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Objective: Develop an automated approach to detect flash (<1.0 s) or prolonged
(>2.0 s) capillary refill time (CRT) that correlates with clinician judgment by
applying several supervised machine learning (ML) techniques to pulse oximeter
plethysmography data.

Materials and Methods: Data was collected in the Pediatric Intensive Care Unit (ICU),
Cardiac ICU, Progressive Care Unit, and Operating Suites in a large academic children’s
hospital. Ninety-nine children and 30 adults were enrolled in testing and validation
cohorts, respectively. Patients had 5 paired CRT measurements by a modified pulse
oximeter device and a clinician, generating 485 waveform pairs for model training.
Supervised ML models using gradient boosting (XGBoost), logistic regression (LR), and
support vector machines (SVMs) were developed to detect flash (<1 s) or prolonged
CRT (≥2 s) using clinician CRT assessment as the reference standard. Models were
compared using Area Under the Receiver Operating Curve (AUC) and precision-recall
curve (positive predictive value vs. sensitivity) analysis. The best performing model was
externally validated with 90 measurement pairs from adult patients. Feature importance
analysis was performed to identify key waveform characteristics.

Results: For flash CRT, XGBoost had a greater mean AUC (0.79, 95% CI 0.75–
0.83) than logistic regression (0.77, 0.71–0.82) and SVM (0.72, 0.67–0.76) models.
For prolonged CRT, XGBoost had a greater mean AUC (0.77, 0.72–0.82) than logistic
regression (0.73, 0.68–0.78) and SVM (0.75, 0.70–0.79) models. Pairwise testing
showed statistically significant improved performance comparing XGBoost and SVM;
all other pairwise model comparisons did not reach statistical significance. XGBoost
showed good external validation with AUC of 0.88. Feature importance analysis
of XGBoost identified distinct key waveform characteristics for flash and prolonged
CRT, respectively.

Frontiers in Physiology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 564589

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.564589
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.564589
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.564589&domain=pdf&date_stamp=2020-10-06
https://www.frontiersin.org/articles/10.3389/fphys.2020.564589/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-564589 October 2, 2020 Time: 11:33 # 2

Hunter et al. Machine Learning Detection of CRT

Conclusion: Novel application of supervised ML to pulse oximeter waveforms yielded
multiple effective models to identify flash and prolonged CRT, using clinician judgment
as the reference standard.

Tweet: Supervised machine learning applied to pulse oximeter waveform features
predicts flash or prolonged capillary refill.

Keywords: perfusion, oximetry, supervised machine learning, intensive care units, pediatrics, gradient boosting

INTRODUCTION

Shock is a medical emergency associated with high morbidity
and mortality in both children and adults. Early identification of
shock is critical to appropriately intervene and improve outcomes
(Rivers and Ahrens, 2008). Physical examination and assessment
of perfusion is a critical component of shock evaluation and plays
a key role in determining immediate management before invasive
laboratory and hemodynamic measures can be obtained (Cecconi
et al., 2014; American Heart Association, 2016). Guidelines
including the Pediatric Advanced Life Support and the American
College of Critical Care Medicine guidelines for pediatric and
neonatal septic shock recommend capillary refill time (CRT)
measurement as a component of early shock assessment (Fleming
et al., 2015a; Davis et al., 2017). These groups recognize
both warm (vasodilated) and cold (vasoconstricted) states as
possible clinical presentations of shock. Flash (very fast) and
more commonly prolonged CRT have been studied as an
indicator of hemodynamic status and predictor of critical
illness in patients with shock (Van den Bruel et al., 2010;
Fleming et al., 2015a, 2016).

CRT assessment has wide variability in reported inter-
rater and intra-rater reliability (Pickard et al., 2011; Fleming
et al., 2015b; Shinozaki et al., 2018). This variability may
be explained by inconsistent measurement technique with
regard to body site location, aspect of the digit observed,
duration of pressure application, and amount of pressure applied
(Pandey and John, 2013; Fleming et al., 2015b). To improve
reproducibility in CRT measurement, an automated CRT device
with a modified pulse oximeter was created. This device is
placed on the patient’s index or middle finger and measures
the change in red and infrared light absorption when manual
pressure is applied and subsequently released to estimate CRT
(referred to here as Capillary Refill index, CRi) (Morimura
et al., 2015). Preliminary data showed reasonable correlation
between device measured CRi with blood lactate levels and
clinician-assessed CRT (Morimura et al., 2015; Oi et al., 2018;
Shinozaki et al., 2019a).

Machine learning analysis has been recently applied to
various modalities in shock assessment, including traditional
hemodynamic and biochemical features, near infrared
spectroscopy, and thermal images (Convertino et al., 2011;
Liu et al., 2019; Nagori et al., 2019). Machine learning has
also been applied to pulse oximeter waveforms for the
detection of obstructive sleep apnea, oxygenation changes
following ventilator adjustment, detection of blood pressure,
and detection of blood glucose values (Monte-Moreno, 2011;

Andrés-Blanco et al., 2017; Hornero et al., 2017; Ghazal et al.,
2019; Mousavi et al., 2019). Machine learning analysis of
pulse oximeter waveform data to detect shock state has been
limited. The goal of this study was to apply machine learning
techniques to pulse oximeter waveforms to develop the models
for detection of the presence of flash and prolonged CRT
determined by clinicians. We then externally validated the best
performing model, and explored the physiologic significance of
waveform features.

MATERIALS AND METHODS

Definition of Normal, Flash, and
Prolonged CRT
For our study, a sample was considered flash, normal, or
prolonged if, based on clinician assessment: CRT <1.0 s,
1.0 ≤CRT <2.0 s, or CRT >2.0 s, respectively. In clinical practice,
normal CRT is defined clinically as <2.0 s. Prolonged CRT is
commonly defined as >2.0 or >3.0 s. Two to three seconds is
considered potentially normal or indeterminate (Fleming et al.,
2015a; American Heart Association, 2016; Davis et al., 2017).
We chose CRT >2.0 s as a cutoff due to a lack of sufficient
sample pairs with clinician-judged CRT >3.0 s for model training
(82 pairs with CRT >2.0 s compared to only 19 pairs with
CRT >3.0 s). Flash CRT, representative of an arterial vasodilatory
state seen in patients with warm shock in the presence of warm
extremities, bounding pulses, and widened pulse pressure (Davis
et al., 2017), was defined as <1.0 s in this study.

Study Subjects and Data Collection
This study of a secondary analysis of an existing dataset was
approved by our medical center’s institutional review board. The
original prospective observational study for which the dataset
was obtained was conducted in the Pediatric Intensive Care
Unit (PICU), Progressive Care Unit (PCU, a 25-bed step-down
unit), Cardiac Intensive Care Unit (CICU), Operating Suites, and
catheterization laboratory at a large academic children’s hospital
in the United States. The dataset consisted of a convenience
sample of 104 patients. Enrollment included children age 1–
12 years between January 2018 and December 2018 (Table 1
and Supplementary Figure 1). An independent sample of adult
patients (n = 30, mean age = 59 ± 20 years) was used as a
validation cohort with clinician and device CRT collected in a
similar fashion (Shinozaki et al., 2019b).

Capillary refill curves were obtained by a device using an
age appropriate oxygen saturation (SpO2) sensor (TL-272 for
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TABLE 1 | Demographic and clinical characteristics of study and validation cohort.

Study cohort characteristics Patients (n = 99)

Age, year, mean (SD), range 6.1 (3.9), 1–12

Weight, kg, median (SD), interquartile
range

18.2 (20.9), 13.4–31.7

Sex, n (%)

Male 58 (59)

Female 41 (41)

Study location, n (%)

Operating room 56 (56)

Pediatric intensive care unit 26 (26)

Cardiac intensive care unit 12 (12)

Progressive care unit 4 (4)

Catheterization lab 1 (1)

Digit probe applied to (other digit
visually assessed), n (%)

Second digit 51 (51)

Third digit 48 (48)

First digit compressed, n (%)

Second digit, Pointer 47 (47)

Third digit, Middle finger 52 (52)

Category of clinical diagnosis, n (%) Surgical patients, 67*

Head and neck surgery, 24

Abdominal surgery, 7

Cardiac surgery, 7

Miscellaneous, minor procedure, 7

Orthopedic surgery, 6

Ophthalmologic surgery, 5

Craniofacial surgery, 4

Dental surgery, 4

Urologic surgery, 2

Neurosurgery, 1

Acute respiratory failure, 15

Acute cardiorespiratory failure, 10

Chronic respiratory failure, 3

Septic shock, 3

Acute neurologic injury, 1

Individual curve CRT, clinician-determined

Flash, n (%) 134 (28)

Normal, n (%) 269 (55)

Prolonged, n (%) 82 (17)

*Surgical patients includes post-operative patients in the ICU.

larger children and TL-274 for smaller children; Nihon Kohden,
Tokyo, Japan) connected to a pulse oximeter (OLV-3100; Nihon
Kohden) (Figures 1A,B). A light emitting diode placed on the
patient’s finger emits red and infrared light from the nail bed
through the fingertip where a sensor detects the quantity of
transmitted light, called the transmitted light intensity (TLI). TLI
is equal to the difference between the light emitted and light
absorbed by finger tissue and blood. The difference in TLI during
a compression and release is proportional to the “thickness”
(or volume) of blood present in the fingertip (Figure 1C; Oi
et al., 2018). After pressure is applied and then released by a
clinician, a descending TLI curve is generated. Capillary Refill
index, CRi, is calculated as the time (seconds) between the

compression release and return to 90% baseline in TLI. The
TLI waveform is available on the right screen of pulse oximeter
OLV-3100 during the CRi measurement process and CRi is
calculated and presented on the screen upon completion of
capillary refill measurement.

A combination of board certified pediatric intensivists,
anesthesiologists, and experienced respiratory therapists who
clinically perform CRT on a regular basis performed and
measured the CRT for each patient. The device was randomly
placed on each patient’s second or third digit. The clinician
compressed either the second and third digit for 5 s. Following
the pressure release, CRT was measured by the device or
clinician depending on which finger was compressed. For the
non-device finger, clinicians verbalized when full capillary refill
had occurred; this time was recorded by study personnel with
a chronograph. For the device finger, the TLI before, during,
and after finger compression was recorded at 0.016 s intervals,
creating a capillary refill curve (Figure 1C). Alternate finger
compression was repeated five times and generated five paired
CRT measurements for each patient. Device measurements were
taken with at least 1 min in between finger compressions,
with total time less than 15 min per patient for collection
of 10 data points.

Supervised Machine Learning Model
Selection
Supervised machine learning is a learning paradigm in which
a model is trained to map an input domain to an output
range based on a previously observed set of input-output pairs,
or training data (Russell and Norvig, 2010). Using clinician
judgment as the reference standard, we trained three machine
learning models to classify inputs as either flash CRT or not
using gradient boosting (XGBoost), support vector machine
(SVM) with radial basis function kernel, and logistic regression
techniques. We performed the same analyses for prolonged
CRT. Separate flash and prolonged CRT models were created
to enable feature importance analysis relative to the type of
CRT (vasodilated vs. vasoconstricted). Prior study of pulse
oximeter waveform features in vasoconstricted and vasodilated
states is sparse; useful information can be gained by comparing
which features are important in algorithm performance in these
different states. The use of three machine learning techniques
allowed for comparison of performance. Different machine
learning classifier models have varying capacity relative to their
ability to learn different geometries (i.e., linear vs. non-linear)
for decision boundaries. At the same time, a model with excess
capacity given the available data and model input features may
be easily overfit to the training data. Therefore, we elected to
consider a linear model (logistic regression) and two non-linear
models (XGBoost and SVM) to compare performance over a
range of model capacities. We chose XGBoost and SVM as
our non-linear models because they have performed well on
many recent biomedical research studies and typically have fewer
learning parameters than more complex models (e.g., deep-
learning) which reduces the risk of overfitting (Mani et al., 2014;
Masino et al., 2019a; Pang et al., 2019; Zabihi et al., 2019).
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FIGURE 1 | (A,B) Images display the modified pulse oximeter device and finger sensor. (C) Schematic showing device functioning. Incident light is transmitted
through the patient fingertip. During fingertip compression, blood exits the fingertip and TLI increases. TLI falls as blood returns to the digit during capillary refill. CRi,
Capillary Refill index; TLI, transmitted light intensity.

Feature Selection and Model Training
Model input included statistical features extracted from time
series data using the Python tsfresh module (Christ, 2019). All
six models were trained using the same set of 10 features. The
application of machine learning to pulse oximeter waveform
analysis in CRT prediction is poorly studied, and as such,
we primarily selected features that intuitively correlate with a
graphical representation of blood return to finger capillary beds.
These seven features were: maximum slope, standard deviation,
mean, kurtosis, time of first minimum, skew, and area under
the curve (AUC). Three additional features, 1Ab (before and
after finger compression), and time series complexity were also
included based on prior literature and proposed physiologic
mechanism (Table 4).

All models were trained using nested cross validation
(CV) which enables validation with all samples and model
hyperparameter optimization (Supplementary Figure 2; Mani
et al., 2014; Masino et al., 2019b). For the flash CRT dataset,
training occurred by randomly dividing the data into 10-folds.
Training and evaluation then proceeded in an iterative manner
over the 10-folds. For each iteration, 1-fold is held out for
validation, while the remaining folds are used for training and
hyperparameter selection. This procedure yields 10 performance
estimates and 10 hyperparameter selections (i.e., one for each
fold). The same process was repeated for the prolonged CRT
dataset but with 5 iterations instead of 10 based on a smaller
number of prolonged samples. For the final model, the median
value for selected hyperparameters over the folds was utilized.

The Python scikit-learn and Python XGB libraries were used for all
training and analysis (Pedregosa et al., 2011; Chen and Guestrin,
2016; XGBoost, 2020).

Statistical Analysis
Patient characteristics were summarized by frequencies and
proportions for categorical variables, and means and standard
deviation along with ranges for continuous variables. For all
models and non-machine learning CRi, the performance was
assessed using receiver operating curve (ROC) analysis, with
ROC reported as an average over the values obtained for
each validation fold (five for prolonged models, 10 for flash
models) of the nested cross validation procedure described
above. Friedman Rank Sum test was implemented to assess
whether ROC curves were different among the three classifiers.
Post-hoc pairwise testing was applied to determine differences
between individual classifiers. Precision-recall curves were also
generated. Precision, or positive predictive value, is the ratio
of true positives divided by the sum of true positives and
false positives, and is the ability of the classifier to not
label a negative (not flash or not prolonged) waveform as
positive (flash or prolonged). Recall, or sensitivity, is the ratio
of true positives divided by the sum of true positives and
false negatives, and is intuitively the ability of the classifier
to appropriately identify all positive samples (sensitivity).
Additionally, the best performing prolonged CRT model was
evaluated with an independent sample of adult patients with
clinician and device data collected in a similar fashion (N = 90
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measurement pairs) (Shinozaki et al., 2019b). This cohort
consisted of 32% (n = 29) of waveforms with prolonged
CRT by clinician assessment; there were no samples judged
as flash CRT by clinicians and as such the flash CRT model
could not be applied.

Permutation feature analysis utilizing the Python ELI5 library
was performed on the model with greatest mean AUC to
determine the relative importance of each feature (Pedregosa
et al., 2011; Korobov, 2016). In this technique, each feature is
permuted, i.e., the subject values for that feature are shuffled
randomly across samples such that the feature no longer
provides useful information to the model. The degree that model
performance decreases is indicative of feature importance to the
model (Pedregosa et al., 2011).

We also ran two tests to identify sources of possible bias
in our data collection, given that each patient provided
five measurement pairs, each of which was treated as
independent in our model training. We calculated the intraclass
correlation coefficient (ICC) across all clinician-generated
CRT values and all machine-generated CRi values to identify
level of agreement among measurements. We also ran an
analysis of variance (ANOVA) to assess whether the order
of data acquisition (ordinal number 1–5) correlated with
CRT or CRi values.

RESULTS

Patients
Ninety-nine patients, age 1–12 years, and 485 pulse oximeter
waveforms were included in algorithm training (Table 1).

Model Development and Internal
Validation
We trained six machine learning models in total, three for
flash CRT detection and three for prolonged CRT detection.
The AUC performance and precision-recall for each flash and
prolonged model are presented in Figures 2, 3, and Table 2.
For flash CRT detection, XGBoost had a greater numerical
mean AUC and mean precision than logistic regression and
SVM models. XGBoost had a sensitivity of 0.42 (95% CI 0.42–
0.43), and specificity of 0.80 (95% CI 0.78–0.82). All ML models
outperformed the non-ML reference standard, CRi, defined by
the time that the TLI returns to 90% of its original baseline value.
For prolonged CRT detection, XGBoost also had a numerically
greater mean AUC and mean precision than logistic regression
and SVM models. XGBoost for prolonged CRT detection had a
sensitivity of 0.31 (95% CI 0.25–0.37), and specificity of 0.87 (95%
CI 0.86–0.89). For the XGBoost model, optimal hyperparameters

FIGURE 2 | Receiver Operating Characteristic Area Under the Curve (ROC-AUC) and precision-recall for flash capillary refill time (CRT) models.
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FIGURE 3 | Receiver Operating Characteristic Area Under the Curve (ROC-AUC) and precision-recall for prolonged capillary refill time (CRT) models.

TABLE 2 | Mean Area Under the Curve and precision for each machine learning algorithm and capillary refill index.

Flash CRT Prolonged CRT

Algorithm AUC, Mean (95% CI) Precision, Mean (95% CI) AUC, Mean (95% CI) Precision Mean (95% CI)

XGBoost 0.79 (0.75–0.83) 0.63 (0.56–0.69) 0.77 (0.72–0.82) 0.5 (0.46–0.54)

Logistic regression 0.77 (0.71–0.82) 0.56 (0.49–0.63) 0.73 (0.68–0.78) 0.37 (0.30–0.43)

Support vector machine 0.72 (0.67–0.76) 0.53 (0.47–0.58) 0.75 (0.70–0.79) 0.43 (0.32–0.54)

CRi 0.67 (0.63–0.71) Not calculated 0.72 (0.68–0.76) Not calculated

CRT, Capillary Refill Time; AUC, Area Under the Curve; CRi, Capillary Refill index; CI, Confidence Interval.

are reported in Supplementary Table 1, additional performance
metrics in Supplementary Table 2, and learning curve analysis in
Supplementary Figure 3.

Based on the Friedman Rank Sum test, the null hypothesis
that all three flash capillary refill models (Logistic Regression,
SVM, XGBoost) have area under the ROC curve values (from
the 10 CV folds) from the same distribution is rejected
with a p-value of 0.007 suggesting there is a statistically
significant difference among the group of models. Post-hoc
pairwise testing using the Wilcoxon signed-rank test indicates
a significant difference (p-value 0.009) between XGBoost and
SVM. All other pairs were not statistically significant. Applying
the same procedure to the prolonged capillary refill model
failed to reject the null hypothesis, suggesting the models have
equivalent performance.

External Validation With Adult Dataset
When applied to an independent sample of adults (30 patients
with 90 pairs of CRT measurements), the prolonged SVM showed
good agreement with clinician-judged CRT, with an AUC of 0.88
and precision of 0.79 (Supplementary Figure 4). In comparison,
the non-machine learning CRi had less agreement with clinician-
determination, with an AUC of 0.84 when applied to the same
cohort (Morimura et al., 2015; Oi et al., 2018).

Feature Importance Analysis
For the XGBoost flash CRT model, 1Ab post-compression, time
complexity, and kurtosis were the most influential variables in the
model. For the XGBoost prolonged CRT model, time complexity,
point of first minimum, and 1Ab pre-compression were the
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most influential variables (Table 3). The feature explanation and
proposed physiological significance of these variables are shown
in Table 4.

Intraclass Correlation Coefficient (ICC)
and Analysis of Variance (ANOVA)
The ICC for clinician-measured CRT was 0.89, indicating good
to excellent agreement among measurements. The ICC for
machine-measured CRi was 0.39, indicating poor agreement.
ANOVA testing indicated that there was no association between
order of measurement and length of clinician measured CRT
(p = 0.44–0.60), but that there was a significant linear association
between order of measurement and machine-measured CRi
(p = 0.005). There was a negative linear trend shown
in Supplementary Figure 5, meaning that subsequent CRi
measurements were shorter based on order of measurement.
To estimate the degree of effect, we plotted CRi values
(y axis, seconds) against ordinal numbers indicated position
of measurement (x axis, 1–5), and calculated a slope of
−0.176, p = 0.0065.

DISCUSSION

Our results represent the first application of supervised machine
learning to pulse oximeter waveforms analyzing capillary refill
time. We utilized gradient boosting (XGBoost), SVM with radial
basis function kernel, and logistic regression. XGBoost had the
highest mean AUC with good internal validation. We found the
machine learning based models had higher mean AUC results

TABLE 3 | Feature importance analysis for XGBoost flash and prolonged capillary
refill time models.

XGBoost feature importance

Importance
rank

Flash model Prolonged model

Feature Weight Feature Weight

1 1Ab
post-compression

0.12 Time
complexity

0.06

2 Time complexity 0.11 Point of first
min.

0.05

3 Kurtosis 0.05 1Ab pre-
compression

0.05

4 Area Under the
Curve

0.04 Skew 0.04

5 1Ab
pre-compression

0.04 Maximum slope 0.03

6 Point of first min. 0.03 Area Under the
Curve

0.03

7 Skew 0.02 Kurtosis 0.03

8 Standard deviation 0.02 Standard
deviation

0.02

9 Mean 0.01 1Ab post-
compression

0.01

10 Maximum slope 0.01 Mean 0.01

1Ab: maximal difference between the infrared and red light detection by the device
× hemoglobin density × tissue thickness.

when compared to the non-machine learning calculation CRi for
flash and prolonged models with internal validation. Notably,
the XGBoost algorithm for prolonged CRT also showed good
performance to detect prolonged CRT in the external validation
cohort with adult patients (mean AUC 0.88).

Feature importance analysis showed several interesting
findings (Table 3). For both flash and prolonged CRT SVMs, time
complexity and 1Ab were among the top three most influential
variables. Given that time complexity represents the randomness
(degree of peaks and valleys of the waveform), it is postulated that
this may represent heterogeneous vasoconstriction of individual
capillary beds within the digit when very fast or prolonged
capillary refill is present. With increased heterogeneity, more
peaks and valleys will be present in the waveform itself. 1Ab may
correlate with degree of hypoxia, anemia, or amount of blood in
the fingertip, and has correlated with degree of lactic acidosis in a
prior publication (Oi et al., 2018). Given that one explanation for
1Ab is decreased blood in the finger, there was concern that this
measure simply correlated with the pressure the clinician applied
during measurement of CRT, introducing bias into the model.
There was weak correlation between 1Ab-pre compression or
post compression and the force applied by clinicians (r = 0.15,
r = 0.16, respectively). As such, it appears unlikely that 1Ab
simply represents the degree of clinician force applied and instead
has a physiologic explanation (Table 4).

Although the novel waveform analysis of the device is
early stage, the data shows good agreement with clinician-
judged flash or prolonged CRT even with only 10 waveform
variables included. Our machine learning model performance
may further improve with the addition of clinical variables.
A recent publication showed that CRi in adults were significantly
associated with age, serum blood urea nitrogen, serum creatinine,
fingertip temperature, red blood cell count, and albumin
(Shinozaki et al., 2019a). As such, including these variables or
other parameters, such as the presence of vasoactive infusions,
diagnosis, or vital sign data, may yield even better model
performance. Automated pressure application to generate finger
blanching and automate capillary refill generation utilizing an
insufflation cuff is currently being developed. We hope that
with this automated CRT waveform generation and further
refinement of CRi estimation that the device will eventually
allow for automated, recurring, and reliable peripheral perfusion
assessment to guide clinical care.

Is clinician reported CRT reliable and the correct comparator
for a machine learning algorithm comparison? Inter-rater
reliability reporting has been somewhat variable. Studies
assessing visually assessed CRT in the emergency department
have reported moderate to good kappa values, κ range 0.30–
0.54 (Gorelick et al., 1993; Alsma et al., 2017). However, other
reports indicate high capillary refill reliability. van Genderen
et al. (2014) reported good to excellent inter-observer reliability
between two examiners showing κ = 0.91 (95%CI 0.80–0.97) and
0.74 (0.52–0.89) from different postoperative days. Ait-Oufella,
similarly, reported excellent inter-rater concordance calculated
at 80 and 94% for finger and knee CRT measurements. The
latter two studies utilized strict standardized CRT protocols
and chronographs. In line with these findings, Fleming’s
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TABLE 4 | Graphical and physiologic explanation of model features.

Feature name Feature explanation Proposed physiologic significance

Point of first minimum The time point from release where the minimal value of the dataset
occurs

Earlier point of first minimum indicates earlier return of blood to the
capillary bed, correlating with faster capillary refill

Maximum slope The absolute value of the maximum (negative) slope of the dataset Greater maximal slope indicates greater filling speed of blood into
the capillary bed, correlating with faster capillary refill

Kurtosis The sharpness of the peak of a frequency distribution curve–greater
kurtosis implies a steeper descent from point of release

Greater kurtosis indicates greater filling speed of blood into the
capillary bed, correlating with prolonged capillary refill

Skew The measure of asymmetry of the sample, samples with longer and
thicker tails are more skewed

Greater skew indicates more gradual return of blood to the capillary
bed, correlating with prolonged capillary refill

Mean The average value of the dataset A greater mean value indicates overall less blood and tissue in the
capillary bed (greater TLI = less blood and tissue present),
implication for capillary refill speed uncertain

Standard deviation A calculated quantity indicating the extent of variation for the
dataset

A greater standard deviation correlates with a greater difference
between TLI at release and TLI at minimum, implication for capillary
refill speed uncertain

1Ab (pre- and
post-compression)

The maximal difference between the infrared and red light detection
by the device × hemoglobin density × tissue thickness

Oxygenated Hb absorbs more infrared light; deoxygenated Hb
absorbs more red light. The greatest difference between these
values could imply a reduced percentage of Hb saturation which
may correlate with abnormal CRT (prolonged for flash). Anemia,
peripheral vasoconstriction, shock, strong or sharp pain may also
increase 1Ab, correlating with abnormal CRT. 1Ab has correlated
with degree of lactic acidosis among adult emergency room
patients in shock (Oi et al., 2018).

Time series complexity Complexity of a time series is determined by the number and
degree of peaks and valleys in the curve

Time series complexity may represent variable vasoconstriction of
individual capillary beds within the digit postulated to be present
with abnormal capillary refill

systematic review suggested that explicit protocolization of CRT
measurement and use of chronographs may improve inter-rater
reliability (Fleming et al., 2015b).

Clinical utility of machine learning based CRT measurement
may be promising. A recently published trial randomized adult
patients receiving septic shock treatment into two groups: one
group aimed at normalizing peripheral perfusion using CRT and
second group normalizing lactate levels. Their results suggested
CRT guided sepsis treatment is feasible, reporting a 28-day all-
cause mortality hazard ratio of 0.72 (95% CI 0.55–1.02; P = 0.06)
in the peripheral perfusion group with significantly improved
Sequential Organ Failure Assessment score at 72 h compared
to the lactate group (Hernández et al., 2019). Future pediatric
studies need to address the feasibility and potential benefit of CRT
guided shock treatment over the conventional clinical indicators
of current use. In light of this data, the ability to reliably and
automatically detect capillary refill (or a perfusion surrogate, CRi)
could have significant implications for management of critically
ill patients in shock.

Study Limitations and Sources of Model
Bias
Several factors which were not controlled in this study might
have introduced biases. These factors include the amount
of pressure applied by clinicians during finger blanching,
ambient temperature, right or left hand selection, and patient
position in bed. The ICCs calculated for our CRT and CRi
measurements were quite different (0.89 vs. 0.39), reflecting a
potential anchoring bias in physician measured CRT: a tendency
to generate similar values in repeated measurements. While

the repeated measurements within each subject may bias the
overall ML model, lower ICC in CRi measurement indicates
a relatively large variance in the waveform parameters, which
may reduce this bias from the repeated measures. The order
of the measurement within the subject was associated with the
length of CRi. This may be due to the measurement noise
and measurement position within each subject, though it may
also represent the true physiologic state as inter-measurement
intervals was short, approximately 1 min.

Our study did not include an external validation set for
the XGBoost flash CRT model because no adult patients in
this dataset had flash CRT. Therefore our model performance
relied on internal cross-validation only. The study did include
an external validation set for prolonged CRT, however the
external validation was for an adult patient population which may
have different capillary refill time characteristics than children.
Our sample size did not allow us to externally validate the
model on the same pediatric or adult population. This will
be an important research topic in the future. The dataset
utilized was a convenience sample of primarily peri- and intra-
operative patients requiring intensive care unit admission, a
minority of whom had evidence of septic shock, from a single
large academic children’s hospital and thus results may not
be generalizable to a more broad pediatric population. We
suggest further study in patients with more severe critical
illness. Each patient generated five paired clinician-waveform
measurements; as such some of the model inputs may not
be truly independent. We defined prolonged CRT as >2.0 s
which is more stringent than the another commonly accepted
definition of prolonged CRT as >3.0 s (Fleming et al., 2015b;
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American Heart Association, 2016; Davis et al., 2017). We suggest
future study assessing algorithm ability to identify CRT >3.0 s.

CONCLUSION

Our study showed the first successful application of supervised
machine learning techniques to analyze pulse oximeter
waveforms to detect flash and prolonged capillary refill. Utilizing
clinician-judged CRT as the reference standard, we trained six
separate models that showed good internal validation in detection
of both flash and prolonged CRT. Gradient boosting (XGBoost)
also showed good external validity for the prolonged CRT
detection algorithm. 1Ab and time complexity were revealed
as novel features important in both flash and prolonged CRT
detection. These results suggest the feasibility ML application
to pulse oximeter waveforms in characterizing peripheral
perfusion even with a small testing cohort. Further study of
waveform analysis with other clinical and laboratory measures
of microcirculation is needed.
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