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Cardiovascular diseases (CVDs) have become the number 1 threat to human health.
Their numerous complications mean that many countries remain unable to prevent
the rapid growth of such diseases, although significant health resources have been
invested toward their prevention and management. Electrocardiogram (ECG) is the
most important non-invasive physiological signal for CVD screening and diagnosis.
For exploring the heartbeat event classification model using single- or multiple-lead
ECG signals, we proposed a novel deep learning algorithm and conducted a systemic
comparison based on the different methods and databases. This new approach
aims to improve accuracy and reduce training time by combining the convolutional
neural network (CNN) with the bidirectional long short-term memory (BiLSTM). To our
knowledge, this approach has not been investigated to date. In this study, Database
I with single-lead ECG and Database II with 12-lead ECG were used to explore a
practical and viable heartbeat event classification model. An evolutionary neural system
approach (Method I) and a deep learning approach (Method II) that combines CNN
with BiLSTM network were compared and evaluated in processing heartbeat event
classification. Overall, Method I achieved slightly better performance than Method II.
However, Method I took, on average, 28.3 h to train the model, whereas Method II
needed only 1 h. Method II achieved an accuracy of 80, 82.6, and 85% compared
with the China Physiological Signal Challenge 2018, PhysioNet Challenge 2017,
and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia
datasets, respectively. These results are impressive compared with the performance of
state-of-the-art algorithms used for the same purpose.

Keywords: digital health, digital medicine, data science, arrhythmia detection, BiLSTM neural network, CNN –
convolutional neural network

INTRODUCTION

The heartbeat is a basic physiological phenomenon of the human body, and it is the most direct
manifestation of heart function. Under the influence of age and lifestyle habits, the heartbeat
may show a variety of abnormal states, such as tachycardia, bundle branch or atrioventricular
blockage, and premature atrial or ventricular contraction (Roth et al., 2015; Benjamin et al., 2017).
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Cardiovascular diseases (CVDs) can be detected and diagnosed
by electrocardiogram (ECG), a non-invasive electrophysical
measurement of cardiac activity that reflects the working state of
the heart in real time. In general, an ECG is obtained through
a Holter monitor and a standard 12-lead setup consisting of
three limb leads, three pressurized limb leads, and six thoracic
leads. A complete heartbeat process is initiated by the sinus node,
consisting of the depolarization of atriums and ventricles and
the repolarization of ventricles, in which atrial depolarization
forms a P wave, ventricular depolarization forms a QRS complex
wave, and the repolarization of ventricles forms a T wave
(Klabunde, 2012).

In 2019, telemedicine and mobile medicine started to be
developed rapidly, resulting in their popular use and drawing
attention to the auxiliary diagnosis of cardiac disease using ECG
signals (Attia et al., 2019). A number of previous studies on this
auxiliary diagnosis have focused on the preprocessing of ECG
signals (Elgendi et al., 2017), feature extraction and analysis (Qin
et al., 2017; Zhong et al., 2018), and complex classification models
(Celin and Vasanth, 2018; Diker et al., 2019; Mondéjar-Guerra
et al., 2019; Zhang et al., 2019). Generally, raw ECG signals
contain baseline drift, power line interference, motion artifacts,
muscle, and other noises. These noises affect the morphological
feature recognition of ECG and can produce misdiagnosis.
Many researchers use wavelet denoising, smoothing, bandpass,
or adaptive filters, and other noise-filtering methods to address
these issues (Luz et al., 2016; Peng and Wang, 2017).

Fundamentally, the removal of noise is the primary task of
ECG signal processing to enable an accurate diagnosis. The
extraction and analysis of ECG features have been widely studied
with morphological features, statistical analysis of heart rate
variability (HRV), time-frequency domain feature analysis, and
wavelet analysis. For example, Hao et al. (2019) define many
time-frequency domain parameters based on the morphological
characteristics of ECG and use them to automatically recognize
atrial fibrillation (AF), while Jiménez-Serrano et al. (2017)
utilize particular HRV parameters to classify different heartbeat
categories. Elsewhere, Pławiak (2018) conducts a fast Fourier
transform and spectral density analysis of ECG signals and
identifies the frequency domain features that contain very low,
low-, or high-frequency power to classify heartbeats in AF.

With the development of machine and deep learning
technologies, more ECG category classification models have been
proposed, enabling the automatic diagnosis of different heart
diseases. Of these technologies, the support vector machine
(SVM) approach (Li et al., 2019), random forest method (Yang
et al., 2020), autoregressive modeling (Ge et al., 2002), artificial
(Xu et al., 2015), and convolutional neural networks (CNNs;
Kiranyaz et al., 2016; Hannun et al., 2019), and long short-
term memory (LSTM) have been mainly used to establish
ECG classification models (de Chazal et al., 2004; Asl et al.,
2008; Acharya et al., 2017; Yildirim, 2018). To date, several
heartbeat abnormalities have been frequently studied, such as AF,
premature ventricular contraction (PVC), paced beat, and left
or right bundle branch block (LBBB or RBBB, respectively; Raj
and Ray, 2018). However, many studies have focused on two or
three ECG categories and different heart disease classifications,

making them difficult to compare and limiting the application of
the resulting diagnosis models. In addition, with the development
of mobile medical technology, a large number of wearable device
data are obtained. In view of the demand for wearable health
devices for rapid detection and evaluation, researchers cannot
simply pursue high performance and ignore the problem of
computational complexity. An excellent algorithm model should
achieve a balance between performance and computational
complexity. Therefore, a calculation challenge is proposed for fast
and accurate disease detection.

To explore and achieve the classification of multiple heart
diseases, a deep learning model for automatic diagnosis
was constructed and tested on three different datasets. An
evolutionary neural system approach was also developed
following Pławiak’s (2018) paper for comparison with the
proposed deep learning approach.

MATERIALS AND METHODS

Database I
Two independent databases were used in this study. Database
I is an ECG segment dataset collected by Pławiak (2018)
from the MIT-BIH Arrhythmia Database containing 1,000 10-
s single-lead ECG segments (Moody and Mark, 2001). Each
ECG segment is uniquely medically classified across 17 types:
normal sinus rhythm, pacemaker rhythm, and 15 categories of
cardiac dysfunction.

Database II
Database II is an ECG segment dataset with 12-lead ECG signals
shared by the China Physiological Signal Challenge 2018 (Liu
et al., 2018). Database II is also included in the PhysioNet
Challenge 2020 database (Perez Alday et al., 2020). This dataset
comprises 6,877 12-lead ECG recordings that can be utilized for
the automatic identification of rhythm abnormalities, with 53.7%
taken from male and 46.3% from female patients. Database II
contains one normal and eight abnormal heartbeat categories: (1)
normal, (2) AF, (3) first-degree atrioventricular block (I-AVB),
(4) advanced LBBB (LBBB), (5) advanced RBBB (RBBB), (6)
premature atrial contraction (PAC), (7) PVC, (8) ST-segment
depression (STD), and (9) ST-segment elevation (STE). The
length of the ECG signal ranges from 10 to 60 s, and the
sampling rate is 500 Hz.

Machine and Deep Learning Approaches
Method I
In this study, a recently published evolutionary neural system
approach (Method I) that combines a genetic algorithm (GA)
and the machine learning method proposed by Pławiak (2018)
was used as a benchmark to recognize heartbeat categories.
The evolutionary neural system extracts power spectral density
features using a Hamming window with 512 samples width
and Welch’s method. Then, a GA and SVM were used to
optimize the gamma (-g) and nu (-n) parameters of the SVM
classifier based on power spectral density features. After the
optimization process, the optimal gamma and nu values were
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acquired. Finally, the evolutionary neural system with optimal
parameters was achieved.

Method II
This study proposed a deep learning approach based on a
sequential ECG signal with rich waveform morphology to
recognize heartbeat categories. Using several CNN blocks to
extract the convolutional features of the ECG signal and
bidirectional long short-term memory (BiLSTM) to determine
the convolutional features, the deep learning approach proposed
in this study is a combination of CNN and BiLSTM.
More detailed processes and implementation methods are
presented below.

Preprocessing
In the preprocessing stage, there was no need to prefilter the
signals in Method I or Method II, but a scaling process was
required to make the signal range from -1 to 1 through the
min–max normalization method.

Segmentation
Database I had the same length, which was 10 s, so it did not need
the segmentation process. However, the recordings in Database
II had different lengths, ranging from 10 to 60 s. To achieve
consistency with ECG signal processing, a fixed length of ECG
segments was necessary in the model. A 30-s length was used in
Database II. For the recordings with more than 30 s, the signals
for the first 30 s were retained, and the rear signal was discarded.
For the recordings with less than 30 s, zero padding technology
was used, and zeros were introduced before the signal as padding.
A workflow of the evolutionary neural system and deep learning
approach is presented in Figure 1.

Evolutionary Neural System Approach
Solving problems through a GA is similar to biological evolution.
Replication, mutation, and other operations are used to produce
the next generation, gradually eliminating the solution of low
fitness function value and increasing the solution of high fitness
function value. After the evolution of N generation, acquiring
individuals with high fitness function values is possible. A GA is
widely used in many optimization applications. Machine learning
plays an important role in many fields of data analysis and has

a good effect on classification, clustering, regression, and other
issues (Mincholé and Rodriguez, 2019).

The SVM classifier (Celin and Vasanth, 2018) is a highly
powerful tool for dealing with classification issues. It aims
to minimize structural risk using the concept of margin, so
its decision boundary is the maximum margin hyperplane
for the learning sample solution. However, determining the
hyperplane for non-linear classification is not possible. Although
SVM extends the applicability of a linear classifier to non-
linear separable data by using the kernel method, it is basically
used as a binary classifier. Generally, SVM realizes multi-
category classification by using one-versus-rest and one-versus-
one extensions.

For the evolutionary neural system approach, Pławiak (2018)
combined a GA and SVM (Pławiak, 2018). Through repeated
optimizing, training, and testing, the evolutionary neural system
approach can acquire the optimal parameters for fitness function.

Power spectral density features were extracted using the
aforementioned approach. A Hamming window with 512
samples and Welch’s method were applied. For a single segment
of ECG signal, a feature vector with a length of 4,001 frequency
components was obtained.

Method I was constructed based on a GA and SVM. The
core of Method I was parameter optimization. Gamma (-g) and
nu (-n) were the SVM parameters that needed to be optimized.
The optimization process was as follows: (1) Gamma and
nu parameters for initial generation were randomly produced.
(2) The classification error of SVM was set as the fitness
function, and the target value of the fitness function was 0.
(3) The generation number and the number of individuals in
the population were set; the maximum number of generations
was 30, and the number of individuals in the population was
50. (4) The dataset was processed repeatedly by crossover
(intermediate type), mutation (uniform type), and selection
(tournament method). The probability of crossover was 0.7,
and the probability of mutation was 0.3. (5) The optimal
gamma (2.52e-5) and nu (0.0207) parameters were obtained with
minimal classification error.

Deep Learning Approach
The CNN approach is rapidly growing in popularity and is widely
used in image, text, audio, and video processing. Similar to other

FIGURE 1 | Workflow for the evolutionary neural system approach (Method I) and the deep learning approach (Method II). (A) Method I combines the genetic
algorithm (GA) with the support vector machine (SVM). (B) Method II combines the convolution neural network (CNN) with the bidirectional long short-term memory
(BiLSTM) network. Note that Method I requires a feature extraction phase in addition to the GA and SVM.
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neural nets, CNNs consist of input and output layers along with
multiple hidden layers in between. These layers focus on learning
data features, the three most common being the convolutional,
activation, and pooling layers. The layers contain a series of
convolutional filters that can activate and learn some features
of the input data. Through repeated extraction from dozens
of convolutional layers, each layer learns the different features.
Rather than extracting morphological features (e.g., amplitude,
peaks, durations), a CNN can automatically extract rich features,
providing apparent advantages.

Recurrent neural networks (RNNs) are an effective deep
learning approach for processing time-series signals. An RNN
differs from other kinds of neural nets in that it establishes
a weight connection in the neurons of its hidden layers. As
the sequence advances, the information of one hidden layer
is transferred to the next. An RNN therefore shows excellent
performance compared with traditional neural networks in
predicting new sequences based on historical sequence data.
However, although the RNN establishes a weight connection
between the hidden layers’ neurons, weight transmission has a
short-term memory (Zhu et al., 2019). On this basis, an LSTM
net combines short- and long-term memory by introducing
gate control, which solves gradient disappearance to a certain
extent. The core units of LSTM are cell states that include
input, forget, and output gates (Reddy and Delen, 2018).
Because long-term memory is improved, an LSTM network can
understand long-term historical information better and apply it
to new predictions, thereby optimizing the deficiencies of the
standard RNN structure.

Although an LSTM network can remember and understand
historical data, it does not effectively use new data to help with
final predictions. As such, further adjustment is required to
enable the network to have both forward and reverse computing
capabilities, resulting in a two-way LSTM network. A BiLSTM
(Liu and Guo, 2019) with two-way capabilities was therefore
constructed based on the LSTM network. BiLSTM networks have
shown excellent performance in sequence prediction modeling
compared with different RNN and LSTM structures, especially
in the fields of machine translation and speech or handwriting
recognition (Rao et al., 2018). For this study, heartbeat categories
were identified from the 12-lead ECG data, and there were
intrinsic relationships between the signals from different leads.
A BiLSTM approach can be used as an intermediate step between
the CNN features and the classification layer to improve accuracy
by selecting the optimal features from the CNN.

A CNN-BiLSTM network was constructed for this study.
This approach consists of four layers: (1) the input layer,
(2) the CNN blocks, (3) the BiLSTM layer, and (4) the
classification layer. The segmented ECG time-series signals
(12 channels) and 15,000 samples were fed into the input
layer. The signals were calculated with a one-dimensional
convolution and then outputted to the CNN calculation blocks.
The blocks automatically extracted the signals’ deeper features
and constructed a feature matrix. In the blocks, the filters and
kernel sizes are 32 and 16, respectively. The padding type is
“same.” The dropout layer is also set in the blocks, and the
dropout rate is 0.5. This was an effective means to solve the

overfitting problem (Srivastava et al., 2014). As mentioned earlier,
BiLSTM can be more effective in discerning feature difference
and recognizing categories for the feature matrix of the ECG
signal. BiLSTM contains 64 memory units. In the last stage,
the densely connected layers achieve the categories’ output.
The detailed framework of the CNN-BiLSTM net is shown in
Figure 2.

A 10-fold cross-validation method and the random
oversampling (ROS) method were used to effectively and
objectively evaluate all models in training and testing (Figure 1).
The dataset was first divided into 10 parts according to their
categories (nine parts trained and one part tested). In other
words, each class was divided into 10 parts independently
from the minority to the majority class, which can ensure
that the train set and the test set include samples of each
category. In the training stage, the train set was processed
with the ROS method. After 10 iterations, each part was tested
as a test set, and the final performance was calculated across
all sets. The F1 score, Sensitivity, and Specificity were used

FIGURE 2 | The proposed convolution neural network (CNN)-bidirectional
long short-term memory (BiLSTM) structure. The CNN strategy can extract
more convolution features from electrocardiogram (ECG) signal, and the
BiLSTM strategy can learn effectively by selecting from the optimal features
extracted to improve classification accuracy. The proposed model is generic
and can be easily used for other applications.
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as performance evaluation measures, which are calculated
as follows:

F1 =
TP

TP + 0.5 (FP + TP)
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP stands for true positives, FP stands for false positives,
TN stands for true negatives, and FN stands for false negatives.

The evolutionary neural system approach was implemented
using MATLAB R2018b software installed on a Windows 10
platform. The CNN-BiLSTM net was implemented using Python
3.6 and Keras 2.2.4, which itself uses a TensorFlow 1.14 backend.
For consistency, all algorithms were tested and evaluated on the
same computer (Intel Core i9-9900K CPU with 3.6 GHz main
frequency and 64 GB memory). MATLAB contains the Signal
Processing, Wavelet, Statistics and Machine Learning, and Deep
Learning toolboxes.

Note that the three datasets used in this study were different
in terms of the number of ECG lead and number of categories;
therefore, each dataset needed a separate training phase.
Meanwhile, the cross-validation processing and the structure
of the deep learning model are the same. However, the input
layer and the output layer required adjustment. For example, the
number of input channels for Database II was set to 12 because
it is a 12-lead ECG database. In contrast, the number of input
channels for Database I and PhysioNet Challenge 2017 database
was set to 1 because these databases contain single-lead ECG
signals. Besides, the number of output categories for Database I,
Database II, and PhysioNet Challenge 2017 database was 17, 9,
and 4, respectively.

RESULTS

In this study, a comparison between Method I and Method II was
conducted first to process Database I. In Database I, there are 17
heartbeat categories, and the dataset is unbalanced. The normal
sinus rhythm had 283 ECG segments, but several categories had
only 10 ECG segments. Method I and Method II were applied
to Database I. Table 1 shows the classification performance
of both methods.

There is a trade-off between sensitivity and specificity
for both methods. For example, Method I showed better
sensitivity than Method II in detecting normal sinus rhythm,
AF, supraventricular tachyarrhythmia, PVC, idioventricular
rhythm, and fusion of ventricular and normal beat. Method
II showed better sensitivity than Method I in detecting PAC,
atrial flutter, ventricular bigeminy, ventricular trigeminy, and
LBBB. Meanwhile, six categories were detected with 100%
sensitivity by Method I and Method II. Generally, for arrhythmia
detection, Method I was more applicable to detect AF, PVC,
and idioventricular rhythm. Method II was more practical to
detect PAC, atrial flutter, and ventricular bigeminy. For other

arrhythmia categories, Method I and Method II had a similar or
equivalent sensitivity.

On the other hand, Method I only achieved higher specificity
in detecting fusion of ventricular and normal beat when
compared to Method II. With regard to the general performance,
although the overall F1 score of Method II is 5% lower than that
of Method I, the processing time of Method II is 1.1 h vs. 37 h
for Method I. Note that dealing with a large amount of data
processing time becomes a crucial challenge, especially for large
recorded (collected over a week or more) ECG signals.

In Pławiak (2018) research, he found that some dysfunctional
classes would affect the classification; he attempted to remove
them and conduct other trials. Three classification trials were
also performed in Pławiak’s (2018) research, and they contained
17, 15 (without supraventricular tachyarrhythmia and fusion
of ventricular and normal beats), and 13 classes (same as 15
but without PVC and ventricular tachycardia). Here, Methods
I and II were also applied in the same classification trials. All
processing was done on the same computing device. Figure 3
shows the classification performance and time consumption of
Methods I and II. The F1 score (F1) was used as a classification
performance measure.

In Figure 3, the F1 score of Trial 1 (13 classes) and Trial 2
(15 classes) using Method I was 93%, whereas the F1 score of
Trial 1 and Trial 2 using Method II was 92%. The classification
performance of the two methods was very similar. However, the
time consumption of Method II remained about 1 h, whereas
Method I needed more than 20 h. The time consumption for
Method I was very large, although Database I included only 1,000
ECG segments (a 10-s duration for each segment).

Database II includes 6,877 recordings; each recording has
a 10- to 60-s 12-lead ECG signal segment. One normal and
eight abnormal heartbeat categories are labeled. The original
plan was to apply Method I and Method II on Database II.
However, because of the large quantity of data, Method I
failed to finish processing Database II. Method II successfully
classified the heartbeat categories. Table 2 shows the classification
performance of nine heartbeat types. The F1 score of RBBB
reached 94.3%, the F1 scores for six heartbeat categories were
higher than 80%, and the overall F1 score was 80%.

DISCUSSION

In clinical applications, doctors often need to diagnose and
recognize heartbeat events based on single-lead or multiple-lead
ECG signals. However, due to the heavy workload of medical
diagnosis and the difference of doctors’ experience levels, an
automatic heartbeat event recognition model is needed that
performs efficiently with less computational complexity. One
novel way to approach this would be to combine CNN with
BiLSTM and to investigate how this combination performs for
heartbeat events detection and classification.

Many other studies have been conducted on the classification
of heartbeat categories based on ECG signals. The evolutionary
neural system approach is an excellent solution to classify
heartbeat categories. Based on Database I with single-lead
ECG and Database II with 12-lead ECG, this study carried
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TABLE 1 | Classification performance of Method I and Method II on Database I.

No. ECG Categories #Num Sensitivity (%) Specificity (%) F1 Score (%)

Method I Method II Method I Method II Method I Method II

1 Normal sinus rhythm 283 91 71 89 94 90 66

2 Premature atrial beat 66 55 85 66 96 58 72

3 Atrial flutter 20 75 89 100 100 83 91

4 Atrial fibrillation 135 93 69 96 99 94 75

5 Supraventricular tachyarrhythmia 13 75 58 100 100 83 74

6 Pre-excitation (WPW) 21 100 100 100 100 100 100

7 Premature ventricular contraction 133 85 46 78 98 81 52

8 Ventricular bigeminy 55 82 93 75 100 78 94

9 Ventricular trigeminy 13 65 67 75 100 67 76

10 Ventricular tachycardia 10 100 100 100 100 100 95

11 Idioventricular rhythm 10 100 78 100 100 100 88

12 Ventricular flutter 10 100 100 100 100 100 95

13 Fusion of ventricular and normal beat 11 100 70 100 99 100 70

14 Left bundle branch block beat 103 95 100 100 100 97 96

15 Right bundle branch block beat 62 100 100 100 100 100 96

16 Second-degree heart block 10 100 100 100 100 100 100

17 Pacemaker rhythm 45 100 100 100 100 100 98

Mean 90 84 93 99 90 85

Note that the bold values refer to the overall performance of Method I and Method II.

out a classification study using an evolutionary neural system
approach (Method I) and a CNN-BiLSTM deep learning
approach (Method II). Method I, proposed by Pławiak (2018),
combines a GA with SVM to optimize classification performance
by repeatedly optimizing classifier parameters. For classifying
heartbeat categories, this study presents a deep learning network
combination of CNN and BiLSTM, which differs from Method I
in that it does not require repeated parameter optimization. To
explore the advantages and disadvantages of Methods I and II,
each method carries out the same classification using Database I,
and all the processing is performed on the same computer. From
Table 1, we learn that Method I achieved 5% higher classification
performance than Method II, which indicates the advantage of
Method I in searching for optimal results. However, Method
I also showed a clear deficiency as the training phase is very
time-consuming. For Database I, processing 1,000 ECG segments
using Method I takes about 37 h, but Method II needs only 1.1 h
to finish all the processing.

A much larger dataset would be beneficial to train and test;
particularly as Database I has several categories with only 10 or 20
recordings. This type of limitation is a significant hindrance for
deep learning models because larger datasets help the model learn
the patterns. Accordingly, the F1 results of Trial 1 (13 classes) and
Trial 2 (15 classes), in which the classes with the fewest recordings
were removed, improve to 85 and 92%. As a whole, Method II
achieves classification performance that is similar to Method I in
Pławiak’s (2018) Trial 1 (13 classes) and Trial 2 (15 classes). The
time consumption of Method II is about 1 h, but Method I still
takes more than 20 h, as shown in Figure 3.

Based on this comparison, for the classification of small
datasets, Method I has a distinct advantage in achieving the
best classification performance. However, for the classification of

large datasets, Method I has serious disadvantages. Its huge time
consumption limits its application in many fields, and in some
cases, it cannot even work properly. With the development of
wearable devices, more and more clinical medical data need to
be processed. Thus, the evolutionary neural system approach will
not be the best solution for the era of big data. Instead, a solution
with good performance and time consumption will be the most
practical and beneficial.

The CNN-BiLSTM deep learning approach proposed in this
study combines CNN with RNN. It has a deeper network depth
and a considerable ability to extract and learn ECG convolutional
features. In the processing of Database I, it showed accurate
and acceptable classification performance and impressive time
consumption. Database II is a larger clinical medical ECG dataset
with 6,877 ECG recordings, with each recording showing a 12-
lead ECG signal. Both Methods I and II were scheduled to
process the Database II classification. However, as explained
above, Method I failed to finish the classification. Method II
successfully classified the heartbeat categories of Database II. As
can be seen in Table 2, the overall F1 score reached 80%, and six
categories scored above 0.800, with that of RBBB reaching 94.3%.
Moreover, Tables 1, 2 show that our proposed deep learning
model (Method II) kept a high specificity, which was 99% for
Database I and 97.5% for Database II. In a wearable ECG device
context where most users are not patients, Method II could play a
significant role in identifying subjects who are not suffering from
arrhythmias, mainly if the technology is being used daily.

There are some data imbalance problems in the dataset of
this study, and many categories need to be classified. However,
the overall performance of the models is stable and acceptable.
The following three considerations helped us. First, we applied
cross-validation technology, which made the model use the
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FIGURE 3 | Performance comparison between Method I (evolutionary neural system approach) and the proposed Method II [convolution neural network
(CNN)-bidirectional long short-term memory (BiLSTM) approach] in processing Database I. Ttrain, training stage time of the evolutionary neural system and proposed
CNN-BiLSTM. Note that the testing time (Ttest ) of Method I and Method II is less than 10 s, which is not shown in the figure.

TABLE 2 | Classification performance of Method II on Database II.

No. ECG Categories #Num Sensitivity (%) Specificity (%) F1 Score (%)

1 Normal sinus rhythm 918 75.8 96.5 76.2

2 Atrial fibrillation 1,221 73.6 98.1 89.5

3 First-degree atrioventricular block 704 82.9 99.2 87.2

4 Left bundle branch block 193 65.0 99.6 83.3

5 Right bundle branch block 1,609 95.9 93.1 94.3

6 Premature atrial contraction 572 82.5 97.0 78.4

7 Premature ventricular contraction 649 78.8 97.6 82.1

8 ST-segment depression 810 75.9 97.4 81.8

9 ST-segment elevated 201 38.1 98.8 47.1

Mean 74.3 97.5 80.0

Note that the bold values refer to the overall performance of Method II.

limited dataset fully. Second, we split samples as categories when
the dataset was divided into the train set and test set. When the
dataset is small, sampling randomly is important. Third, when we
processed the Database II, we formed a validation set by sampling
50 samples randomly from each category in the training stage.

A balanced validation set was benefitted to output a stable and
optimal trained model.

However, we also observed that the classification of the STE
category was performed poorly, and more analyses needed to
be conducted. The dataset was found to be unbalanced in that

Frontiers in Physiology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 569050

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-569050 September 30, 2020 Time: 18:47 # 8

Liang et al. Deep Learning Algorithm Classifies Heartbeats

TABLE 3 | Performance comparison between the proposed deep learning model in this study and previously tested algorithms on the PhysioNet Challenge 2017 dataset
(Goldberger et al., 2000).

Rank Year Authors Algorithm F1 score (%)

= 1 2020 This study CNN and BiLSTM 82.6

= 1 2017 Teijeiro et al. (2017) Feature engineering and LSTM 83.1

= 1 2017 Datta et al. (2017) Feature engineering and AdaBoost 82.9

= 1 2017 Zabihi et al. (2017) Feature engineering and Random Forest 82.6

= 1 2017 Hong et al. (2017) Feature engineering and XGBoost 82.5

The database contains 8,527 single-lead electrocardiogram (ECG) segments with four categories, which are normal sinus (5,154), atrial fibrillation (AF; 771), other rhythms
(2,557), and noise (46). Note that all algorithms are ranked #1 according to the Challenge evaluation measure, as the rounding value of all F1 scores is 83%. The PhysioNet
Challenge 2017 website provided the ranking. Note that the F1 score of this study was achieved by the 10-fold cross-validation method. BiLSTM, bidirectional long short-
term memory; CNN, convolution neural network; LSTM, long short-term memory. Note that the bold font highlights the performance of the proposed method (Method
II).

the number of STE cases (201) represents just 12.5% of RBBB
recordings (1,609). Given that larger quantities of data benefit the
learning process for a deep learning model, more effective data
balancing or augmentation should be studied and used. Second,
STE is usually diagnosed by calculating information defined by
medical experts and often presents much smaller morphological
changes in ECG PQRST waves than AF, RBBB, or LBBB (Smith,
2001). Future work will focus on investigating morphology
changes using machine learning and deep learning algorithms.

To validate the proposed deep learning model in processing
the different source ECG database, the PhysioNet Challenge 2017
database (Goldberger et al., 2000; Clifford et al., 2017) is also used
for comparison. The database contained 8,527 single-lead ECG
segments with four categories: normal (5,154), AF (771), other
rhythm (2,557), and noise (46). For this database, we used the
same process and only fed the ECG time-series segment as the
input of the model using the same computer. Finally, we achieved
the overall F1 score of 0.826, which was the top-ranking result on
the PhysioNet Challenge 2017 dataset, as shown in Table 3.

In recent studies, more and more researchers are trying to
combine the advantages of automatic feature extraction, machine
learning, CNN, RNN, and other technologies in order to build
deep learning solutions for different purposes, especially in
the field of time-series physiological data mining (Parvaneh
et al., 2019). For ECG beat classification, traditional research
mostly uses complex feature engineering methods with high
computational complexity to process signal and extract features.
Generally, the time consumption for feature construction and
extraction is usually more than half of the whole research
time. With more and more medical data waiting to be
mined, improving performance with acceptable computational
complexity for algorithms and models is urgent. Li et al. (2019)
propose combining CNN and SVM to build an AF recognition
model, which improves model performance from 93 to 96%
compared with the CNN model. Swapna et al. (2018) have
attempted to compare CNN net with a combination of CNN
and LSTM in processing a diabetes database. The result showed
that the combination of CNN and LSTM improved accuracy
from 93 to 95%.

In this study, the CNN-BiLSTM deep learning approach
succeeded in processing the single-lead ECG dataset and 12-lead
ECG dataset, achieving proper and acceptable classification
performance with a relatively lower time frame. It has obvious

advantages, including the low demand for handcrafted signal
processing, quick deployment of a well-trained model, and
easy expansion to include more classification categories. These
advantages provide greater choice in cardiovascular diagnostic
methods. However, some disadvantages are equally worthy of
consideration. The signal length and number of ECG leads
required may not correlate with real-life examples, and a
powerful computational ability and longer training time are
required. Nevertheless, more and more clinical physiological data
are being collected and mined, and more powerful Graphics
Processing Units (GPUs) are being widely used. Although the
training time of the CNN-BiLSTM deep learning approach is
long, the testing phase is extremely fast compared with the
benchmark algorithm.

Future research will focus on four key areas. First, a more
effective algorithm to transform ECG signals and improve the
validity of the model’s automatic extraction will be studied.
Second, data augmentation and dataset balance will be explored.
Third, greater consideration of local feature extraction (e.g., STE
heartbeats) will be made. Finally, the proposed model will be used
to test and validate other larger datasets.

CONCLUSION

This research aimed to identify a solution for the quick and
reliable classification of heartbeat categories based on ECG
signals. The proposed CNN-BiLSTM deep learning model was
compared with a recently published evolutionary neural system
approach. The latter was found to be slightly more accurate
in classifying heartbeat categories, but it was extremely slow.
It took an average of 28.3 h training time over three different
classification trials, whereas the deep learning approach only
took, on average, 1 h. When tested using a very large database,
the evolutionary neural system approach could not even complete
the process. The CNN-BiLSTM model, on the other hand, was
able to process the data nearly as quickly as it did for the
smaller dataset, and it achieved good performance with an overall
mean F1 score of 80%. Adding the BiLSTM to the extracted
features from the CNN improved classification accuracy. The
proposed method is a generic method that could be used for other
biosignal applications.
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