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There are marked differences between the physiology of birds and mammals. These
reflect the evolutionary distance between the two classes with the last common ancestor
estimated as existing 318 million years ago. There are analogous organ systems in birds
and mammals. However, marked differences exist. For instance, in the avian gastro-
intestinal tract, there is a crop at the lower end of the esophagus. This functions both
to store feed and for microbial action. The avian immune system lacks lymph nodes
and has a distinct organ producing B-lymphocytes, namely the bursa Fabricius. The
important of spleen has been largely dismissed until recently. However, its importance in
both innate and specific immunity is increasingly recognized. There is a major difference
between birds and mammals is the female reproductive system as birds produce large
yolk filled eggs. The precursors of the yolk are synthesized by the liver. Another difference
is that there is a single ovary and oviduct in birds.
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INTRODUCTION

The physiology of birds has attracted significant attention. A caveat is that much of the research on
the physiology birds has been with domesticated birds, particularly chickens and ducks. The present
communication discusses examples from the following systems where birds differ from mammals:
gastrointestinal tract and specifically the crop and ceca, immune system and specifically the bursa
Fabricius and spleen and female reproduction. Moreover, a series of questions are asked. It is noted
that the physiology of birds reflects impacts of their evolutionary history, effects of domestication
and the sequentia of flight.

Evolutionary Relationships
Birds and mammals have been long separated. The Synapsida (mammals and extinct ancestors) and
Reptilia (encompassing turtles, lizards, crocodiles, dinosaurs, and birds) diverged 318 million years
ago (MYA) (Benton et al., 2015). Common features of all birds, or at least their ancestors, are the
following: the ability to fly, the presence of feathers and the production of large yolky eggs with thick
shells. Birds are much closer to lizards, snakes (last common ancestor – 256 MYA) and particularly
crocodiles (last common ancestor – 247 MYA) than they are to mammals (Benton et al., 2015).
Birds evolved from bipedal dinosaurs with the first true bird thought to have existed at the end of
the Jurassic period/beginning of the Cretaceous period (Brusatte et al., 2015). Based on genomics,
the last common ancestors were the following:
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• Palaeognathae (ostriches, emus, tinamous, etc.) and
the Neognathae (all other birds) – 113 MYA during
Cretaceous period.
• Neoaves (virtually all birds today) and Galloanseres (ducks,

geese, chickens, pheasants and their kin) 88 MYA during
Cretaceous period.
• The ancestors of the major groups of birds including

land birds and water birds diverged at about the time
of the Cretaceous–Paleogene (K-Pg) boundary (66 MYA)
with some diverging before and some immediately after
(Brusatte et al., 2015).

An identifiable fossil land bird has been described from∼62.5
million-year-old rocks (Ksepka et al., 2017). An “explosive”
radiation of groups of birds occurred shortly after the K-Pg
boundary (Ksepka et al., 2017).

Domestication and Selection by Humans
There is clear evidence that domestication and later selection has
influenced the genetics and phenotype of poultry. Chickens
were domesticated from members of the Gallus genus
beginning at least 8000 years ago (West and Zhou, 1988)
with multiple domestication events in South Asia, Southwest
China and Southeast Asia (Miao et al., 2017). The genetics
of today’s chickens reflect genetics coming from red jungle
fowl (Gallus gallus) together with introgressions from the
green jungle fowl (G. varius) (Sawai et al., 2010) and the gray
jungle fowl (G. sonneratii) presumably after domestication.
Prior to scientific selection, there were also shifts in the
genetics and hence physiology of poultry. For instance, based
on studies with native chickens from Africa and Europe,
chickens from different regions are genetically equipped for
different environmental temperatures (Fleming et al., 2017).
Breeds of domesticated poultry were recognized considerably
over 100 years ago; the development of these reflecting
genetic drift and hardiness within specific locals together
human intervention.

Caveats
White Leghorns are frequently used as a surrogate for all chickens
or even all birds (e.g., Roth and Lind, 2013; Fallahsharoudi et al.,
2015; Løtvedt et al., 2017) but the sources of White Leghorns
vary as does their genetics. Another issue is that commercial
breeding of broiler chickens, laying chickens, turkeys, and ducks
is closely held within primary breeding companies with the
genetics “protected.” The lines are subjected to intense selection
focusing on commercially important parameters such as growth
rate, egg production, and efficiency. An example of the changes
in genetics is the over four-fold increase in growth rates in
meat-type chickens (Table 1). Similarly, increases in growth rate
have been reported by Havenstein et al. (1994, 2003) comparing,
respectively, 1991 and 2001 meat-type chickens with random
bred chickens. There have continued to be improvements in
growth rate since 2005. The genetics of the birds differ even
for lines having the same name due to selection and use of
different grandparent lines. This is very different from situation
with inbred rodent lines.

Impact of Domestication and Selection
by Humans
It is increasingly recognized that successful domestication
was accompanied by shifts in genetics, and hence physiology.
Domestication alone or with later selection was associated
with shifts in the responses to stress including within the
hypothalamic pituitary axis (Fallahsharoudi et al., 2015;
Løtvedt et al., 2017). Differences in the stress physiology
have been reported between chickens of a major egg laying
breed (White Leghorns) and wild Red Jungle fowl (Gallus
gallus) with depressed basal circulating concentrations of
pregnenolone and dehydroepiandrosterone (DHEA) together
with circulating concentrations of corticosterone following
restraint in domesticated chickens (Fallahsharoudi et al., 2015).
In addition, there is increased expression of the following
stress related genes under both basal or stress conditions in
the hypothalamus of domesticated chickens: CRHR1, AVP, and
GR (Løtvedt et al., 2017). There have shifts in the eye after
domestication and selection with, for example, red jungle fowl
having greater optical sensitivities at low light intensities than
White Leghorn chickens (Roth and Lind, 2013). Moreover,
pea-comb mutation is related to SOX5 (Wright D. et al., 2009)
leads to reduced comb and wattle size and, thereby, leading
to reduction in susceptibility to lesions following freezing
temperatures (reviewed: Wright D. et al., 2009).

Shifts in supposedly “domestication related” genes have
been reported for yellow skin color (β-carotene dioxygenase 2)
and thyroid-stimulating hormone receptor (TSHR) (a missense
mutation from glycine to arginine) and wild-type allele (Rubin
et al., 2010; Karlsson et al., 2015). However, these mutations
appear to occurred within the past 500 years rather than at the
time of domestication (Garland Flink et al., 2014).

Differences in Body Weight Between
Mammals and Birds
Mammals and birds have the same organ systems but there are
differences (these being discussed below). Table 1 shows relative
weights for critical organs in mammals and birds together with
blood flow. The relative weights of heart, liver and kidneys
differ between mammals and birds (Table 1) being increased for
heart (increased by 3.54-fold), liver (decreased by 47.7%) and
kidneys (increased by 56.1%) in birds. Spleen relative weights

TABLE 1 | Effect of genetic selection of growth in meat-type chickens
(Zuidhof et al., 2014).

Average daily gaing d−1 Chickens

Between days Control# 2005 commercial meat-type

1–7 4.6 ± 0.15a 15.9 ± 0.15b

22–28 15.3 ± 0.65a 81.9 ± 0.65b

36–42 20.6 ± 1.04a 99.6 ± 1.04b

50–56 23.0 ± 1.65a 101.1 ± 1.65b

a,bDifferent superscript letters indicate difference from control p < 0.05.
#Random bred – not subject to scientific selection.
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are markedly lower (73.9%) in birds than mammals (Table 2).
Blood flow is similar between mammals and that in the, albeit
low number of birds examined (Table 1). Question 1: What
accounts for the higher relative weights of the heart, kidneys
and liver? Question 1: Are they related to lower efficiency of
avian systems or to specific needs of, respectively, flight, uric
acid excretion and egg production?

GASTROINTESTINAL TRACT

The gastrointestinal tract of birds shows close similarities to that
of mammals with, for instance, an esophagus for the passage of
ingesta from the mouth to the equivalent of the stomach and a
small intestine made up of duodenum, jejunum and ileum where
much enzymatic digestion and virtually all of absorption occurs
and a colon (large intestine). Moreover, the liver and pancreas
play similar roles supplying, respectively, bile with bile salts and
pancreatic juice with digestive enzymes. There are also differences
including the following, using chickens and ducks as exemplars:

1. The absence of teeth and hence chewing.
2. The presence of the crop as an outgrowth of the

lower esophagus.
3. The separation of the enzymatic and muscular aspects of

the stomach into the proventriculus and gizzard.
4. The presence of two large ceca.
5. The small size of the colon.
6. The presence of a common exit for urine and feces.
7. The retrograde flow of ingesta with urine from the cloaca

through the colon.

Two avian features will be considered in more detail, namely
the crop and ceca.

Crop
Based on studies in chickens and turkeys, the crop can act as a
storage organ for feed. While there is little feed in the crop during
the day, ingesta are present in the crop throughout the scotophase
(e.g., Scanes et al., 1987; Buyse et al., 1993; Johannsen et al., 2005)

when feeding is not occurring (references) (Table 3). The amount
of feed in the crop progressively declines during the night (e.g.,
Scanes et al., 1987; Buyse et al., 1993; Johannsen et al., 2005)
(Table 3). Thus, the situation appears to be that the chickens and
turkeys gorge in the late afternoon (Scanes et al., 1987; Buyse
et al., 1993) with the feed stored in the crop to be released during
the nocturnal fast. Similarly, there is storage of feed in meal fed
meat-type sexually immature female chickens (broiler breeder
pullets) with approximately double stored when fed on alternate
days (de Beer et al., 2008). A case can also be made for the
proventriculus/gizzard being a site for feed storage (Table 3).

Both the crop developed and the stomach separated into two
distinct anatomical features (the gizzard and proventriculus);
occurring during avian evolution and with the arrangement has
been retained in multiple taxonomic groups. Question: What is
the selective advantages if these?

The ability of the hoatzin (Opisthocomus hoazin) to ferment
plant materials is well established (Grajal et al., 1989) with the
presence of rumen-like methanogens confirmed (Wright A.D.
et al., 2009). Some consider that the hoatzin is the only avian
fore-gut fermenter (e.g., Wright A.D. et al., 2009). However, there
is evidence for crop fermentation with the extended nocturnal
storage of ingesta (see Table 3). During the night when chickens
and turkeys do not eat (reference), there is a gradual release
of ingesta (see Table 3). There are also decreases in soluble
carbohydrate (Table 3) (laying hen: Scanes et al., 1987) and
increases in the concentrations of organic acids, predominantly
lactic acid/lactate (Table 3) (turkey poult: Johannsen et al., 2005).
There was not evidence for production of the major volatile
fatty acids (VFAs): acetic acid/acetate, propionic acid/propionate
or butyric acid/butyrate (turkey poult: Johannsen et al., 2005).
What is not clear is whether and, if so, the rate to which,
lactic acid/lactate and other fatty acids are absorbed from
the crop? Interestingly, there is evidence that the crop plays
a role in calcium absorption in laying hens with reduced
egg production and serum calcium concentrations following
cropectomy (Stonerock et al., 1975).

There are also marked increases in the lactic acid/lactate
concentrations of the ingesta from the crop to proventriculus/

TABLE 2 | Comparison of the relative weights of and blood flow to major organs in mammals and birds.

Organ Relative organ weight%P Blood flow ml min−1 g−1

Mammals Birds MammalsQ Birds [duckR] (chickenS)

Brain 0.999 ± (6) 0.321 1.469 ± (8) 0.426 0.88 ± (8) 0.11 0.84 [0.84]

Heart 0.706 ± (6) 0.052 2.497 ± (11) 0.299*** 3.29 ± (7) 0.85 3.94 [2.69] (5.28)

Liver 2.831 ± (6) 0.378 1.481 ± (11) 0.212** 0.42 ± (6) 0.15 0.62 [0.58] (0.67)

Kidney 0.620 ± (6) 0.095 0.968 ± (11) 0.090* 3.83 ± (7) 0.36 4.43 [1.08] (7.78)

Spleen 0.336 ± (5) 0.038 0.0877 ± (4) 0.0115*** 2.02 ± (7) 0.63 4.16 [5.56] (2.77)

*p < 0.05, **p < 0.01, ***p < 0.001 compared to mammals.
PData is the mean of the means of mammalian or avian orders (n = the number of orders) ± SEM].
QBased on mean ± (n = number of species) SEM. ‡Data from dogs (Li et al., 1989), Mongolian gerbil (Matsumoto et al., 1982), mouse (Wang et al., 1993), rabbit (Neutze
et al., 1968), pigs (neonatal Undar et al., 1999; Thein et al., 2003), rats (Alexander et al., 1972; Ishise et al., 1980; Sakanashi et al., 1987; Adán et al., 1994), rhesus
monkey (infant: Behrman and Lees, 1971), and sheep (fetal: Tan et al., 1997) (neonatal: Alexander et al., 1972).
RData from Jones et al. (1979) and Kaul et al. (1983).
SSapirstein and Hartman (1959); Boelkins et al. (1973), and Merrill et al. (1981).
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TABLE 3 | Changes in the crop attributes during the scotophase.

Time relative to the beginning

of the scotophase (night/darkness)

0→+1 h +5 h +9→10 h

Laying henp

Crop contents g 46.0 ± 5.4c 18.1 ± 4.1b 1.9 ± 1.0c

Soluble carbohydrate%
of dry wt. of contents

17.1 ± 0.5a 18.3 ± 4.2a 8.5 ± 1.1b

Proventriculus/gizzard
contents g

28.8 ± 2.6c 21.4 ± 1.3b 15.5 ± 1.5a

Young meat-type
chickenq

Crop contents g 28.4 ± 6.9c 11.6 ± 3.5b 0.2 ± 0.08c

Proventriculus/gizzard
contents g

22.2 ± 3.0b 11.0 ± 1.9a 7.4 ± 1.5a

Turkey poultr

Contents g 22.2 ± 2.4a 22.4 ± 3.9a 13.2 ± 2.3b

Moisture% 39.4 ± 2.3a 29.5 ± 1.4b 29.7 ± 2.1b

pH 5.9 ± 0.1a 5.0 ± 0.2b 5.0 ± 0.2b

Lactic acid
µMoles g−1

13.4 ± 4.5a 93.3 ± 17.4b 98.4 ± 11.4b

Caproic acid (C6)
µMoles g−1

0.17 ± 0.02a 0.87 ± 0.28b 1.33 ± 0.06b

Valeric acid (C5)
µMoles g−1

0.13 ± 0.04a 0.11 ± 0.03a 0.83 ± 0.11b

a,b,cDifferent superscript letters indicate difference p < 0.05.
pScanes et al. (1987).
qBuyse et al. (1993).
rJohannsen et al. (2005).

gizzard and along the small intestine (domestic goose: Clemens
et al., 1975). This may reflect microbial fermentation or anaerobic
metabolism by gut tissues. Given that there is extended storage
of feed in the proventriculus/gizzard during the night (Table 3),
it is not clear whether there is also fermentation in the
proventriculus/gizzard. Question: How much lactic acid and
other potential nutrients absorbed from the crop?

Ceca
The ceca are major sites of fermentation with production of
VFAs with the concentration of VFAs of 107.3 ± (3) 4.1 µMoles
g−1 in the cecal contents (laying hen: Annison et al., 1968).
Table 4 summarizes the contribution of individual VFAs in the
colon contents of chickens. Acetic acid/acetate is the dominant
VFA. The VFA concentrations of cecal content concentrations
increase following feeding rising from ∼20 µmoles ml−1 2 h
after feeding to ∼70 µmoles ml−1 8 h after feeding (domestic
goose: Clemens et al., 1975). The ceca are also the major site of
methane production by, at least geese; with methane production
being reduced by 91% in cecectomized geese (Chen et al., 2003)
(Table 5). In contrast, nitrous oxide emission from geese is not
influenced by cecectomy (Chen et al., 2003) (Table 5). Addition of
alfalfa can reduce methane production by over 70% in Muscovy
ducks, mule ducks and white Roman geese (Chen et al., 2014).
Interestingly, there was no overall effect of addition of antibiotics
to feed on VFA production by chickens (Kumar et al., 2018).

TABLE 4 | Proportion of individual VFAs generated in the ceca of chickens.

Young meat-type
chickensX

Adult female
chickensY

Acetic acid/acetate (C2) 76.9 51.6 ± (10) 2.8

Propionic acid/propionate (C3) 5.9 26.7 ± (10) 1.9

Butyric acid/butyrate (C4) 17.5 9.2 ± (10) 0.8

Isobutyric acid/isobutyrate (C4) ND 1.3 ± (10) 0.4

Isovaleric acid (C5)/2 methyl
butyric acid

ND 1.8 ± (10) 0.5

Valeric acid/valerate (C5) ND 2.0 ± (10) 0.4

X Kumar et al. (2018).
Y Calculated from data in Annison et al. (1968) for laying hens.
ND, not detected.

TABLE 5 | Generation by methane and nitrous oxide by poultry.

Species Methane generated Nitrous oxide generated

mg bird−1 day−1A mg bird−1 day−1A

Muscovy duck 26.4

Mule 17.4

Domesticated goose 11.4 0.45B

kg head−1 life cycle−1BC kg head−1 life cycle−1BC

Broiler chickens 1.59 × 10−5 3 × 10−8

Village chickens 8.48 × 10−5 1.635 × 10−5

Geese 1.5 × 10−3 4.90 × 10−5

AChen et al. (2014).
BChen et al. (2003).
CWang and Huang (2005).

What is not clear is whether and, if so, the rate to which, VFAs
are absorbed from the ceca? The concentrations of VFA in the
ingesta have been reported to decrease in the colon and cloaca
(Clemens et al., 1975). This arguably indicates absorption. The
overall importance of the ceca is not supported by the lack of
effect of cecectomy on growth rates in geese (Chen et al., 2003).

Question 1: What are the rates of absorption of VFAs
and other nutrients from the ceca? Question 2: Is this
physiologically relevant and, if not, why are the ceca so large?

IMMUNE SYSTEM

There are similarities between the avian and mammalian immune
system with the presence of both innate and both T and B
cell mediated specific immune responses and the presence of
the thymus. However, there are marked differences between the
organization of the immune system in the two classes including
the following in birds:

1. The presence of the bursa Fabricius – the primary immune
organ producing B cells in birds.

2. The lack of lymph nodes in birds.

Question 1: Are the structures that have yet to be described
that are essentially “lymph nodes”? Question 2: What have
birds to replace the functions of the lymph nodes?
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Until recently, the avian spleen was largely ignored. Indeed,
John (1994) concluded that the avian spleen was “little-
studied” by avian physiologists. This is no longer the case with
substantial interest by immunologists. Examples of advances in
our understanding of the spleen are discussed below.

Bursa Fabricius
The avian bursa Fabricius played an important role in the
development of understanding of immune functioning. Antibody
formation is greatly reduced in chickens bursectomized at
2 weeks old (Glick et al., 1956; Ewert and Eidson, 1977). Birds
that were bursectomized at 60 h of embryonic development have
immunoglobulin Ig producing B cells but do not exhibit an ability
to generate a specific antibody response (Mansikka et al., 1990).

Spleen
Anatomy
The avian spleen is smaller than the mammalian organ (see
Table 1) (John, 1994). In birds, the spleen is surrounded by a
connective tissue capsule (Kannan et al., 2015). The avian spleen
can be considered composed of two tissues: red pulp (with blood
containing sinusoids with cords of lymphocytes, macrophages,
granulocytes, plasma cells, and mast cells) and white pulp
(lymphoid tissue composed of young lymphoblasts, lymphocytes,
follicular dendritic cells, and reticular cells) (chicken: Oláh and
Glick, 1982; Kannan et al., 2015; reviewed: Powers, 2000). There
are unmyelinated nerve fibers present in the ellipsoids (Oláh and
Glick, 1982). Central artery is surrounded by ellipsoids (Oláh
and Glick, 1982). The venous drainage from the spleen passes to
the hepatic portal vein (Powers, 2000). There is evidence for a
blood-spleen barrier in birds (domestic duck: Sun et al., 2019).

Roles of the Avian Spleen
The roles of the avian spleen are considered as the following:

1. As a lymphoid organ
2. Phagocytosis of senescent or damaged erythrocytes

(Powers, 2000).

However, the avian spleen does not appear to be a temporary
store of erythrocytes (Powers, 2000). Question 1: If the spleen
does not act as a temporary storage site for erythrocytes, is
there an alternate system?

Stressors and the Spleen
Spleen weights in birds are depressed by stress (see Table 6).
This is irrespective of whether the stress is mimicked by the
administration of corticosterone (Mehaisen et al., 2017) or
represents transportation stress (Zhang et al., 2019) or protein
deficiency (Adrizal et al., 2019). It is not surprising given the
ability of corticosterone to depress the weight of the spleen
(Mehaisen et al., 2017; also see Table 4) that the MC2-R gene
is expressed in the chicken spleen (Takeuchi and Takahashi,
1998). Moreover, heat stress markedly increased the incidence of
lesions in the spleen of broiler chickens (Aguanta et al., 2018).
Similarly, corticosterone decreases the weights of the primary
immune organs, thymus and bursa Fabricius, in birds (e.g.,
young chickens: Mehaisen et al., 2017). Spleen weights are also
decreased following exposure to toxicants (Aflatoxin B1: Grozeva
et al., 2017; Ochratoxin A: Khan et al., 2019; T-2 toxin: Hayes
and Wobeser, 1983) (see Table 6). In contrast, spleen weights
were increased after viral challenges or administration of E. coli
lipopolysaccharide (see Table 6) (Boa-Amponsem et al., 1999;
Zhang et al., 2017; Bai et al., 2019; Yang et al., 2019).

Effects of Splenectomy
There is evidence that the avian spleen has both positive and
negative effects on immunity. Splenectomy decreased primary
immune response (the titer of antisera) after intravenous
challenge with sheep red blood cells (Hippeläinen and
Naukkarinen, 1990). Paradoxically, splenectomy improved

TABLE 6 | Effect of challenges on spleen weights or relative spleen weights (data is expressed as the percentage of the control ± SEM).

Treatment Species Control Treated Calculated from reference

Corticosteronen Young chickens 100 ± 5b 68 ± 12a Mehaisen et al. (2017)

Transportation stress# Young chickens 100 ± 3b 88 ± 3a Zhang et al. (2019)

Low protein feed Young chickens 100 ± 6b 76 ± 6a Adrizal et al. (2019)

Aflatoxin B1 Turkey poults 100 ± 15b 71 ± 7a Grozeva et al. (2017)

Ochratoxin A#p Young chickens 100 ± 9b 52 ± 4a Khan et al. (2019)

T-2 toxin#q Mallard ducks 100 ± 2 83 ± 3 Hayes and Wobeser (1983)

LPSr Young chickens 100 ± 2a 119 ± 2b Yang et al. (2019)

Low energy feed and LPS Yong ducks 100 ± 6a 112 ± 6b Bai et al. (2019)

Marble spleen disease virus# Young chickens 100 ± 5a 136 ± 6b Boa-Amponsem et al. (1999)

Chicken infectious anemia viruss Young (SPF) chickens 100 ± 13a 161 ± 31b Zhang et al. (2017)

Marek’s disease viruss 100 ± 13a 132 ± 14b Zhang et al. (2017)

a,bDifferent superscript letters indicate difference from control p < 0.05.
#Relative spleen weights.
nDaily i.m. injections of 0.5 mg kg−1 for 7 days.
pSubcutaneous administration.
qTreatment for 2 weeks.
rE. coli lipopolysaccharides injected i.p. on alternate days × 4.
sAfter 9 days.
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TABLE 7 | Relative weights of the ovary and oviduct in ducks and chickens together with blood flow [data is shown as mean ± (number of studies) SEM].

Tissue Ovary Oviduct References

Relative weight%

Sexually immature chickens 0.046 ± (4) 0.15a 0.046 ± (2) 0.24a Maurice et al. (1982); Sun et al. (2006); Martínez et al. (2015); Dunn et al. (2017)

Sexually mature ducks 2.45 2.47 White et al. (1978)

Sexually mature chickens 2.42 ± (13) 0.22b 4.165 ± (7) 0.95b Brody et al. (1984); Kwakkel et al. (1995); Joseph et al. (2000); Sun et al.
(2006); Chen et al. (2007); Emiola et al. (2011); Pishnamazi et al. (2014); Saki

et al. (2014); Sun et al. (2015); Hassan et al. (2016); Youssef et al. (2016);
Nassar et al. (2017)

Blood flow ml min−1

Sexually mature chickens 5.05 ± (3) 1.12 24.0 ± (6) 4.37 Boelkins et al. (1973); Moynihan and Edwards (1975); Niezgoda et al. (1979);
Scanes et al. (1982); Hrabia et al. (2005); Rząsa et al. (2008)

a,bDifferent superscript letters indicates difference p < 0.05.

the response of turkey poults challenged with hemorrhagic
enteritis virus (HEV); decreasing the incidence of hemorrhagic
diarrhea and mortalities (Ossa et al., 1983).

The Avian Spleen and Immune Functioning
The avian spleen plays important roles in both innate and
specific immune responses. STING (stimulator of interferon
genes) is expressed in the spleen (chicken: Ran et al., 2018).
Infection of specific pathogen-free chickens with Newcastle
Disease Virus was followed by increased expression of STING
together with that of interferon (INF)-α, INF-β, and Interferon
Regulatory Factor 7 (IRF-7) in the spleen (Ran et al., 2018).
Rous sarcoma virus (RSV) infection of susceptible chickens
is followed by increased expression of pro-inflammatory
cytokines such as in spleen including interleukin (IL) 8 and
IL 10. Moreover, there is marked expression of the Th1
cytokines IFN-γ and TNF-α in the spleen (Khare et al.,
2019). In pigeons, infection with Newcastle disease viruses
increases expression of RIG-I, IL-6, IL-1β, CCL5, and IL-8
genes in the spleen (Xiang et al., 2019). LPS challenge increased
antioxidant capacity with elevated malondialdehyde (MDA)
concentrations in chicken spleen (Yang et al., 2019). There
is high expression of toll-like receptor (TLR) 5 in the spleen
and peripheral blood mononuclear cells (pigeon: Xiong et al.,
2018). In the presence of flagellin (from Gram-negative
bacteria), there is increased expression of TLR5, interleukin
(IL)-6, IL-8, CCL5, IFN-γ and NF-κB by pigeon splenocytes
(pigeon: Xiong et al., 2018). Administration of a synthetic
ligand for TLR21 increased expression of IFNα but decreased
that of IL-6 in the chicken spleen (Sajewicz-Krukowska et al.,
2017). Chickens infected with Marek’s disease virus (Gallid
herpesvirus 2) have more γδ T cells in their spleens (Laursen
et al., 2018). Spread of Marek’s disease virus (MDV) to the
spleen and thymus is delayed in Ig heavy chain J gene segment
knockout (JH-KO) chickens lacking mature and peripheral
B cells (Bertzbach et al., 2018). Escherichia coli infection is
accompanied by decreased splenic expression of antibacterial
nucleotide-binding oligomerization domain-like receptor
(NLR) pyrin domain containing 3 (NLRP3) (Li et al., 2018).
Question 1: Is there redundancy such that the spleen is not
necessary in birds?

FEMALE REPRODUCTION

The avian egg is large with a yolk filled ovum, surrounded by egg
white, membranes and a shell composed of calcium carbonate.
Yolk is composed of the following:

• Water –∼50%
• Solids –∼50% composed of the following:

◦ Low-density fraction (∼65% of yolk solids)
◦ Granules (∼25% of yolk solids) composed of the

following:

� Lipovitellin (a lipoprotein formed by the cleavage of
vitellogenin in the oocyte)

� Phosvitin (a phosphoprotein formed by the cleavage
of vitellogenin in the oocyte)

◦ Water soluble or proteins in the aqueous fraction –
the livetins (∼10% of yolk solids) composed of the
following:

� α Livetins – Synonymous with blood serum albumen
� β Livetins – Synonymous with blood serum α2-

globulin presumably containing transport proteins
� γ Livetins – Synonymous with blood serum

γ -globulin specifically immunoglobulin Y (IgY)
(equivalent to IgG in mammals).

The yolk precursors, vitellogenin (VTG) and very low density
lipoproteins (VLDL), are synthesized in the liver under the
estrogen stimulus (Deeley et al., 1975; reviewed Loh et al., 2011).
They pass to the ovary via the circulatory system and their
transport into the oocyte mediated by the receptor VLDL/VTG
receptor (VLDL/VTGR) (chickens: Steyrer et al., 1990; Stifani
et al., 1990; Barber et al., 1991; Bujo et al., 1994). Restricted
ovulator chickens have a mutation in the VLDLR//VTGR and
exhibit markedly reduced follicular development with elevated
circulating concentrations of phospholipids, triglyceride and
cholesterol (Elkin et al., 2003, 2012). However, there was
still yolk deposition in the presence of the mutant VLDLR
(Elkin et al., 2003, 2012). This suggests the existence of an
alternate mechanism for deposition of the yolk precursors.
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Question 1: Are there alternate mechanisms for transport of
yolk precursors into the oocyte?

There is little information on the transport of livetins into
the developing oocyte. The γ livetins are almost exclusively
(97.7%) IgY (Hamal et al., 2006; Agrawal et al., 2016). Question 2:
What is the mechanism for the transport of IgY into the
oocyte? Question 3: What is the mechanism for selection of
IgY versus IgM and IgA? Question 4: To what extent does this
reflect limits on molecular size for proteins passing into the
interstitial space? The concentrations of albumen and γ-globulin
in the interstitial space of chickens were greater than those of
α-globulin and β-globulin when expressed as a percentage of
vascular concentrations (calculated from data in Peltonen and
Sankari, 2011). The granulosa cell layer and the tight junctions
between cells may act in an analogous manner differentially
permitting some, but not other, proteins to transit. There is
much higher expression of the tight junction protein, occludin,
by granulosa cells from smaller white follicles than large yellow
follicles and being absent in preovulatory follicles (Schuster
et al., 2004). The transport of cations into the yolk has received
little attention. It is reasonable to assume that transport of
calcium into the yolk occurs along with vitellogenin with calcium
bound to the phosphate moieties. Sodium concentrations in the
aqueous fraction are 44.6 mEquiv. L−1 (Gilbert, 1971; Grau
et al., 1979). This is markedly higher than reported intracellular
concentrations of sodium (erythrocyte: 13.6 mEquiv. L−1) and
lower than the plasma concentration (Miseta et al., 1993;
reviewed: Scanes, 2015). Question 5: What are the mechanisms
for sodium and other cations transport across the oocyte
membrane? At least some of the sodium is likely to enter
along with VTG during endocytosis but then why isn’t sodium
pump out?

In most birds, there is a single ovary (the left) and the
left Müllerian duct develops into an organ called the oviduct.
However, in a few species such as kiwis, there are paired ovaries
and oviducts (Kinsky, 1971). The oviduct is made up of the
following: infundibulum, magnum, isthmus, shell gland or uterus
and vagina. Neither the oviduct nor uterus are equivalent to
their name-sakes in mammals although both are derived from
the Müllerian duct. The ovary is larger than that of mammalian
ovaries with the ovary having a relative weight in sexually mature
chickens of 2.42 ± (number of studies = 13) SEM 0.22% of
body weight and sexually mature ducks 2.45% of body weight
(see Table 7). This is due to the yolk accumulating in the oocyte
within the follicle with the yolk precursors synthesized in the
liver (see above).

The relative weights of avian ovaries and oviducts are shown
in Table 7. There are marked increases in both between sexually
immature and mature female chickens with increases of 52-fold
for the ovary and 91-fold for the oviduct (Table 7). There is high
blood flow to both the ovary and oviduct (Table 7). There are also
differences in blood flow to regions of the oviduct with higher
blood flow to the magnum 9.56 ± (6) 2.49 ml min−1 and shell
gland 10.1± (6) 2.42 ml min−1 than the infundibulum 1.01± (5)
0.10 ml min−1, isthmus 2.47 ± (6) 0.40 ml min−1 and vagina
0.96 ± (2) 0.20 ml min−1 (Boelkins et al., 1973; Moynihan and

Edwards, 1975; Niezgoda et al., 1979; Scanes et al., 1982; Hrabia
et al., 2005; Rząsa et al., 2008).

There are several studies on the effects of neurotransmitters
on blood flow to the ovary and oviduct in birds. Histamine
increased blood flow to stroma, small white follicles, large
yellow follicles and post-ovulatory follicles together with the
infundibulum and shell gland. In addition, histamine increased
cardiac output (Hrabia et al., 2005). Serotonin induces a transient
decrease (after 1 min) in blood flow to small white follicles
and F4 and F5 large yellow follicles and to the shell gland
with blood flow restored to at least pretreatment after 5 min
(Rząsa et al., 2008). Similarly, prostaglandin F2α decreases blood
flow to the large yellow follicles (Scanes et al., 1982). What
is missing, are studies of the role of the nervous systems.
Question 1: What are the roles of the nervous system in the
control of ovarian and oviductal functioning? Question 2: The
control of blood flow to ovary and oviduct warrants further
attention. Question 4: What is not clear is the extent blood
flow reflect the metabolic requirements of a tissue or is blood
flow a driving force dictating or restricting the metabolism of
tissues?

There are substantial loads placed on the female bird in
synthesizing the proteins of egg white proteins, the membranes
and the shell. In female birds, calcium is stored in a short-term
basis in medullary bone in long bones. Calcium is mobilized from
this storage in an attempt to balance the outflow of calcium in the
uterus (shell gland) forming the egg. Question: How is calcium
mobilized from medullary bone? In addition to parathyroid
hormone, and 1,25 dihydroxy vitamin D3 (Castillo et al., 1979),
there appears to be an involvement of other mechanisms. There
is increased expression of receptor activator of nuclear factor-
kB (RANK) and fibroblast growth factor (FGF23) in medullary
bone of hens peaking at the end of egg calcification and the end
of calcium mobilization from the medullary bone (Gloux et al.,
2020). There was also increased expression of solute carrier family
20 member 1 (SLC20A1) and member 2 (SLC20A2) (Gloux
et al., 2020). Moreover, circulating concentrations of phosphate
are elevated in laying hens passively immunized against FGF23
(Ren et al., 2019).

The mechanism for calcium transfer to the shell has received
considerable attention. It is mediated at least in part by
calbindin D 28K (formerly known as vitamin D-dependent
calcium-binding protein) (Bar et al., 1996). Uterine expression
of calbindin D 28K is increased by estrogens if 1,25 dihydroxy
vitamin D3 is present (Nys et al., 1992). Androgens potentiate
the ability of estrogens to increase expression of calbindin D
28K in the uterus during sexual maturation (Nys et al., 1989).
Moreover, there are shifts in uterine gene expression of as the
ovum passed down the oviduct with, as might be expected,
increased expression of calbindin D 28K and transient receptor
potential vanilloid channel type 6 (TRPV6) when the egg is being
calcified (Nys et al., 1989; Yang et al., 2013). Concentrations of
CaBP-D28k protein in the uterine mucosa are depressed in the
presence of either interleukin-1β and interleukin-6 in vitro (Nii
et al., 2018). Question 1: What are other mechanisms, if any,
for calcium transport?
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CONCLUSION

In avian physiology, there are a series of assumptions employed
that may or may not be valid. Examples of these assumptions
include the following:

• Domesticated birds provide little or no information about
wild birds as the former have been subjected to intensive
anthropomorphic selection.
• The contrary view is that the physiology of one species

of bird, domesticated or wild, are readily transferable to
another.

The debate between these views is accentuated by some
rigidity of those with either an ornithological or poultry
orientation. This situation is confounded by the lack of
common meetings, departments and education. The differences
in education include the following:

• The lack of courses (particularly at the graduate level)
experienced by poultry physiologists on wild birds and on the
ungirding principle of biology, namely evolution.
• There is a corollary with appreciation for poultry lacking in

those studying wild birds.

Another erroneous assumption is that birds are merely
“feathered” mammals with a few specific differences related, for
instance, to flight and production of large yolky eggs. Instead, the
physiology of birds reflects their long evolutionary history.

Finally, to adapt the quotation from both George Santayana
and Winston Churchill, “Those who fail to learn from or even read
the literature including the older literature are doomed to repeat
the studies and not advance science.”
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