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The aim of this study was to screen synergistic substances included in existing artificial
feeds in order to improve the fertility and survival rate of Harmonia axyridis (Pallas)
(Coleoptera: Coccinellidae), an efficient pest predator. To this end, we analyzed the
potential effects of glucose and trehalose on the growth, development, and reproduction
of H. axyridis and evaluated the effect of three different artificial feeds on the energy
stress of H. axyridis. The artificial diets contained fresh pork liver, honey, sucrose, vitamin
C, and royal jelly, which was marked it as Diet1. The glucose was added to diet1, which
was marked it as diet2, while adding trehalose to diet1 was marked as diet3. The pre-
oviposition period of H. axyridis on Diet 1 was slower than that of Diet 2 and Diet 3.
Additionally, the spawning quantity and incubation rate of insects on Diet 2 and Diet 3
were significantly higher than that of those on Diet 1. Finally, the larval developmental
time on Diet 1 was significantly slower than that of Diet 2 and Diet 3. These results
indicate that the addition of an appropriate amount of glucose or trehalose may affect
positively the growth, development, and reproduction of H. axyridis. In addition, further
studies showed that ATP, amino acids and fatty acids content in the H. axyridis also
increased after the addition of the synergistic substance. All these results show that
proper adjustment of stored energy anabolic and catabolism is important to maintain
the metabolic balance of the insect’s entire life cycle and the addition of glucose or
trehalose has a certain effect on the life indicators of H. axyridis.

Keywords: Harmonia axyridis, artificial diets, glucose, trehalose, fecundity

INTRODUCTION

Agricultural and forestry crop pests seriously threaten the quality and yield of agricultural
production, causing huge economic losses (Hansen et al., 1999). Although chemical control is
used for the direct elimination or extermination of agricultural and forestry crop pests, the use of
pesticides on a large scale causes severe environmental pollution, endangers human health (Youn
et al., 2003; Katsarou et al., 2005; Garratt and Kennedy, 2006), and results in the resistance of many
pests (Puinean et al., 2010; Kavi et al., 2014; Bass et al., 2015; Saddiq et al., 2015). It is well-known
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that natural enemy insects are important biological agents in
global agricultural ecosystems (Juen et al., 2012; Lu et al.,
2012). However, they often face seasonal natural food shortages.
In addition, the manual feeding of natural food requires the
maintenance of a three-level nutrition chain, which increases
both the feeding and the biological control cost (Liu et al., 2013).
An artificial diet is the key to avoid the seasonal restrictions
of natural food and meet the needs of various experiments.
Agricultural pests, such as Hemiptera, Coleoptera, Lepidoptera,
and a variety of economic insects, such as the Asian corn
borer (Fadamiro et al., 2005) are some of the insect species fed
artificial diets.

Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is an
efficient pest predator (Koch, 2003). A large number of studies
have shown that H. axyridis is an important insect in the
integrated pest management strategy (Brown et al., 2011; Castro
et al., 2011; Luo et al., 2014). As early as 1916, H. axyridis was
released as a biological control insect in orchards, farms, and
greenhouses (Michaud, 2002; Majerus et al., 2006; Brown et al.,
2011; Van, 2012), but so far there are still natural prey that cannot
sustain the ladybugs throughout the year (Zhang et al., 2014).
It is difficult to maintain a sufficient H. axyridis supply in the
biological control of insects, especially when it comes to large-
scale breeding populations in laboratories (Zazycki et al., 2015).
In large-scale insect propagation, feeding aphid diets in captivity
is an expensive and time-consuming method (Bonte et al., 2010).
Therefore, it is necessary to develop artificial diets that H. axyridis
can be supplemented with, in order to achieve the low-cost and
continuous expansion of this insect that will facilitate the effective
control of pests (Cheng et al., 2018). In response to this problem,
various artificial insect diets have been exploited and proposed
(Cohen, 2001; Castane and Zapata, 2005). Research on artificial
diets for H. axyridis has ranged from exploring original insect
source components such as Tenebrio molitor and Trichogramma
dendrolimi Matsumura (Guo and Wan, 2001) to non-insect
sources with fresh pig liver as the main component. Many studies
have proposed that although insects can be bred with artificial
feedstuffs with some success, in many cases they lose their ability
to adapt and reproduce, which has led to a delayed development
and lower fertility (Denno and Fagan, 2003; Wilder et al., 2011;
Schmidt et al., 2012). The previous research, suggested that the
main reason for the decline in the hatchability and reproductive
capacity of Spodoptera exigua was long-term indoor mating, in
subsequent research, these decreases were attributed to irrational
feed nutrition (Li et al., 2002).

Studies on Microplitis mediator in bee cocoons have revealed
that feeding glucose can enhance the reproductive efficiency
and potential of the bees. It has been suggested that the main
reason for this is that a carbohydrate food supplement provides
mature eggs with the energy they need as they do not need to
resort to their lipid reserves to acquire energy; additionally, the
accumulation of lipids in the female’s body is directly used in
oogenesis and egg maturation (Huang et al., 2015). Glucose is
the most widely used sugar by insects for energy production
and the supply of large molecular precursors and is a signaling
molecule in the liver and adipose tissue (Vaulont et al., 2000). As a
direct energy substance, glucose can be used better by females for

egg maturation (Huang et al., 2015). Some reports showed that
glucose metabolism and its regulation are particularly important
for termite reproduction; glucose is particularly important for
feeding adult females as it provides them with energy for
reproduction and promotes egg maturation (Thompson, 2003).
The energy metabolism of insects, which is otherwise similar
to that of other animals, has a unique feature; the synthesis
and utilization of trehalose (Tang et al., 2010). The regulation
of trehalose metabolism and the control of glucose utilization
are important in terms of energy (Tang et al., 2010). Trehalose
can effectively prevent the denaturation and functionality loss
of proteins under adverse conditions (Haque et al., 2015). In
addition, studies have shown that the trehalose content affects
food choices and feeding behavior. The physiological role of
trehalose as insects’ blood sugar during their reproductive
processes has been reported previously (Lu et al., 2019). A parallel
relationship between the hemolymph trehalose levels and ovarian
maturation was observed, suggesting that trehalose supplies the
energy required for the reproductive cycle processes (Huang and
Lee, 2011). Trehalose is a readily accessible energy source that can
be used as required (Shi et al., 2017).

In addition, studies have shown that the main parts of insects
that produce and store glycogen and trehalose are fat bodies,
ovaries, and flying muscles (Tang et al., 2012). Trehalose is
the energy fuel for vitellogenin (Vg) formation and oocyte
maturation (Lu et al., 2019). Therefore, it is speculated that eating
artificial feedstuffs with glucose or trehalose could provide insects
with sufficient energy to act on the ovary, thereby promoting
the development of their ovaries and increasing spawning.
The population proliferation of insects is based on individual
reproduction, and reproductive success depends on the Vg
synthesis of the fat body and on oocyte development (Tufail and
Takeda, 2008; Tufail et al., 2010). Vg is the main storage protein
precursor of the ova of many animals, the energy reserve of
many ovipara (Zhang et al., 2017), and plays an important role
in the reproduction of oviparous vertebrates and invertebrates
(Liu et al., 2013).

The aim of this study was to supplement insect diets with
potentially synergistic substances while meeting their minimum
nutritional requirements. Additionally, we aimed to discover and
screen more effective and high-quality artificial feedstuffs for
natural enemy insects that would lead to higher proliferation,
thereby providing technical support for their release. Based
on previous reference on artificial feedstuffs (Yang et al.,
2013), we used glucose and trehalose as energy supplying
nutrients for insects. By measuring the growth, development,
reproductive ability, and substance content indicators in
the bodies of H. axyridis, we evaluated the potential role
of glucose and trehalose on their growth, development,
and reproduction.

MATERIALS AND METHODS

Insects
Harmonia axyridis individuals were raised in the Key Laboratory
of Animal Adaptation and Evolution of Hangzhou Normal
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University. All insects were bred in a growth chamber maintained
at 23 ± 2◦C, with 68 ± 5% relative humidity (RH), and a
photoperiod of 16:8 h (L: D). H. axyridis individuals were fed
Aphis medicaginis at a fixed time every day. After oviposition,
the eggs were collected 2–3 times daily and placed in a 7 cm
Petri dish containing filter paper; distilled water was sprayed
onto the filter paper once a day to preserve its humidity. After
the eggs hatched, we used a writing brush to gently move the
hatched larvae into individual larva rearing boxes containing
aphids or artificial feedstuffs (4 cm × 3 cm × 2 cm). It was
necessary to keep them alone in order to prevent cannibalism and
competition among individuals. After being reared to emergence,
the adults (12 females and 8 males in each box) were placed in
adult feeding boxes containing aphids or artificial diets. The diet
in all feeding boxes was changed once a day and wet cotton balls
were replenished.

Preparation of Artificial Diets
In this experiment, we used the artificial feed formula prepared
by Yang et al. (2013) as reference material; we adapted it by
optimizing the addition of ingredients and improving their ratio
(Yang et al., 2013). Three artificial feed formulae were designed,
namely Diet 1, Diet 2 and Diet 3, CK represents Aphis medicaginis
used as the control. The raw materials were weighed and mixed
according to the number of insects in each group, in order
to prepare a semi-fluid feed and were stored in a refrigerator
at −20◦C. For a detailed component analysis of each formula,
see Table 1.

Experimental Method
Determination of the Tissue and Hemolymph Sugar
Contents of H. axyridis Larvae
At least 50 early fourth instar larvae were collected from each of
the three groups, which fed with Diet 1, Diet 2, and Diet 3. After
having fed for 12, 24, and 48 h, the larvae were placed on ice. After
the larval ability decreased, their feet were punctured by a medical
anatomical needle. Hemolymph was collected with a capillary
tube and transferred to an Eppendorf (EP) tube (Eppendorf,
Hamburg, Germany) containing anticoagulant (Wang et al.,
2007). Each tube contained the hemolymph of seven larvae. After
hemolymph extraction, the tissue of larvae was placed into a new
EP tube; each tube contained the tissue of three larvae. Each of
the experiments was performed in three biological replicates and
three technical replicates.

TABLE 1 | Specific ingredients of the artificial feed formula of the H. axyridis.

Ingridients Diet 1 Diet 2 Diet 3

Fresh pork liver 64% 64% 64%

Honey 13.5% 13.5% 13.5%

Vitamin C 3.5% 3.5% 3.5%

Sugar 13.5% 13.5% 13.5%

Royal jelly 5.5% 5.5% 5.5%

Glucose – 12% –

Trehalose – – 20%

The above samples were ground with phosphate buffered
saline (PBS) and sonicated. Subsequently, 350 µL of the
supernatant was collected and ultracentrifuged at 20,800 g for
60 min at 4◦C. The remaining supernatant was used to determine
the protein, trehalose, and glycogen contents. The trehalose
content was measured using the anthrone method. Briefly, we
took 30 µL of the centrifuged supernatant sample, added 30 µL
of 1% H2SO4, placed it in a water bath at 90◦C for 10 min,
and then in an ice bath for 3 min. After adding 30 µL of
30% KOH, the sample was incubated again at 90◦C in a water
bath for 10 min and in an ice bath for 3 min. Then, 600 µL
of developer was added and the sample was placed in a water
bath at 90◦C for 10 min and then cooled in an ice bath. The
absorbance of the sample was measured at 630 nm using a
microplate reader. A glucose assay kit (Sigma-Aldrich, St. Louis,
MO, United States) was used to measure the glucose content by
taking 150 µL of 20,800 g centrifuged supernatant and 20,800 g of
pellet suspension, according to the manufacturer’s instructions.
After incubation in water bath at 37◦C for 30 min, 300 µL of
2N H2SO4 was added to stop the reaction, and the absorbance
of the samples was measured at 540 nm using a microplate
reader. For the determination of the glycogen contents, 160 µL
of supernatant obtained after centrifugation at 1,000 g was added
to 600 µL of anthrone sulfate reagent, and the mixture was
incubated at 90◦C for 10 min and then cooled in an ice bath.
The absorbance of the sample was measured at 625 nm using a
microplate reader. The protein content was determined using the
BCA Protein Assay Kit (Beyotime, Shanghai, China).

Observation of the Developmental Duration and the
Body Weight Index of H. axyridis Larvae
At least 100 eggs were collected from each group. We measured
the developmental period from the first instar to the pupal
stage and monitored the development of H. axyridis every
day. At the same time, the body weight of the larvae that
fed on different artificial feeds was recorded. Electronic scales
(METTLER TOLEDO, Shanghai, China) were used to weigh the
first, second, third, and fourth instar larvae. As the larvae were
small, 10 larvae that fed on the same feed and were at the same
developmental stage were weighed each time. Then, we recorded
the average weight of the three groups; the above experiment was
repeated three times.

Observations on the Pre-oviposition, Oviposition
Rate, and Fecundity of H. axyridis
We collected at least 50 pairs of H. axyridis adults from
each group. Each group was provided with five feeding boxes
for 42 days. The time from the first day of the emergence
of H. axyridis to the oviposition time was considered as
the pre-oviposition. Then, the daily oviposition of adults
that had fed on different diets and aphids was counted and
recorded. We recorded the average of three breeding rounds
as the final spawning result. From each round, we selected
approximately 100 eggs and repeated this process three times
per group. Then, we calculated the hatchability of the eggs by
observing and recording the number of first instar larvae after
1 day of incubation.
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Determination of the Sugar and Substance Contents
of H. axyridis Adults
We collected at least 50 pairs of the adults from each group
at the beginning of the emergence stage. Then, we measured
the sugar and substance contents of females that had fed for 48
and 72 h. The sugar content detection method was the same as
the one described in Section “Determination of the Tissue and
Hemolymph Sugar Contents of H. axyridis Larvae.” We used
the GLYCERINE kit, the Non-esterified Free fatty acids assay
kit (NEFA), and the Total Amino Acid assay kit to measure the
glycerine, free fatty acid, and adenosine 5′-triphosphate (ATP)
contents. The above kits are collected from Nanjing Jiancheng
Bioengineering Institute.

Ovarian Development in H. axyridis Adults
We collected at least 50 pairs of the adults from each group at
the beginning of the emergence stage and fed them Diet 1, Diet
2, and Diet 3. The ovaries of H. axyridis that had fed for 3, 5,
and 7 days were dissected. The vivisection of female H. axyridis
was conducted in saline; first, we cut off their wings and head
and then we attached the insect bodies to the anatomical box
(AGAR dish). Under the Leica EZ4HD stereoscopic microscope
(Leica, Wetzlar, Germany), we cut along the middle back of the
adults to the end of the abdomen and removed the organs and
tissues of non-reproductive systems, such as the digestive tract
and the fat body.

Determination of the Relative Expression of the VgR
and Vgs Genes in H. axyridis
We collected at least 50 pairs of the adults from each group at
the beginning of the emergence stage. Ha-rp49 was used as an
internal reference gene and detected the relative expression of the
VgR, Vg1, and Vg2 genes in their adults.

First, total RNA was extracted from the adults of H. axyridis
by a Trizol-based method. Each tube sample was homogenized
with 800 µL of TRIzol reagent (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions.
A Thermo Scientific NanoDrop 2000 UV-Vis spectrophotometer
(Thermo Fisher Scientific, Inc., Waltham, MA, United States) was
used to determine the RNA quality and quantity. Complementary
DNA (cDNA) was synthesized from 1 µg of total RNA using
the PrimeScriptTMRT reagent Kit with gDNA Eraser (perfect
Real Time) (Takara Bio, Inc., Kusatsu, Japan) according to the
manufacturer’s protocol.

The cDNA was diluted fivefold for subsequent quantitative
real-time polymerase chain reaction (qRT-PCR) analyses. qRT-
PCR was carried out in 20 µL reactions containing 1.0 µL cDNA,
10 µL SYBR Green Premix Ex Taq (Takara Bio, Inc.), 1 µL
forward primer (10 µM), 1 µL reverse primer (10 µM), and
7 µL nuclease free water using the Bio-Rad CFX96TM Real-Time
PCR Detection System (Bio-Rad Laboratories, Inc., Hercules, CA,
United States). Then, we conducted a melting curve analysis
(from 60 to 95◦C) to ensure the consistency and specificity
of the amplified product. All samples were normalized to the
threshold cycle value for QHa-rp49 mRNA, which was chosen as
an invariant control. Information on the primer sequences of the
H. axyridis genes is shown in Table 2.

TABLE 2 | Sequences of qRT-PCR primers for VgR and Vgs genes.

Gene Forward (5′–3′) Reverse (5′–3′)

HaVgR TGTAGGAGGCGAAGCAATGAT TGGGATGTGACAGGGAAATAA

HaVg1 GCAACAGAGTCCGTGGTCTTT GCTGCTTTCACCGTTCTTCAA

HaVg2 CAATCAAAACTCAAGCA GTCAAAAACTGGATGGAC

AGGAGA AACAA

QHarp49 GCGATCGCTATGGAAAACTC TACGATTTTGCATCAACAGT

Statistical Analyses
All the data were analyzed using a one-way ANOVA with
the statistical software package version 7.0 (StatSoft, Inc.,
Tulsa, United States). Multiple comparisons of means were
conducted using Tukey’s test. Differences between means were
deemed to be significant when P ≤ 0.05. Statistical analysis
was performed with STATISTICA 8.0 and Sigma Plot 10.0.
The qRT-PCR data were processed using the 2−MMCT method
(Livak and Schmittgen, 2001).

RESULTS

Tissue and Hemolymph Sugar Contents
of H. axyridis Larvae
The tissue and hemolymph glycogen content after 24 and 48 h
feeding on the Diet 2 and Diet 3 were significantly higher than
that of the Diet 1 (P < 0.05) (Figures 1A,D). The trehalose
content in the tissues of larvae fed on Diet 1 for 24 and 48 h
Diet 1 was significantly lower than that of the Diet 2 and
Diet 3 (P < 0.05) (Figure 1B). The trehalose content in the
hemolymph of the Diet 1 was lower than that of the Diet 2
and Diet 3 (P < 0.05) (Figure 1E). The glucose content in the
tissues of all groups did not change significantly after having fed
for 24 h. However, the glucose level of Diet 1 was significantly
lower than those of Diet 2 and Diet 3 (P < 0.05) after 48 h
(Figure 1C). After 12 and 24 h of feeding, the glucose content
in the hemolymph of Diet 1 was significantly lower than that
of Diet 2 and Diet 3, while there were no significant differences
among the insects of the three groups after they had fed for 48 h
(P < 0.05) (Figure 1F).

Developmental Time and Larval Weight
We observed and recorded the developmental time of the
larvae and pupae that had fed on different artificial diets.
As is shown in Figure 2, the effect of different diets on the
developmental time of the larvae was significant (P < 0.05).
The developmental times of the larvae fed on of Diet 2
and Diet3 were much shorter than that of Diet 1 (25.8,
24.5, and 28.1 days, respectively). The developmental time of
each of the aforementioned groups was longer than that of
the group that fed on aphids, which was about 21.5 days.
As is presented in Table 3, the H. axyridis that fed on
the three diets were lighter than those that fed on aphids.
Additionally, Diet 2 and Diet 3 individuals weighed more
than Diet 1 individuals. More specifically, the differences were
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FIGURE 1 | After 12, 24, and 48 h of fed with three kinds of artificial feedstuffs, the sugar content in the larval tissue and hemolymph of H. axyridis. (A) The glycogen
content in the tissue. (B) The trehalose content in the tissue. (C) The glucose content in the tissue. (D) The glycogen content in the hemolymph. (E) The trehalose
content in the hemolymph. (F) The glucose content in the hemolymph. Line bars represent standard error of the mean. Bars with different letters are significantly
different (Tukey–Kramer tests, P < 0.05). Numbers of samples for each treatment of hemolymph = 7. Sample size for each treatment of tissue = 3.

significant at the third and fourth instar and at the pupal
stage (P < 0.05). On weight of with different lowercase letters are
significantly different.

Pre-oviposition Period, Fecundity, and
Hatching Rate Indicators of H. axyridis
Adults
The results presented in Figure 3 show that the different
artificial diets had a significant effect on the pre- oviposition,

egg production, and hatching rate of H. axyridis (P < 0.05).
The pre-oviposition period on Diet 1 (15.33 ± 1.52 days)
was longer than that of Diet 2 and Diet 3 (13.33 ± 1.17 and
11.75 ± 1.72 days, respectively) (Figure 3A). Additionally,
the fecundity (Figure 3B) and the incubation fertility
(Figure 3C) of Diet 2 (483.50 ± 70.88 eggs per female,
81.69 ± 10.60%) and Diet 3 (527.66 ± 49.65 eggs per
female, 87.00 ± 12.64%) were significantly higher than
those of Diet 1 individuals (236.92 ± 32.56 eggs per female,
60.67± 15.23%).
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FIGURE 2 | Development periods of larvae to pupae after feeding with
different artificial feeds. The “1st” represents the 1st instar larval stage, “2nd”
represents the 2nd instar larval stage, “3rd” represents the 3rd instar larval
stage, “4th” represents the 4th instar larval stage, and “Pupae” represents the
entire pupal stage. Line bars represent standard error of the mean. Bars with
different letters are significantly different (Tukey–Kramer tests, P < 0.05).
Sample size for each treatment = 30.

Chemical Contents of Adults
The glycogen content on Diet 2 and Diet 3 was significantly
higher than that of Diet 1 (P < 0.05; Figure 4A). In all time
treatments, i.e., 48 and 72 h feeding on different artificial diets,
trehalose and glycogen contents of the adults fed on Diet 2 and

Diet 3 were significantly higher than that of Diet 1 (P < 0.05;
Figures 4B,C).

In addition, we tested the content of associated chemical in
adult H. axyridis after 48 and 72 h of feeding on different artificial
diets. As is shown in Figure 5, after 72 h feeding on Diet 2 and
Diet3 the ATP content of the adults was significantly higher than
that on the adults fed with Diet 1 while there was no significant
difference after feeding for 48 h (P < 0.05; Figure 5A). After 48
and 72 h feeding on Diet 2 and Diet 3, the fatty acid content was
significantly higher than that of Diet 1 (P < 0.05; Figure 5B); In
this experiment, there was no significant difference among the
total amino acid contents of the three groups after they had fed
on an artificial diet for 48 and 72 h (P < 0.05; Figure 5C). Finally,
the glycerol content of Diet 2 and Diet 3 individuals, after they
had fed for 48 and 72 h, was significantly higher than that of Diet
1 individuals (P < 0.05; Figure 5D).

Ovarian Development of the Adults
Our results showed that the development of H. axyridis’ ovaries
that fed on aphids was obviously better than that of the
artificialy-fed groups. The ovarian development of Diet 2 and
Diet 3 insects was significantly better than that of Diet 1
insects (Figure 6).

Relative Expression of VgR and Vgs in
H. axyridis Adults
We tested the relative expression levels of the VgR, Vg1, and Vg2
genes in H. axyridis adult that fed on different artificial diets for
24 and 48 h. The VgR gene expression in Diet 2 individuals was
significantly higher than it was in Diet 1 individuals (P < 0.05;
Figure 7A). Additionally, there was no significant difference

TABLE 3 | Effect of different artificial diets on weight of Harmonia axyridis pupae.

Prescriptions 1st (mg) 2nd (mg) 3rd (mg) 4th (mg) Pupae (mg)

Aphis medicaginis 0.68 ± 0.071 a 2.3 ± 0.90 a 10 ± 0.48 a 17.97 ± 0.14 a 23.622 ± 0.84 a

Diet 1 0.63 ± 0.64 a 1.2 ± 0.41 c 4.1 ± 0.42 d 10.74 ± 0.32 c 19.467 ± 0.76 b

Diet 2 0.64 ± 0.020 a 1.6 ± 0.20 b 8.7 ± 0.35 a 15.58 ± 0.24 b 22.833 ± 0.50 a

Diet 3 0.66 ± 0.03a 1.9 ± 0. 37 ab 6.6 ± 0. 24 c 16.03 ± 0. 31 b 21.967 ± 0. 16 a

FIGURE 3 | Pre-laying period, egg-laying number and hatching rate of H. axyridis. (A) Pre-oviposition period, numbers of samples for each treatment = 36. (B) In a
single trial lasting 42 days of eggs laid by H. axyridis, numbers of samples for each treatment = 36. (C) Hatching rate, numbers of samples for each treatment = 50.
Line bars represent standard error of the mean. Bars with different letters are significantly different (Tukey–Kramer tests, P < 0.05).
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FIGURE 4 | Sugar content in female H. axyridis after 48 and 72 h of feeding on artificial feedstuffs. (A) represents the glycogen content. (B) Represents the trehalose
content. (C) Represents the glucose content. Line bars represent standard error of the mean. Bars with different letters are significantly different (Tukey–Kramer tests,
P < 0.05).

FIGURE 5 | Substance content in female H. axyridis after feeding on artificial feedstuffs for 48 and 72 h. (A) ATP content. (B) Fatty acid content. (C) Total amino acid
content. (D) Glycerin content. Line bars represent standard error of the mean. Bars with different letters are significantly different (Tukey–Kramer tests, P < 0.05).

between the Diet 1 and Diet 3 groups. Regarding the relative
expression of the Vg1 and Vg2 genes, the gene expression of
Diet 2 and Diet 3 was significantly higher than that of Diet 1
insects. The gene expressions of all artificial feed groups were
significantly lower than those of the CK group (P < 0.05;
Figures 7B,C).

DISCUSSION

The results of this study showed that the trehalose, glucose, and
glycogen contents in the hemolymph and tissues of larvae that
fed on artificial Diet 2 and Diet 3 increased, indicating that the
addition of glucose and trehalose has a certain impact on the
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FIGURE 6 | Ovaries development of H. axyridis. Dissecting the ovaries of female H. axyridis in saline, after the wings were cut off, the back of the ladybird was gently
made open. Remove non-reproductive tissues and organs such as fat body and digestive tract and intact ovaries could be seen at the end of the abdomen. (A) The
ovarian anatomy of H. axyridis on the 3rd day after feeding. (B) The ovarian anatomy of H. axyridis on the 5th day after feeding. (C) The ovarian anatomy of the H.
axyridis after 7th day after feeding.

FIGURE 7 | Relative expression levels of VgR, Vg1, and Vg2 after fed for 48 and 72 h. (A) Relative expression of VgR gene. (B) Relative expression of Vg1gene.
(C) Relative expression of Vg2gene. Line bars represent standard error of the mean. Bars with different letters are significantly different (Tukey–Kramer tests,
P < 0.05).

life indicators of H. axyridis. Glycogen plays a regulatory role in
insect development, affecting larval development and the ability
to pupate (Yee et al., 2012; Puggioli et al., 2013). There are
differences in the developmental time and viability of pupa and
adult insects fed different artificial feedstuffs (Silva et al., 2009),
this was confirmed by our study. In this study, the weight of larvae
fed on Diet 2 and Diet 3 was significantly higher than that of those
that fed on Diet 1. Additionally, the developmental period of
larvae fed on Diet 2 and Diet 3 was extended significantly. Adding
an appropriate amount of energy substances such as glucose or
trehalose can help insects grow and develop. It has been reported
that the health indicators of larvae affect the fecundity of adults
(Leuck and Perkins, 1972).

It has been suggested that the growth and reproduction of
insect populations are important indicators for analyzing and
understanding insect artificial diet (Bellows et al., 1992). In this
study, although the H. axyridis on Diet 1 reproduced and laid

eggs, their fecundity was relatively lower than that of those fed
on Diet 2 and Diet 3. This could be a result of the amount of
nutrients and energy in their diet that were not enough for them
to grow and reproduce. After adding glucose or trehalose to the
pork liver diet, not only the pre-oviposition period shortened, but
also the fecundity and fertility of the eggs increased. When newly
hatched larvae have sufficient food resources, their mortality
rate will decrease as they develop faster, which reduces damage
during development (Lucas, 2005; Lebreton et al., 2015). The
apparent benefits on the reproductive ability of insects that
fed on artificial feedstuffs containing glucose or trehalose that
were observed in the experiments described in this paper, are
inconsistent with the results of a previous study, which reported
that feeding Cydia pomonella with sugars (Siekmann et al., 2001)
can extend their lives but cannot increase their or their eggs’
fertility (Savary et al., 2019). However, the results of increased
fertility obtained in this study are consistent with earlier reports
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of increased fertility caused by feeding sugar (Fadamiro and
Heimpel, 2001). In parasitic bees, the benefits of glucose on
health-related characteristics such as longevity and fertility are
well-documented (Desouhant et al., 2010).

Trehalose has been reported as the dominant sugar in the
insect hemolymph and other tissues (Van Handel, 1969) as it
provides energy for targeted activities (Lu et al., 2019). In our
study, we detected that the ATP content in the Diet 2 and Diet
3 groups was significantly higher than that in the Diet 1 group. In
addition, studies have reported that developing insect embryos
use glycogen to generate ATP energy and produce biomolecules
required for cell proliferation and differentiation to maintain
the embryonic development (Tennessen et al., 2011). Further
metabolic analysis has shown that glycogen stored in oocytes is
consumed during embryogenesis (Matsuda et al., 2015). In this
study, we found that the glycogen content of Diet 2 and Diet 3
adults was significantly higher than that of Diet 1 adults. This
is relatively consistent with the results of the larval glycogen
content. At the same time, the overall glucose content increased.
The glucose increase could have been caused by the conversion
of glycogen to glucose (Fraga et al., 2013). Prolonged starvation
reduces trehalose and glucose levels (Schilman and Roces, 2008;
Laparie et al., 2012). The ovary is a reproductive organ that plays a
vital role in population reproduction (Koch, 2003). There is high
correlation between trehalose levels and spawning. Decreasing
trehalose levels will delay the production of oocysts (Huang
and Lee, 2011). The results of the ovarian development map
showed that the ovarian development of the Diet 1 group was
significantly more stunted than that of the Diet 2 and Diet 3
groups. The development of the ovary can be based on the
presence or absence of egg chambers, transparent ovaries or yolk
deposition, etc., to determine whether the development is good at
the normal development stage (Chen et al., 2015). This suggests
that trehalose may be an important energy fuel during spawning.

The relative gene expression of VgR, Vg1, and Vg2 of insects
that fed on Diet 2 and Diet 3 was significantly higher than
that of those that fed on Diet 1. Oviposition is one of the
most energy-demanding activities of adult female insects. During
the development of oocytes, Vg is synthesized in the fat body,
secreted into hemolymph, and enters developing oocytes through
endocytosis mediated by the VgR (Tufail and Takeda, 2008).
Therefore, the inadequate trehalose intake by the egg cells, which
could inhibit the expression of Vg, may be the main reason for
the delayed oviposition of H. axyridis. Research on Drosophila
has suggested that the higher expression rate of Vg (vitellogenin
precursor) leads to an increase in egg maturation and fertility
(Drapeau et al., 2006). Up to now, Vg has been widely studied
in insects, with its direct physiological function being to provide
nutrition for developing embryos (Tufail and Takeda, 2008). In
our study, the addition of glucose or trehalose increased the Vg
expression. Researchers have discovered that Vg is involved in the
maturation and development of oocytes and is, therefore, a key
factor in insect reproduction. Additionally, Vg has been studied
in many insects, including Lepidoptera, Diptera, Hymenoptera,
and Hemiptera (Raviv et al., 2006).

It is well-known that the activity of any insect is closely
associated with its energy metabolism (Wong et al., 2016);

additionally, the metabolism of fatty and amino acids affects the
release of insect hormones (Van der Horst, 2003). Owing to the
limited ability of the ovaries to synthesize lipids, the formation
and mobilization of lipid reserves in the fat body is also critical
for egg maturation. It has been reported that glucose is not
only a major energy source, but also promotes the synthesis of
most molecules such as amino acids, nucleotides, and fatty acids
(Saltiel and Kahn, 2001). In our study, the fatty acid content of
adult H. axyridis increased after adding glucose or trehalose to
their diets (Figure 5B), which could also explain their improved
ovarian development and fertility. During the development of
insect oocytes, the developing oocytes accumulate a large amount
of energy reserves from the hemolymph, such as lipids and
proteins; essentially, reserves in the fat body that are essential for
the development and reproduction of adults are mobilized (Tufail
and Takeda, 2008). Excess glucose obtained from the diet is stored
as branched-chain polysaccharide glycogen or as triglycerides in
the body to satisfy future energy needs (Saltiel and Kahn, 2001;
Chng et al., 2017). In this study, the glycerol content of the insects
increased with the consumption of artificial feedstuff containing
glucose or trehalose, indicating that the proper adjustment of the
stored energy’s anabolism and catabolism is critical to preserve
the insect’s metabolic balance throughout its life cycle (Mattila
and Hietakangas, 2017). Moreover, studies have shown that
insects with insufficient energy supply mobilize glycogen and
triglycerides stored in their fat bodies (Bede et al., 2007; Konuma
et al., 2012; Park et al., 2013). The lipid reserves of hungry
females gradually decrease, while the lipid reserves of hungry
males remain stable, indicating that nutrient reserves (lipids
and glycogen) may be used when females spawn (Fadamiro
et al., 2005). The fat content and fatty acid composition of
insects depend on the composition of their feedstuffs and
on the feeding conditions (Van Broekhoven et al., 2015), it
follows that larvae fed low nutritional quality foods may use
their fat reserves as energy, thereby reducing their fat content
(St-Hilaire et al., 2007).

Therefore, the selection of a suitable artificial diet as larval
food is the basis for the breeding success of H. axyridis. Research
has indicated that there is an energetic cost to the act of
reproduction (Wu et al., 2008) and several studies have shown
that sugar has a positive effect on insect survival or fertility
(Fadamiro and Heimpel, 2001). In addition, glucose increases
mating events (Lebreton et al., 2015), which may contribute
to the increase in spawning. Moreover, studies have shown
that glucose can promote gastrointestinal motility, intestinal
transport, and excretion (Chng et al., 2017), although these topics
require further study.

CONCLUSION

Our results demonstrated that glucose and trehalose contributed
to the growth, development and reproduction of H. axyridis,
which may be due to their roles in energy. The reproduction of
H. axyridis was elevated with addition of glucose and trehalose in
our study. Adult reproduction depends on energy consumption
and accumulation in the early stages of insect development, and
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the more is energy, the strong is reproduction. Therefore, the
selection of suitable artificial diet as larval food is the basis for
the success of H. axyridis breeding.
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