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Cold climates represent one of the major environmental challenges that anatomically
modern humans faced during their dispersal out of Africa. The related adaptive
traits have been achieved by modulation of thermogenesis and thermoregulation
processes where nuclear (nuc) and mitochondrial (mt) genes play a major role. In
human populations, mitonuclear genetic interactions are the result of both the peculiar
genetic history of each human group and the different environments they have long
occupied. This study aims to investigate mitonuclear genetic interactions by considering
all the mitochondrial genes and 28 nuclear genes involved in brown adipose tissue
metabolism, which have been previously hypothesized to be crucial for cold adaptation.
For this purpose, we focused on three human populations (i.e., Finnish, British, and
Central Italian people) of European ancestry from different biogeographical and climatic
areas, and we used a machine learning approach to identify relevant nucDNA–mtDNA
interactions that characterized each population. The obtained results are twofold: (i) at
the methodological level, we demonstrated that a machine learning approach is able
to detect patterns of genetic structure among human groups from different latitudes
both at single genes and by considering combinations of mtDNA and nucDNA loci;
(ii) at the biological level, the analysis identified population-specific nuclear genes and
variants that likely play a relevant biological role in association with a mitochondrial gene
(such as the “obesity gene” FTO in Finnish people). Further studies are needed to fully
elucidate the evolutionary dynamics (e.g., migration, admixture, and/or local adaptation)
that shaped these nucDNA–mtDNA interactions and their functional role.

Keywords: mitonuclear interactions, human populations, cold adaptation, machine learning, human ecology,
human evolution
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INTRODUCTION

The mitonuclear interaction can be considered the most
successful mutualism in the history of life according to the
complex dynamics of conflicts and cooperation that has been
established between the mitochondrial and nuclear genomic
backgrounds (Rand and Mossman, 2020). In fact, mitochondria
and nucleus communicate to ensure optimal cellular function,
and a part of the mitochondrial proteins are encoded in
the nucleus. This communication occurs at many levels
(Mottis et al., 2019).

Mitochondria actively influence and physically interact
with other cellular components, such as the lysosomes, the
endoplasmic reticulum, and cytosolic pathways, creating
a mitocellular communication network based on a variety
of signals. Then, small molecules (e.g., AMP, NAD+,
ROS, oxygen, and other metabolites) act as mitochondrial
messengers, and they signal mitochondrial activity to other
cellular components. Mitochondria communicate also
with distant tissues through circulating molecules, called
mitokines (e.g., FGF21 and GDF15), which are nuclear-
encoded signaling molecules secreted by cells that experienced
mitochondrial stress.

Another form of communication – which is the one here
analyzed – occurs at the genomic level (Mottis et al., 2019). It
is estimated that the coevolution between mitochondrial and
nuclear genomes has occurred for more than 1.5 billion years
(Martijn et al., 2018), and it is likely that different mitonuclear
interactions may contribute to enable organisms’ adaptation to
changing environments (“mitonuclear ecology”) (Hill, 2015).
Natural selection may favor tandem changes, creating coadapted
mitonuclear genotypes (Rand et al., 2004; Burton et al., 2013;
Wolff et al., 2014; Hill, 2015). Moreover, much evidence of
coevolution between mitochondria and nuclear genomes have
been described in natural populations, suggesting that tandem
changes appear to be consistent with a model of compensatory
mitonuclear coevolution (Osada and Akashi, 2012; van der Sluis
et al., 2015; Sloan et al., 2017; Barreto et al., 2018; Hill et al., 2019).

Recent studies demonstrated that nuclear DNA (nucDNA)
imposed a selection on mitochondrial DNA (mtDNA) in human
populations (Wei et al., 2019). These mitonuclear interactions
contribute to phenotypic variation but also to health and
disease conditions (Reynolds et al., 2020), as reported by
studies on human admixed populations that showed suboptimal
regulation of mtDNA replication when its components are
encoded by nuclear and mtDNA genes with different ancestry
(Zaidi and Makova, 2019).

However, the identification of nucDNA–mtDNA interactions
meets the statistical and computational challenge to test a huge
number of hypotheses: the routine methods often fail to find
informative nucDNA–mtDNA combinations (Sackton and Hartl,
2016), even if the model is restricted to pairwise interactions only
(Moore and Williams, 2009). Following the constant increase in
population genomic datasets, the potential of machine learning
(ML) tools has been realized, and it was demonstrated that
they can outperform traditional approaches implemented by
population genetics studies (Schrider and Kern, 2018).

During human evolution, the main selective pressures that
anatomically modern humans had to face were linked to
pathogen variability and load, dietary changes, and climatic
conditions. In this study, we investigate mitonuclear genetic
interactions in relation to the latter condition.

Most likely, metabolic adaptations to low temperatures
occurred in several human populations when modern humans
spread across Europe (Piazza et al., 1981; Wheeler, 1985; Sazzini
et al., 2014; Quagliarello et al., 2017). The related adaptive
traits have been achieved by modulation of thermogenesis
and thermoregulation processes, which involve complex
functional pathways, controlled by sympathetic signals of the
hypothalamus produced in response to cold exposure, and
in which mitochondria play a major role (Steegmann, 2007;
Balloux et al., 2009). In fact, mitochondrial enzymatic activity
is upregulated in skeletal muscle upon adaptation to increasing
cold (Wakabayashi et al., 2017) and changes in mitochondrial
architecture have been described to increase functionality in both
skeletal muscle and brown adipose tissue (BAT) (Bal et al., 2017).

Here, we aim to identify statistically significant nucDNA–
mtDNA interactions in human populations of European ancestry
from different biogeographical and climatic areas by an ML
approach. We analyzed a subset of 28 nuclear genes (Table 1)
involved in cold adaptation and BAT metabolism and on all the
mitochondrial genes.

MATERIALS AND METHODS

Data
We selected representative populations of European ancestry
from different latitudes from the 1000 Genomes Project dataset
(The 1000 Genomes Project Consortium, 2015). Genetic variants
for 297 subjects from three populations (i.e., GBR – British
in England and Scotland, FIN – Finnish in Finland, TSI –
Tuscany in Italy) were extracted (Figure 1). We considered 13
mitochondrial genes and 28 nuclear genes (Table 1), which have
been previously associated with cold adaptation (Sazzini et al.,
2014). We selected only European populations for two main
reasons: (1) they are characterized by limited genetic admixture;
(2) they are representative of the western European genetic
variability observable at different latitudes. Differences in climatic
areas in Europe are not only attested by current data but appeared
also in ancient times. For example, environmental temperature
is one indicator of different climate zones, and time-series
information was extracted for 2001–2010 from a 0.5◦ × 0.5◦
grid matrix assembled at the Climate Research Unit of the
University of East Anglia as recently suggested (Key et al., 2018).
By considering the geographic coordinates of each population,
annual mean temperatures for FIN, GBR, and TSI are 5.7, 10.00,
and 14.2◦C, respectively. Concerning European ancient data, a
recent paper (Singarayer and Valdes, 2010) described the global
climate model for multiple snapshots from 120 kya to the present
(for details, see1).

1https://www.paleo.bristol.ac.uk/ummodel/data/bbc_all_03/standard_new_html/
bbc_all_03.html
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FIGURE 1 | Europe map with populations considered in this study and an oversimplified representation of different climate regions. N indicates the number of
individuals considered for each population.

Machine Learning Methods
We estimated relevant mtDNA–nucDNA interactions by
identifying those combinations of mtDNA–nucDNA variants
that manifest statistically significant association to the considered
populations. In detail, they were formalized as features that
received high importance scores for ML discrimination of the
populations and made up classifiers with higher accuracy than
those based on exclusively mitochondrial or nuclear genomes.

In the first step, we filtered out those single nucleotide variants
(SNVs) in the considered genes that did not vary between all
subjects. Table 1 represents the total number of remaining SNVs
in these genes. Considering all the remaining combinations of
mtDNA–nucDNA, SNVs would still pose a problem of huge
dimensionality. That is, the simplest one of mitochondrial ATP8
and nuclear HOXA1 gives rise to 73× 149 = 10.877 SNV pairs,
while MT-ND5 and PRDM16 yield 408× 28, 237 = 11.520.696
SNV pairs. To further reduce the total number of considered
combinations, we developed a computational procedure to match
a score to a specific mitochondrial or nuclear gene, or an
mtDNA–nucDNA gene pair.

By considering mitochondrial DNA only and by fixing a
certain population as the reference one, we calculated the mean
frequency f refGene N(0/1) of each variant (0 or 1) for each gene.
Then for each subject in each population and each gene N,
we calculated a frequency score as the mean distance from the
reference population by using the following equation:

fGene N(0/1) =

∑
all SNPs in Gene N(1− f refGene N(0/1))

num SNPs in Gene N

We followed the same approach for nuclear DNA variants,
taking into account three variants (0|0, 0|1 or 1|0, 1|1), and for
combinations of mtDNA–nucDNA variants, taking into account
six combinations variants (0 + 0|0, 0 + 0|1 or 0 + 1|0, 0 + 1|1,
1 + 0|0, 1 + 0|1 or 1 + 1|0, 1 + 1|1). In result, the dimension of

data for an individual was reduced to the number of mtDNA or
nucDNA genes or their product.

The frequency scores were treated as features for the random
forest (RF) algorithm to build and investigate binary classification
models between each pair of populations. The implementation
was taken from the Python package “scikit-learn” version 0.23;
Python version 3.7. The number of decision trees was set to 500.
Tenfold cross-validation was applied to test the effectiveness of
the produced model, yielding the average accuracy over cross-
validated models.

We thus performed a two-step classification experiment. The
first one employed all constructed features assigning them with
classification importance scores from the interval [0; 1]. Using
the ranked feature lists, we performed serial RF experiments,
increasing the number of features each time by one, until it
made the whole list. The resulting accuracy plots are given
in Supplementary Figure 1. Then, we determined the optimal
classification, by balancing the accuracy score against the number
of features. That is, if the classification accuracy for a smaller
number of features was no worse than 1%, it took the preference.

We also defined genes and gene pairs with population-specific
SNVs as those present in all resulting classification lists that were
obtained for a given population (we termed them “population-
specific genes”). For example, for the GBR population, it would
be the intersection of the feature lists for the following classifiers:
GBR (reference) vs. FIN (target), GBR (reference) vs. TSI (target),
FIN (reference) vs. GBR (target), TSI (reference) vs. GBR (target).
The main steps of the algorithm are presented in Figure 2.

For a single nuclear DNA gene (FTO) and all mitochondrial
DNA genes, we also performed a random forest approach for
SNVs, without choosing a reference population and by averaging
over genes (we termed them “population-specific SNVs”). We
treated SNV combinations (0 + 0|0, 0 + 0|1 or 0 + 1|0, 0 + 1|1,
1 + 0|0, 1 + 0|1 or 1 + 1|0, 1 + 1|1) as features for the random
forest, and classification accuracy was calculated. A total of 100
SNV combinations with the highest classification importance
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TABLE 1 | Number of single nucleotide variants (SNVs) in considered genes.

Gene Chromosome Location Number
of SNVs

Mitochondrial DNA

MT-ND3 MT NC_012920.1 (10059.10404) 77

MT-ATP6 MT NC_012920.1 (8527.9207) 226

MT-ATP8 MT NC_012920.1 (8366.8572) 73

MT-CO1 MT NC_012920.1 (5904.7445) 319

MT-CO2 MT NC_012920.1 (7586.8269) 152

MT-CO3 MT NC_012920.1 (9207.9990) 182

MT-CYB MT NC_012920.1 (14747.15887) 326

MT-ND1 MT NC_012920.1 (3307.4262) 218

MT-ND2 MT NC_012920.1 (4470.5511) 236

MT-ND4 MT NC_012920.1 (10760.12137) 291

MT-ND5 MT NC_012920.1 (12337.14148) 408

MT-ND6 MT NC_012920.1 (14149.14673) 128

MT-RNR1 MT NC_012920.1 (648.1601) 118

Nuclear DNA (GRCh38, hg38)

ADRA1A 11 NC_000008.11 (26738113.26870994) 7311

ADRB3 8 NC_000008.11 (37962990.37966599) 203

CIDEA 18 NC_000018.10 (12254361.12277595) 1,445

CREB1 2 NC_000002.12 (207529943.207605988) 4,353

DIO2 14 NC_000014.9 (80197526.80231057) 10,223

FTO 16 NC_000016.10 (53703963.54121941) 23,729

HOXC4 12 NC_000012.12 (54016888.54056030) 1,801

HOXA1 7 NC_000007.14 (27092993.27096000) 149

LIPE 19 NC_000019.10 (42401512.42427421) 1,485

LEP 7 NC_000007.14 (128241201.128257629) 863

LEPR 1 NC_000001.11 (65420652.65641559) 11,705

NRF1 7 NC_000007.14 (129611720.129757082) 6,949

NRIP1 21 NC_000021.9 (14961235.15065903) 753

PLIN1 15 NC_000015.10 (89664365.89679367) 865

PLIN2 9 NC_000009.12 (19108391.19127606) 2,751

PLIN3 19 NC_000019.10 (4838341.4867667) 2,141

PLIN5 19 NC_000019.10 (4522531.4535224) 999

PPARG 3 NC_000003.12 (12287368.12434344) 7,539

PPARGC1A 4 NC_000004.12 (23792021.24472905) 5581

PPARGC1B 5 NC_000005.10 (149730302.149857861) 7,307

PRDM16 1 NC_000001.11 (3069203.3438621) 28,237

PRKAR1A 17 NC_000017.11 (68413623.68551316) 1,869

PRKAR2A 3 NC_000003.12 (48744601.48847874) 4,663

PRKAR1B 7 NC_000007.14 (549185.727676) 14,603

PRKAR2B 7 NC_000007.14 (107044705.107161811) 6,691

UCP1 4 NC_000004.12 (140555770.140568961) 369

UCP2 11 NC_000011.10 (73974671.73983202) 517

UCP3 11 NC_000011.10 (74000277.74009237) 587

scores for all experiments (GBR vs. FIN, GBR vs. TSI, FIN vs.
TSI) were obtained. The population-specific SNV combinations
were also defined as those present in all resulting features lists that
were obtained for a given population.

Population Structure Analysis
To explore patterns of population genetic structure among
the three selected populations and to remove possible bias
due to correlation between SNVs, the PLINK software v.1.9
(Chang et al., 2015) was used to prune out all the variants in

FIGURE 2 | Main steps of the random forest approach.

linkage disequilibrium (LD). The pruning procedure consisted
of selecting a window of 50 contiguous SNVs, calculate the LD
between all SNV couples, and if the LD (r2) of a given couple was
higher than 0.1, keep only one of the two SNVs, move the window
forward of 10 SNVs and repeat the procedure.

The obtained pruned data-sets were used to perform
population structure analyses commonly used in population
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genetics studies: discriminant analysis of principal components
(DAPC) (Jombart et al., 2010) and the Fst statistic (Wright,
1949), which were performed for each nuclear gene and each
mitochondrial gene separately.

DAPC describes genetic relationships among predefined
groups of individuals minimizing the variance within the groups
and optimizing the variance between the groups. To visualize
the genetic distance among the three populations, we plotted
DAPC results for the individuals in the coordinates defined by
the first two principal components (PCs). The Euclidean distance
between the centroids of the three populations was computed to
quantify their genetic divergence.

Fst is a measure of population substructure and is most
useful for examining the overall genetic divergence among
subpopulations. Here, we computed the pairwise Fst test between
all population pairs, so three Fst analyses were carried out for
each gene. Then, to evaluate the significance of the observed Fst
values, we performed 200 simulations, where individuals were
randomly assigned to one of the three studied populations, and
for each simulation, the Fst statistic was computed. At the end of
this procedure, we were able to fit a probability density function
for the Fst statistic and to compute an empirical p-value for the
Fst value observed on the original data. A gene was considered
discriminant for a given couple of populations if the empirical
p-value was lower than 0.05. A gene was considered specific for
a single population (for example FIN) if the empirical p-value
was significant in the two Fst analyses involving the population
itself (example FIN vs TSI and FIN vs GBR but not TSI vs
GBR). A gene was considered specific for all the considered
populations if the empirical p-value was significant in all the three
Fst analyses.

Both the approaches were implemented with the R software
(R Core Team, 2019) using the adegenet package (Jombart, 2008;
Jombart and Ahmed, 2011) for the DAPC and the hierfstat
package (Goudet, 2015) for the Fst statistic.

RESULTS

Classifying Populations With Random
Forest
We started with investigating the principle possibility of
classifying the three considered populations of European
ancestry (cf. Figure 1) with the ML random forest (RF)
algorithm based on the SNV frequency scores for mtDNA
genes, cold adaptation associated nucDNA genes, and their
pair combinations (cf. Table 1). For each population pair, we
performed two classification experiments, taking one or another
as a reference and target. For example, GBR vs. FIN classification
was made in two ways: GBR (reference) vs. FIN (target), FIN
(reference) vs. GBR (target). Table 2 summarizes the accuracy of
the resulting classification. The numbers of genes, used to achieve
that accuracy, are reported in brackets. Note, that as expected,
the table is unsymmetric, as these populations have different
frequencies of SNVs variants, and yield different frequency score
features, depending on which one is taken as reference.

For all pairs of populations, the combinations of
mitochondrial and nuclear DNA manifested better classification

results than those based on mtDNA or nucDNA exclusively.
In particular, the maximal accuracy increase was observed
for the GBR-TSI classification. The FIN and TSI populations
demonstrated superior classification accuracy in all cases, which
is presumably the effect of their deeper genetic differences and
geographic distance.

Identifying Population-Specific Genes by
ML
Next, we investigated the commonality between the features
employed by different RF classifiers for each population to obtain
the lists of genes, which invariably identify the population against
the others. Such population-specific genes emerging for different
experiment types (i.e., mtDNA, nucDNA, mtDNA–nucDNA, cf.
Materials and Methods section) are listed in Table 3.

All 10 mitochondrial population-specific genes were found
to be common for the considered populations. Three nuclear
population-specific genes (PDRM16, LEPR, and DIO2) were
common as well; meanwhile, the other two genes (PPPARG and
NRF1) resulted specific for the Finnish population, and three
genes (UCP3, CIDEA, and PLIN1) turned out to be specific for
the Italian population only.

We compared these results with those obtained by
conventional methods commonly used in population genetics,
such as DAPC and Fst.

Results from these two approaches are, in general, consistent
with those that emerged from the ML approach for nuclear
genes, except the PLIN1 gene, which was identified as having
specific SNVs for the Italian population by RF algorithm, but not
discriminant for DAPC and Fst (Supplementary Figures 2–9 and
Supplementary Table 1).

As to the mitochondrial genes, we performed only Fst analysis
as DAPC is optimized for a large genomic dataset and the
number of mtDNA variants in each gene was too low to give
reliable results.

Considering Fst, we were able to well discriminate the Finnish
from the other populations (Supplementary Figures 10–19).
These results are concordant with those of the RF algorithm,
where the 10 genes were classified as “population-specific
genes” for all the three considered populations (Supplementary
Table 2) suggesting that for mitochondrial genes, RF can better
differentiate groups if compared to Fst.

Then, we proceeded to the mtDNA–nucDNA combinations
identified by ML classifiers. A total of 10 mitochondrial–nuclear
DNA combinations were found to be population specific for
the Finnish and Italians. Table 3 shows that for FIN, FTO, and
HOXA1 genes were not population specific alone but only in
combination with mitochondrial genes. For TSI, the UCP2 gene
did not have population-specific SNVs alone but had population-
specific SNV combinations with mitochondrial genes. No such
population-specific combinations of genes were observed for the
British population.

Classification Power of
Mitochondrial–Nuclear DNA Combinations
The above results indicate that population classification accuracy
can be improved by combining mitochondrial and nuclear
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TABLE 2 | Classification accuracy for the considered populations.
hhhhhhhhhhhhhhhReference

Target
GBR FIN TSI

GBR mtDNA: 66.84% (10)
nucDNA: 64.21% (7)

mt-nucDNA: 73.15% (17)

mtDNA: 61.28% (12)
nucDNA: 59.57% (7)

mt-nucDNA: 70.18% (18)

FIN mtDNA: 66.84% (13)
nucDNA: 66.31% (7)

mt-nucDNA: 72.10% (19)

mtDNA: 75.23% (11)
nucDNA: 75.71% (13)

mt-nucDNA: 75.76% (69)

TSI mtDNA: 61.31% (13)
nucDNA: 60.78% (9)

mt-nucDNA: 69.28% (12)

mtDNA: 74.78% (10)
nucDNA: 75.69% (12)

mt-nucDNA: 75.80% (62)

TABLE 3 | Population-specific genes determined by the machine
learning (ML) analysis.

GBR FIN TSI

mtDNA

MT-ATP6, MT-ND5,
MT-CYB, MT-CO1,
MT-CO3, MT-ND3,
MT-ND2, MT-ND1,
MT-ND6, MT-ND4

MT-ATP6, MT-ND5,
MT-CYB, MT-CO1,
MT-CO3, MT-ND3,
MT-ND2, MT-ND1,
MT-ND6, MT-ND4

MT-ATP6, MT-ND5,
MT-CYB, MT-CO1,
MT-CO3, MT-ND3,
MT-ND2, MT-ND1,
MT-ND6, MT-ND4

nucDNA

PDRM16, LEPR, DIO2 PDRM16, LEPR, DIO2,
PPARG, NRF1

PDRM16, LEPR, DIO2,
UCP3, CIDEA, PLIN1

mtDNA-nucDNA

MT-CYB + FTO,
MT-ND2 + HOXA1

MT-CYB + PRDM16,
MT-ND5 + NRF1
MT-CYB + DIO2,
MT-ND1 + NRF1,

MT-CYB + HOXA1,
MT-ND3 + NRF1

MT-ND1 + HOXA1,
MT-CYB + NRF1

MT-ATP6 + PRDM16,
MT-CYB + UCP2
MT-ND1 + CIDEA,
MT-ND3 + DIO2

MT-RNR1 + DIO2,
MT-CO3 + LEPR,
MT-ATP6 + UCP2,
MT-ND2 + CIDEA

MT-RNR1 + CIDEA,
MT-ND4 + DIO2

gene variants into the ML analysis. We then addressed the
question on whether the classification power for specific genes
was improved when they get paired. For this purpose, we
compared classification importance scores for the genes and
their pair combinations in RF population classifiers that use
(i) only mitochondrial DNA, (ii) only nuclear DNA, and (iii)
combinations of mitochondrial and nuclear DNA genes.

The two most interesting cases are reported in Table 4:
(1) mtDNA—nucDNA combinations that showed greater
importance scores than mtDNA and nucDNA genes did
separately and (2) mtDNA–nucDNA combinations that were
recruited in population classifiers, while at least one of the single
genes was not. For the pair of populations GBR vs. TSI, we
obtained four combinations of mitochondrial and nuclear DNA,
which showed an increased importance score when brought
together. We have also found some combinations of genes that
are useful in the classification of FIN vs. TSI, while single nuclear
DNA or mitochondrial DNA genes were not even selected
for classification.

Last, Table 5 summarizes all the genes originally chosen as
associated with cold adaptation, and reports which genes were
pinpointed to likely play a major population-specific role alone,

TABLE 4 | Genes that increase their classification power in combination.

Reference
population

Target
population

Increasing
classification

importance when
in combination

Classifying
populations only

when in
combination

GBR FIN MT-ND3 + NRF1
MT-ATP8 + FTO

GBR TSI MT-CO3 + LEPR
MT-ATP6 + PRDM16
MT-RNR1 + CIDEA
MT-RNR1 + DIO2

MT-ND3 + DIO2

FIN GBR MT-ND3 + NRF1

FIN TSI MT-CO2 + PLIN2
MT-CO2 + LEPR

MT-ATP8 + PRDM16
MT-ND3 + DIO2

MT-RNR1 + PRDM16
MT-ND3 + FTO

MT-ND3 + PRDM16
MT-RNR1 + CIDEA
MT-CO2 + UCP3
MT-ATP8 + LEPR

TSI GBR MT-RNR1 + DIO2
MT-RNR1 + CIDEA

MT-ND3 + DIO2

TSI FIN MT-ATP8 + PRDM16
MT-ND3 + DIO2

MT-RNR1 + PRDM16
MT-ND3 + FTO

MT-ND3 + NRF1
MT-RNR1 + LEPR
MT-RNR1 + FTO
MT-ATP8 + LEPR
MT-ATP8 + FTO
MT-ATP8 + DIO2

MT-RNR1 + UCP3
MT-RNR1 + UCP2

and which instead showed statistical epistasis with mtDNA.
The first class was defined based on the list of nuclear genes
from Table 3. The second class was based on the results of
Table 4 so that the statistical epistasis was noted when a nuclear
gene becomes a classifying feature or increases its classification
importance being paired with a mitochondrial gene.

Identification of Population-Specific
Variants
As the number of SNV pairs in all genes was enormous,
we considered only the FTO nuclear gene in combination
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TABLE 5 | List of nuclear genes with their roles in classifying populations.

Nuclear gene Gene is important alone Gene is important with mtDNA

ADRA1A − −

ADRB3 − −

CIDEA TSI TSI

CREB1 − −

DIO2 all populations TSI

FTO − FIN

HOXC4 − −

HOXA1 − −

LIPE − −

LEP − −

LEPR all populations TSI

NRF1 FIN FIN

NRIP1 − −

PLIN1 TSI −

PLIN2 − FIN vs. TSI

PLIN3 − −

PLIN5 − −

PPARG FIN −

PPARGC1A − −

PPARGC1B − −

PRDM16 all populations TSI

PRKAR1A − −

PRKAR2A − −

PRKAR1B − −

PRKAR2B − −

UCP1 − −

UCP2 − FIN vs. TSI

UCP3 TSI FIN vs. TSI

The middle column is based on Table 3. The right column is based on Table 4.
Importance is marked either for classification of specific populations [“Finnish in
Finland (FIN) vs. Tuscany in Italy (TSI)”], or for classification of a population against
the other two (“TSI”), or for classification of every population against the other two
(“all populations”).

with all mitochondrial genes. We applied the RF model, using
SNV combinations variants as an input and performed binary
classification experiments for all population pairs. As for the
previous method, the classification accuracy was higher for the
combinations in comparison to only mitochondrial or nuclear
DNA (Table 6). As a result, we obtained 100 SNV combinations
with the highest values of classification importance. Next, we
intersected the obtained lists of the most important SNV
combinations for all binary classification experiments (GBR vs.
FIN, GBR vs. TSI, and FIN vs. TSI).

There were no common SNV combinations, important for
all populations. We also intersected lists for certain populations
and found three specific combinations for FIN population SNV
pairs: 9066 (MT-ATP6) with rs12933928 (FTO), 12618 (MT-ND5)
with rs12933928 (FTO), and 7124 (MT-CO1) with rs12933928
(FTO). SNV rs12933928 resulted specific for the FIN population
in terms of nuclear DNA experiment, and SNV rs2388451 was
specific for TSI.

DISCUSSION

Mitonuclear interaction represents a fundamental biological
process for complex life, and such intergenomic interaction has
been described as undergoing an intense selection to maintain
the integrity of mitochondria itself. It has been also demonstrated
that mitonuclear gene interactions modulate the expression of
phenotypic traits at different timescales and during life course
(Wolff et al., 2014).

With such a premise, here we applied a method of ML to
investigate and integrate genomic information coming from both
nuclear and mitochondrial DNA. To reduce the huge number
of possible combinations and keep the focus on one biological
issue, we compared genetic variability patterns among human
populations of European ancestry, and we selected 28 nuclear
genes (Table 1) based on their biological function in processes
related to cold adaptation, such as BAT formation. We decided
to include the genes based on their functions even if not all
of the evidence of genetic loci involved in cold response were
reported. This is because we cannot exclude that a combination of
nuclear and mitochondrial variants plays a role even if the single
variant does not.

It is widely described that climate exerted a major role in
shaping populations’ genomic diversity by impacting on several
human traits, such as body size, skin pigmentation, energy
expenditure, and nutrient metabolism (Hancock et al., 2011;
Sturm and Duffy, 2012; Raj et al., 2013; Fumagalli et al., 2015;
Quagliarello et al., 2017; Sazzini et al., 2020). At the same
time, the mitochondria are crucial for heat production in many
organisms and its metabolic role in ATP-production (as well
as for a variety of other cellular functions, such as survival/cell
death, differentiation, redox and inflammation regulation, and
numerous metabolic processes). Along these lines, we selected
three European populations from different latitudes (FIN, GBR,

TABLE 6 | Classification accuracy for the SNV combinations of FTO nuclear gene with mitochondrial genes for all considered populations.
hhhhhhhhhhhhhhhReference

Target
GBR FIN TSI

GBR mtDNA: 60.00%
FTO: 70.05%

mtDNA-FTO: 71.26%

mtDNA: 55.60%
FTO: 54.00%

mtDNA-FTO: 57.15%

FIN mtDNA: 60.00%
FTO: 70.05%

mtDNA-FTO: 71.26%

mtDNA: 65.92%
FTO: 73.02%

mtDNA-FTO: 75.49%

TSI mtDNA: 55.60%
FTO: 54.00%

mtDNA-FTO: 57.15%

mtDNA: 65.92%
FTO: 73.02%

mtDNA-FTO: 75.49%
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and TSI) and analyzed the available data from the 1000
Genomes project.

The first results showed that the accuracy for classification
always increased when we looked at the combination of
mtDNA-nucDNA, indicating a potential functional role of
the combination in shaping the genetic diversity of these
three populations.

Comparing ML to a combination of DAPC and Fst-based
approaches aimed at exploring population genetic structure
(i.e., methods widely used in population genetics studies), we
showed a perfect match regarding the results of DAPC and Fst
analyses and those pointed out by the ML method for nuclear
genes. Conversely, for mtDNA genes, RF effectively increased the
predictive power when compared to Fst, whereas single genes
may be unable to discriminate populations.

DAPC and Fst analyses identified only MT-ND5 and MT-ND6
as population specific, while ML identified 10 genes (Table 3).
Among them, MT-ND3 and MT-ATP6 were identified in line
with a study on mtDNA of populations belonging to different
climate areas, which demonstrated that variants are located
in MT-ND3, and MT-ATP6 showed a significant correlation
with minimum temperatures (Balloux et al., 2009). Moreover,
ML is likely to grasp differences in haplogroup compositions.
Populations of European ancestry have been considered relatively
homogeneous in terms of mtDNA variability; however, published
data showed that haplogroups are largely shared between these
populations, but their frequencies are appreciably different in
the three considered populations (Underhill and Kivisild, 2007;
Pinhasi et al., 2012). For instance, FIN showed a higher frequency
of haplogroup U than GBR or TSI. The differences identified
in Table 3 can be explained by haplogroup variability among
populations and by considering the mutations that characterized
haplogroups. In fact, mtDNA haplogroup U is characterized by
mutations in positions 11,467, 12,308, and 12,372, and two of
them are indeed located in the MT-ND4 and MT-ND5 genes.
Haplogroup H is instead characterized by mutations in positions
73, 11,719, 2,706, and 7,028, and two of them are indeed located in
the MT-ND4 and MT-CO1 genes. Haplogroup J is characterized
by mutations in positions 11,251, 15,452, 16,126 + 295, 489,
10,398, 12,612, 13,708, and 16,069, which are located in MT-
ND4, MT-CYB, MT-ND3, and MT-ND5, and haplogroup T is
characterized by 11,251, 15,452, 16,126 + 709, 1,888, 4,917,
8,697, 10,463, 13,368, 14,905, 15,607, 15,928, and 16,294 mutated
positions located in the MT-ND4, MT-CYB, MT-ND2, MT-ATP6,
and MT-ND5 genes.

Thus, it is interesting to note that ML can identify differences
in terms of haplogroup distribution among the three populations
analyzed that are only marginally identified by classical methods,
such as DAPC and Fst analyses.

DAPC is well suited for identifying the genetic structure
between two or more populations by finding linear combinations
of alleles that enable the distinction between clusters in an
optimal way, and by focusing on the inter-group variability and
disregarding the intra-group one. However, its main limitations
concerning statistical epistasis are (i) the unwanted sensitivity
to associations between variables (that is expected to be present
under epistasis hypothesis) and (ii) the ambiguity in determining
the importance of the found multivariate principal components

for the discrimination between the groups (Jombart et al., 2010).
In particular, it confined the analysis to interrogating specific
genes’ ability to discriminate between populations.

On the contrary, RF is free from these flaws: building several
decision trees and combining them together increase the accuracy
of the result. Moreover, the features are assigned with importance
score that allows for the straightforward interpretation and
comparison of different gene contributions to the performance
of a multivariate classifier. Besides, the use of several trees
reduces the risk of overfitting. The main limitation of an RF
approach is that many trees can make the algorithm slow and
computationally inefficient, which made us introduce aggregate
gene SNV frequency scores instead of using all SNVs.

In this study, we thus identified population-specific
combinations of nuclear and mitochondrial genes.

For TSI, the nuclear gene UCP2 was the only gene that is
not population specific alone but in combination with MT-CYB
and MT-ATP6 genes. For GBR, no combinations of nuclear
and mitochondrial genes have been identified likely because
GBR represents an intermediate population in terms of latitude.
For FIN, the nuclear genes HOXA1 and FTO turned out to
be population specific only in combination with mitochondrial
genes (MT-ND1, MT-ND2, and MT-CYB).

UCP2 is expressed in many cell types, such as white
adipose tissue and pancreatic beta cells, but its functions are
still controversial (Diano and Horvath, 2012). Recent data
showed that both fatty acids and ROS activate UCP2 to buffer
overproduction of ROS and allow efficient mitochondrial energy
production (Andrews, 2010). It can be hypothesized that UCP2
works to reduce ROS produced in population with warm climates
to counteract the damage of ROS production. In fact, it has been
described that different nuclear–mtDNA combinations influence
organelle oxidant production in a population-specific way
(Brown et al., 2020). American individuals of African ancestry,
whose ancestry is related to geographical areas characterized by
hot climates, have a more “economical” mitochondrial transport
that produces the same level of ATP having a lower oxygen
consumption, but at the same time producing more DNA damage
(Krzywanski et al., 2016). Further studies are needed to accurately
prove this hypothesis.

HOXA1 belongs to the HOX gene family. These loci play a role
in adult processes, such as embryo implantation, hematopoiesis,
and endothelial differentiation.

Genetic mutations in HOXA1 in different genetically
isolated populations from Saudi Arabia and Turkey were
reported (Tischfield et al., 2005). Individuals with these
mutations are characterized by facial anomalies, but also by
vascular malformations of the internal carotid arteries and
cardiac outflow tract.

The cardiovascular system is a crucial player in the
cold adaptation as much data suggested. Exposure to cold
temperatures causes rises in vasomotor tone, hemodynamic
parameters, platelet aggregability, and other hematological and
endothelial parameters (Makinen, 2010). It is to mention that
the rates of coronary events increase during cold periods and
especially in a warm climate. It was also showed that the
populations from cold regions (i.e., Northern Sweden, North
Karelia, and Kuopio) showed little change in coronary event

Frontiers in Physiology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 575968

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-575968 November 5, 2020 Time: 14:14 # 9

Kalyakulina et al. Investigating Mitonuclear Genetic Interactions

rates with changes in temperatures (Barnett, 2005). A possible
explanation is that some populations, such as FIN, carry
genetic variants (or combinations of them as in the case of
HOXA1) that confer an advantage to cope with cold climates at
the vascular level.

Moreover, the FTO gene emerged as the only gene that
enables one to distinguish populations only when considered in
combinations with certain mtDNA genes (Table 5).

FTO is the first obesity-susceptibility gene identified in
genome-wide association studies, and it was identified in many
different human groups (Loos and Yeo, 2014). Different patterns
of FTO variation among populations have been described, and its
relevant variants are found to be substantially less prevalent in
populations with non-European ancestry (Loos and Yeo, 2014).

Its role in thermogenesis and its interaction with the
mitochondria have been recently described. The FTO allele
associated with obesity represses mitochondrial thermogenesis
in adipocyte precursor cells in a tissue-autonomous manner
(Claussnitzer et al., 2015). Moreover, FTO affects mitochondrial
content and fat metabolism (Kang et al., 2018). The
interconnection between FTO and mitochondria has been
described as FTO downregulation suppressed mitochondria
biogenesis and energy production, resulting in decreased
mitochondria mass and mtDNA content (Kang et al., 2018).
Moreover, recently Dunham-Snary and colleagues using
Mitochondrial-Nuclear eXchange mice demonstrated that
different mitochondrial–nuclear genome combinations influence
metabolism, adiposity, and gene expression (Dunham-Snary
et al., 2018). Furthermore, combinations of mtDNA and
nucDNA have been associated with different metabolic traits,
such as adipose measures (Kraja et al., 2019).

All these data support the recent biological evidence
that highlights the possible interconnection between genetic
variability of FTO and mtDNA.

We identified a single variant (rs12933928) located in the FTO
gene that interacts with several mitochondrial variants and that
characterized the Finnish population.

Single nucleotide variant rs12933928 is located at the end of
the FTO locus far from the body mass index (BMI)-associated
FTO intron 1 region. This variant has been shown to increase the
risk of the degenerative disk disease and melanoma independent
of obesity (Li et al., 2013; Lao et al., 2014; Kalo et al., 2020).
Melanoma risk in Europeans is associated with a lighter skin
pigmentation that has been proposed to be beneficial in northern
latitudes to sustain vitamin D3 production in low-ultraviolet
environments (Jablonski and Chaplin, 2010; the GenoMEL
Consortium, 2013; Key et al., 2016).

Even if no functional data are present in the literature,
it is interesting to note that mitochondria are implicated
in the biosynthesis of melanin in melanocytes required
to create the pigmentation in response to UV light
(Rosania, 2005; Sreedhar et al., 2020). Moreover, it has been
reported that melanoma skin cancer cells also generate
a high level of reactive oxygen species (ROS) in their
mitochondria, suggesting a hypothetical link between the
identified signals in nuclear and mitochondrial genomes
(Boulton and Birch-Machin, 2015).

In conclusion, we are aware of the limitations and
strengths of this study.

The main limitations are:

(1) The fact that we identified statistical interactions at the
genetic level, which need a functional validation using
biological models (in vivo or in vitro);

(2) The absence of phenotypic data to test direct associations
(mtDNA–nucDNA combination vs. potentially adaptive
phenotypic traits);

(3) We cannot distinguish if the interactions identified may
be due to migration/admixture patterns and the peculiar
genetic history of the populations analyzed or to a potential
selective advantage of having some combinations of nuclear
and mitochondrial variants. Further studies are needed
in this direction.

However, recent data support the fact that mitonuclear
interactions are consistent with our understanding of the
demographic history of human populations, stressing the absence
of selective pressures to maintain mitonuclear combinations
(Sloan et al., 2015). Despite that and irrespectively to the
evolutionary forces that acted on these combinations, their
impact on human health seems to be relevant (Kenney et al., 2014;
Mottis et al., 2019; Zaidi and Makova, 2019; Rand and Mossman,
2020) and a further effort to find methods able to estimate the
strength of selection on mitonuclear combination are needed.

The main strengths and novelty of this study are twofold (both
methodological and biological):

• The method seems to be useful to detect patterns of genetic
structure among human groups and to grasp different
dimensions of the genetic variability that characterize
human populations. It may be applied to single genes and
combinations of genes. It is always concordant with the
results of Fst and DAPC analyses, and in certain cases,
it reported more informative genes with good accuracy
(for example, for mtDNA). The use of ML was applied to
describe genetic variation among human populations from
different latitudes, but can be potentially applied to many
other case studies of biological interest.
• The analysis identified nuclear genes that likely play a

relevant biological role in association with a mitochondrial
gene and that are population specific (such as FTO). The
rationale used to select the analyzed genes supports the
probability that these interactions may play a role in cold
adaptation and related traits and gives suggestions for new
target genes to be further investigated by in vivo and
in vitro studies.
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