188)
Weight (kg) 65 + 9(50 — 81)

BMI (kg-m~2) 21.2 4+1.5(18.5 — 24.4)
BSA (m?) 1.840.2(1.5-2.0)

Data are presented as numbers (N) or as averages + SD (ranges). f, females; m,
males; BMI, Body mass index; BSA, Body surface area.

142 £ 11 g171 (CV: 7.6%) vs. EPO: 144 + 11 g 17! (CV: 7.6%),
p = 0.412) and Hct (PLA: 41.8 £ 0.0% (CV: 6.8%) vs. EPO:
42.4 £ 0.0% (CV: 6.5%), p = 0.410] at this time point. Of note,
a period effect was present for both hematological variables (Hb,
p = 0.010, Het, p = 0.018) with higher values observed in the
first test period in comparison to the second period. However,
the frequency of treatment condition at each period was balanced
and no treatment effect was found for Hb (first test day, p = 0.954,
second test day, p = 0.598) and Hct (first test day, p = 0.743,
second test day, p = 0.678) when analyzing each period separately.
Furthermore, no carryover effect was found for these parameters
(Hb, p = 0.595, Het, p = 0.882).

Peak Exercise Capacity

The main outcome parameters of the maximal incremental
cycling test are shown in Figure 2. There was no main effect
of EPO treatment on peak work load (Wpea) (PLA: 226 £ 61
W vs. EPO: 227 & 63 W, p = 0.952), Weqi relative to body
mass (PLA: 3.5 + 0.6 W-kg~! vs. EPO: 3.5 £ 0.6 W-kg™ 1,
p = 0.892), peak oxygen uptake relative to body mass (PLA:
45.1 £10.4 ml-min~ kg~ ! vs. EPO: 46.1 & 14.2 ml-min~ ! kg™~ !,
p = 0.344) and minute ventilation at VOzpeak (PLA: 94.2 4 27.1
I-min~! vs. EPO: 99.4 4 31.0 Imin~!, p = 0.679). No main
effect of EPO treatment was observed in the respiratory exchange
ratio at Wpe (PLA: 1.11 £ 0.08 vs. EPO: 1.12 £ 0.07,
p = 0.685) and in the rating of perceived exertion at Wpeax
(PLA: 18.6 & 1.1 vs. EPO: 189 £ 1.3, p = 0.096). However,
there was an interaction effect between the factors treatment and
sex for VOzpeak (p = 0.048) and minute ventilation at VOzpeak
(p = 0.044) toward higher values in EPO-treated males.

Submaximal Exercise Testing

Data during submaximal exercise prior to the time trial are
summarized in Table 2. There was no main effect of EPO
treatment on primary outcome parameters (VE, VO,, VO,/BM,
HR, MAP, CO, CO/BM, CI) at baseline nor at 40 or 60% of W peqx.
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FIGURE 2 | Primary outcome parameters of the incremental cycling test divided by sex (N = 24). No main effects of EPO treatment were observed for any of the
presented outcome parameters. However, an interaction effect between treatment and sex was found for \'/Epea;< leading to relatively (vs. PLA) higher values in
EPO-treated males in comparison to females. (A) Peak workload (Wpeax), (B) Peak work load relative to body mass (BM), (C) Peak oxygen uptake relative to BM,
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Additionally, no interaction was observed between the factors
treatment and sex.

Time Trial Performance (TTyg)

Figure 3 depicts the time-course of the average power in the
course of the trial. Primary outcome parameters of the TTy
are summarized in Figure 4. There was no main effect of EPO
treatment on total distance covered (PLA: 7.4 & 1.7 km vs. EPO:
7.4 + 1.8 km, p = 0.527), average power output (PLA: 175+ 52 W
vs. EPO: 175 &+ 50 W, p = 0.763) and average rating of perceived
exertion (PLA: 15 £ 1 vs. EPO: 15 % 1, p = 1.000). Overall, there
was no interaction effect between the factors treatment and sex
for any of the aforementioned outcome parameters.

Subjective Rating of Sleep Quality,
Mood/Motivation Prior to Performance
Testing

No main effect of EPO treatment was observed in sleep quality
after treatment (PLA: 75 £ 19% vs. EPO: 73 £ 20%, p = 0.749),
mood rating (PLA: 81 &£ 12% vs. EPO: 80 £ 14%, p = 0.801)
and motivation (PLA: 79 & 13% vs. EPO: 79 £ 15%, p = 0.992).

Also, no main effect of EPO treatment was detected for PAS
(PLA: 37.8 + 6.2 vs. EPO: 38.8 = 7.3, p = 0.670) or NAS (PLA:
11.9 &+ 2.5 vs. EPO: 12.0 & 2.7, p = 0.475). Furthermore, there
was no interaction effect between the factors treatment and sex
for any of the aforementioned subjective ratings.

DISCUSSION

In the present study, we found a single very high dose of
EPO (60.000 IU) to neither affect peak exercise capacity nor
endurance exercise performance. In addition, there was no sex-
related difference in these outcomes. Sleep quality, mood and
motivation 24 h after treatment and prior to performance testing
remained unaffected by the treatment.

High Dose of EPO Treatment on Peak
Aerobic Exercise Performance

Maximal oxygen uptake (VOamax) assessed during incremental
cycling is a key determinant of aerobic exercise capacity and
reflects the ability to provide oxygen to the exercising skeletal
muscles (Bassett and Howley, 2000) while its magnitude is
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TABLE 2 | Main outcome variables during submaximal exercise.

Rest TME Wai09 peak TME Wi09% peak TME
Variable PLA vs. EPO P-value PLA vs. EPO P-value PLA vs. EPO P-value
VO, 0.4 +0.1 0.214 1.6+04 0.447 21+06 0.756
(I-min—T) 0.6+0.3 1.8+0.6 2.3+0.8
VO,/BM 6.6+ 15 0.092 252 £ 3.7 0.905 33.1£53 0.905
(ml-min~1-kg=1) 9.1+54 279 +87 37.1£13.2
VE 156+ 6.4 0.055 39.5+6.9 0.439 57.6 £9.8 0.421
(-min=1) 109+ 7.4 421 +13.4 61.1+216
HR 96 +13 0.676 130+ 15 0.098 156 + 11 0.631
(beats-min—") 98+ 13 140+ 15 156 £ 15
MAP 85+4 0.311 93+ 10 0.5622 101 £ 6 0.756
(mmHg) 86+7 B +7 101 £8
CO 56+1.7 0.961 11.3+34 0.875 148 +5.38 0.207
(-min=T) 54411 11.0+ 3.6 132442
CO/BM 87 £19 0.900 178 + 42 0.658 231 £ 72 0.134
(ml-min~"-kg~") 85+ 11 169 + 37 204 + 44
Cl 3.1+08 0.946 6.4+ 16 0.750 8.3+28 0.148
(-min="-m=2) 31+04 61+15 744+18

Data are presented as means + SD, VO,, Oxygen uptake; VO,/BM, Oxygen uptake relative to body mass; VE, Minute ventilation; HR, Heart rate; MAP, Mean arterial
pressure; CO, Cardiac output; CO/BM, Cardiac output relative to body mass; Cl, Cardiac index; TME, Treatment effect (N = 19).

250
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100-

14 20
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FIGURE 3 | Average power output during the 20 min time trial (N = 25). Data are presented as 2 min averages & 95% confidence intervals (95%Cl). TTog: 20 min
time trial, EPO (red triangles): High dose (60.000 IU per person) EPO-treated subjects, PLA (blue circles): Placebo-treated subjects.

predicted by cardio-respiratory and circulatory parameters such
as cardiac output and red blood cell volume (Lundby et al.,
2017). VOymax is also a strong predictor of all-cause mortality
in men and women (Kodama et al., 2009). In the present study,
we referred to the term VOzpeak instead of VOamax as the VO,-
work rate plateau, required to assess “true” VOjmay values is
frequently absent in an incremental exercise test setting (Poole
and Jones, 2017). Although serum EPO levels were increased
200-fold during testing 24 h after administration of a single dose

of EPO, peak aerobic exercise capacity did not improve in the
present study as shown in unaffected Wiy and VOzpeak in
the incremental cycling test. This finding contrasts with a study
performed in mice (Schuler et al., 2012) where VOimax during
an incremental exercise test was increased in wild-type mice
after a single injection of high dose EPO leading to increased
brain EPO levels without affecting hematological parameters.
While, in humans, prolonged EPO treatment over several weeks
is well known to improve VOZpea_k (Lundby and Olsen, 2011;
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FIGURE 4 | Primary outcome parameters of TToq divided by sex (N = 25). No main effects of EPO treatment and no interaction effects between treatment and sex
were observed for any of the presented outcome parameters. (A) Total time trial distance (D), (B) average power output (Wayg), (C) Peak 2 min average power
output (Wayg2peak), (D) average rating of perceived exertion (RPEayg). Groups: EPOx (red triangles): High dose (60.000 IU per person) EPO treated females, PLA¢
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Sgro et al, 2018) the aforementioned animal study was the
first to demonstrate a potential acute (within 4-6 h) ergogenic
effect of EPO, independent of hematological changes (Schuler
et al., 2012). In the absence of alterations in measured cardio-
respiratory (e.g., cardiac output) and hematological parameters
(e.g., total hemoglobin mass) that could have explained the
observed EPO effect, it was hypothesized that EPO may exert
its acute ergogenic effect by a central mechanism within the
brain, possibly supported by a tendency toward a change in RER
at peak exercise (Schuler et al, 2012). Furthermore, the same
exercise test setting was used to test transgenic mice (Tg2l),
which constitutively overexpress EPO in a hypoxia-independent
manner solely in the brain while having normal hematological
values. In support of the expectations, the Tg21 mice also reached
higher VOomax levels during the incremental exercise test as
compared to their wild-type littermates (Schuler et al., 2012).
In humans, motivational processes and changes in mood state
were previously linked to performance (Lane and Terry, 1999;
Lane et al., 2017; Taylor et al., 2020). The study of Miskowiak
et al. (Miskowiak et al., 2008) provided a functional basis for a

central performance enhancing effect of EPO by showing that a
single high dose of EPO (40.000 IU) treatment improved self-
reported mood in healthy subjects for three consecutive days.
The self-reported mood state was assessed by use of the positive
and negative association scale, PANAS (Watson et al., 1988). We
also assessed the self-reported mood by use of PANAS, 24 h
after the treatment and prior to performance testing. However,
we did not observe a main treatment effect of EPO on positive
and negative associations of PANAS. Furthermore, subjective
rating of mood state, motivation level and sleep quality were
not affected by the treatment either. Following the hypothesis
of a central EPO effect, the absence of changes in mood state
and motivation observed in our study setting may explain why
EPO did not increase peak aerobic exercise performance. In
line with the unchanged performance is the lack of change in
peak respiratory exchange ratio and rate of perceived exertion.
However, it remains generally questionable whether the results
obtained from incremental exercise tests in rodents are directly
translatable to those in humans. One important contrasting
aspect is the obvious lack of feedback options to evaluate the
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reasons for discontinuation of incremental exercise in rodents.
Another aspect, which was also mentioned by the authors of the
mouse study (Schuler et al., 2012) is the limited time resolution
of measuring metabolic parameters (e.g., VO, and VCO,) during
incremental exercise testing in rodents in contrast to breath by
breath resolution in humans.

The present results are in line with findings of another human
study using short-term high dose EPO (30.000 TU-day~! for 3
consecutive days) that also did not find an increased performance
in an incremental exercise test to exhaustion (Rasmussen et al.,
2010). Furthermore, those authors reported that EPO did not
alter central fatigue expression and concluded that EPO does not
affect central motor drive. Of note, we observed an interaction
effect of treatment and sex for VOzpeak with a tendency for
higher values in EPO-treated males and lower in females. Here,
it needs to be mentioned that previous studies, which evaluated
the potential impact of short-term high dose EPO treatment
on exercise performance in rodents (Schuler et al., 2012) and
humans (Rasmussen et al., 2010) only included males. However,
to which extent the observed effect in our study is a coincidental
finding or a true sex-dependent metabolic difference, certainly
needs more specific investigations.

High Dose of EPO Treatment on
Cardiorespiratory Measures During

Submaximal Exercise

To elucidate the effect of a single high dose of EPO on
cardiorespiratory parameters of exercise performance at the
submaximal level, we assessed these at rest, and during cycling
at 40 and 60% of Wy As for maximal exercise variables,
no main treatment effect of EPO was present in any of the
parameters. Also, no interaction effect between the factors
treatment and sex was found. However, there was a tendency
toward higher values in VO,/BM and VE in EPO-treated subjects
at resting conditions, which may indicate an altered metabolic
state in these subjects. Indeed, a recent study reported that a
single high dose of EPO (400 TU-kg™!) can acutely stimulate
resting energy expenditure in healthy subjects and this effect
was accompanied by a tendency toward increased fat oxidation
while glucose and protein metabolism remained unchanged
(Christensen et al., 2012). However, the present study was not
designed to address the potential effects of high dose EPO
treatment on energy metabolism at resting conditions and during
exercise. Nevertheless, numerous evidence from preclinical and
clinical studies suggest that EPO alters energy metabolism and
energy homeostasis at different regulatory levels (summarized
in Wang et al,, 2014). Interestingly, the observed EPO effect
on VO,/BM and VE at rest appeared to vanish during the two
different intensity levels of submaximal exercise. Furthermore,
an increased variability as reflected by an increased standard
deviation was observed for both parameters at both intensities in
EPO-treated subjects, which may indicate an increased response
heterogeneity of subjects to EPO treatment and may have masked
a potential EPO effect. The human trial performed by Rasmussen
et al. (Rasmussen et al., 2010) revealed that short-term high
dose EPO treatment (1 x 30.000 IU-day~! for 3 consecutive

days) increased exercise VE in healthy young man during low
intensity exercise testing but as stated previously did not increase
exercise capacity. Another potential reason to why we did not
observe this EPO effect on VE during low intensity (40% of
W eak) stage of submaximal exercise could be that a single high
dose of EPO treatment was insufficient to induce a comparable
effect magnitude on exercise ventilation. Thus, it needs to be
clarified at which submaximal exercise intensities and after which
administration regimes of high dose EPO treatment these effects
on exercise ventilation occur.

High Dose of EPO Treatment on Time

Trial Performance

Also for a competition-like cycling test that was expected to be
most prone to central changes, e.g., changes in motivation, we
did not find a main treatment effect of EPO and no interaction
effect between treatment and sex was found. The pacing strategy
was similar as well, as seen in the time-course of the power
achieved. In case of a positive central effect, we had hypothesized
that the start or end spurt would be more pronounced after EPO
treatment. Average rating of perceived exertion also remained
unaffected by the treatment. These results, again contrast findings
of Schuler et al. (2012) who reported an increased time to
exhaustion as an indicator of improved endurance exercise
capacity in mice treated with a single high dose of EPO during
a constant-load test performed at 80% of maximal work load to
exhaustion but as discussed before, no cardio-respiratory changes
could explain these findings (Schuler et al., 2012).

Limitations of the Study

The current study has certain limitations. First, cerebral EPO
levels, i.e., levels in the cerebrospinal fluid were not quantified
due to the invasive nature of the procedure and since comparable
high doses of EPO were already shown to yield increased
erythropoietin levels in the CSF of humans (Rasmussen et al.,
2010). Second, in females, exercise testing might have taken
place in different phases of the menstrual cycle of for logistical
reasons which might have slightly interfered with measured
cardiorespiratory parameters, especially during submaximal
exercise testing (Oosthuyse and Bosch, 2010). However, the
vast majority (>90%) of participating females were using oral
contraception throughout the testing period, which was recently
shown not to affect peak oxygen uptake and exercise performance
remained unaffected (Quinn et al., 2018). Furthermore, the
applied statistical model was designed to test for the presence
of potential period effects and also for potential interaction
effects between the factors treatment and sex on primary
outcome variables. Third, we cannot exclude sub-effect threshold
treatment due to the lack of available preclinical dose-response
data about short-term high dose EPO treatment and exercise
performance. Indeed, the reported EPO dose administered in
mice (~77.000 TU-kg~! of body mass) (Schuler et al., 2012)
was “extremely” high and exceeded the EPO dose administered
in humans (60.000 IU-per person, ~800 TU-kg~! body mass,
referred to a 75 kg person) nearly by a factor of 100. This topic
needs to be further investigated and most importantly it needs
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to be taken into account that the risk of adverse events may also
change in dependence of the EPO dose administered. Here, a
bedside to bench approach may provide more insight.

CONCLUSION

A single high dose of EPO treatment did not improve aerobic
exercise capacity in healthy humans but modulated peak oxygen
uptake and exercise ventilation in a sex-dependent manner.
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