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Physical exercise induces acute physiological changes leading to enhanced tissue 
cross-talk and a liberation of extracellular vesicles (EVs) into the circulation. EVs are 
cell-derived membranous entities which carry bioactive material, such as proteins and 
RNA species, and are important mediators of cell-cell-communication. Different types of 
physical exercise interventions trigger the release of diverse EV subpopulations, which 
are hypothesized to be involved in physiological adaptation processes leading to health 
benefits and longevity. Large EVs (“microvesicles” and “microparticles”) are studied 
frequently in the context of physical exercise using straight forward flow cytometry 
approaches. However, the analysis of small EVs (sEVs) including exosomes is hampered 
by the complex composition of blood, confounding the methodology of EV isolation and 
characterization. This mini review presents a concise overview of the current state of 
research on sEVs released upon physical exercise (ExerVs), highlighting the technical 
limits of ExerV analysis. The purity of EV preparations is highly influenced by the co-isolation 
of non-EV structures in the size range or density of EVs, such as lipoproteins and protein 
aggregates. Technical constraints associated with EV purification challenge the 
quantification of distinct ExerV populations, the identification of their cargo, and the 
investigation of their biological functions. Here, we offer recommendations for the isolation 
and characterization of ExerVs to minimize the effects of these drawbacks. Technological 
advances in the ExerV research field will improve understanding of the inter-cellular cross-
talk induced by physical exercise leading to health benefits.

Keywords: physical exercise, extracellular vesicles, tissue cross-talk, circulation, plasma, EV isolation, 
standardization, exosomes

INTRODUCTION

Strenuous physical exercise induces broad systemic changes in the body. In order to supply 
the tissues with an increasing amount of nutrients and oxygen, the respiratory, the cardiovascular 
and the neuromuscular systems are activated. Furthermore, enhanced shear forces, oxidative 
stress, and inflammatory reactions can be  observed (Whyte and Laughlin, 2010; Schild et  al., 
2016). When performed regularly under moderate conditions, these bodily reactions lead to 
health benefits and disease prevention (Warburton and Bredin, 2017). Extracellular vesicles (EVs) 
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are important players of cell-cell communication and are 
expected to contribute to these beneficial adaptations 
(Safdar and Tarnopolsky, 2018).

Extracellular vesicles compose of a phospholipid bilayer 
membrane encapsulating proteins, lipids, metabolites, and nucleic 
acid species, which differ depending on their parent cells, 
environmental factors, and stimuli (Colombo et  al., 2014; 
van Niel et al., 2018). Three main types of EVs can be differentiated: 
exosomes originating from the endosomal machinery with a 
size of 30–100  nm, microvesicles in the size of 150–1,000  nm 
directly shedding from the plasma membrane, and apoptotic 
bodies formed as large vesicles during apoptosis. Upon diverse 
stimuli, EVs are released by most cell types into the interstitial 
fluid and body fluids, including blood, urine, lymph, and 
cerebrospinal fluid (Yáñez-Mó et  al., 2015).

Extracellular vesicles in blood comprise a heterogeneous 
mixture of vesicles derived from platelets, red blood cells 
(together >50%), other circulating cells, and cells of the 
surrounding tissues (Arraud et al., 2014; Yáñez-Mó et al., 2015). 
Due to the lack of exclusive marker proteins and purification 
strategies for the EV-subclasses, the primary criteria to 
differentiate EVs in blood are size (Tkach et  al., 2018). Thus, 
it became common to define EVs in the size of exosomes as 
small EVs (sEVs) and EVs above this size as large EVs. Cryo-
electron microscopy analysis indicates an EV concentration of 
~50,000/μl plasma, however, reports on EV numbers in blood 
are diverse (200–109/μl plasma), highly depending on the 
method of examination (Shet et al., 2003; Dragovic et al., 2011; 
Arraud et al., 2014). Their presence in the circulation is restricted 
to few minutes or hours before they reach their targets 
(Takahashi et  al., 2013; Matsumoto et  al., 2020).

Next to the variety of circulating EVs, blood contains other 
bioactive components in submicron size, including plasma 
proteins, lipoproteins (Simonsen, 2017), and exomeres (Zhang 
et  al., 2018). The heterogeneity of EV populations and other 
bioactive particles in blood faces EV research with numerous 
challenges and, thus, confuses the determination of EVs released 
into the circulation upon physical exercise (ExerVs). The 
modalities of ExerV-release, the putative role in adaptation 
signaling as well as prospective therapeutic and diagnostic 
applications were recently highlighted and comprehensively 
summarized (e.g., Trovato et  al., 2019; Fuller et  al., 2020; 
Vechetti et al., 2020). Here, we supplement this body of literature 
with a compilation of the most relevant technical limitations 
regarding ExerV isolation and characterization, focusing on 
sEVs. We  provide a concise guideline for ExerV analysis and 
data interpretation, which we hope will help to further develop 
this young and promising research field.

EVs IN PHYSICAL EXERCISE

The different physiological stimuli during physical exercise lead 
to an alteration of the EV landscape in blood. Research in 
humans was mainly focused on flow cytometric analysis of 
large EVs from platelets and endothelial cells, also called 
microparticles. As reviewed in detail elsewhere (Eichner et al., 2018; 

Wilhelm et al., 2018), the concentration of platelet microparticles 
increases during physical activity, starting at an early phase of 
exercise and reaching baseline few hours after the exercise 
session. Their release has been attributed to the activation of 
coagulative processes (Ahmadizad et  al., 2010) and shear stress 
(Wilhelm et  al., 2016). In contrast, abundance of endothelial 
microparticles varied between studies, but was reported as 
unchanged in most cases after exercise (Eichner et  al., 2018; 
Wilhelm et  al., 2018).

Recently, sEVs have caught attention in the context of 
physical activity and an increasing number of studies addressed 
the release and their possible involvement in signaling pathways. 
Some studies in humans and rodents observed an immediate 
increase of sEVs after a single bout of physical exercise (Frühbeis 
et  al., 2015; Bei et  al., 2017; Oliveira et  al., 2018; Whitham 
et  al., 2018; Brahmer et  al., 2019). One study found a direct 
reduction of total EV numbers, while detecting an increased 
population of muscle cell-derived EVs (Rigamonti et al., 2019). 
Furthermore, elevation of resting EV levels were detected in 
response to long-term exercise interventions (Chaturvedi et al., 
2015; Bei et  al., 2017; Bertoldi et  al., 2018; Ma et  al., 2018), 
though Hou et  al. (2019) could not detect changes in EV 
levels. ExerVs appear as a complex mixture of vesicles originating 
from platelets (Frühbeis et  al., 2015; Brahmer et  al., 2019), 
endothelial progenitor, or endothelial cells (Ma et  al., 2018; 
Brahmer et  al., 2019; Hou et  al., 2019), leukocytes (Brahmer 
et  al., 2019), and muscle cells (Guescini et  al., 2015; Whitham 
et  al., 2018; Rigamonti et  al., 2019), which most probably 
varies depending on exercise mode and time of investigation.

Analysis of the protein cargo of ExerVs identified various 
proteins associated with key signaling pathways, including 
angiogenesis, immune signaling, and glycolysis (Bryl-Górecka 
et  al., 2018; Whitham et  al., 2018; Brahmer et  al., 2019; Just 
et al., 2020). Additionally, the secretion and transport of myokines 
via ExerVs was suggested (Whitham et  al., 2018). Moreover, 
several studies found evidence for the transport of an altered 
miRNA panel via sEVs in response to exercise bouts or training 
(Chaturvedi et  al., 2015; Guescini et  al., 2015; D’souza et  al., 
2018; Lovett et  al., 2018; Ma et  al., 2018; Oliveira et  al., 2018; 
Hou et  al., 2019; Yin et  al., 2019; Just et  al., 2020). In acute 
exercise settings, this alteration was restored after 4  h or later 
(D’souza et  al., 2018; Yin et  al., 2019). Some of the miRNAs 
carried by ExerVs belong to the group of myomirs indicating 
involvement of EVs in muscle regeneration processes following 
exercise (Guescini et  al., 2015; Yin et  al., 2019). Functional 
analysis of ExerVs suggested contribution to cardio protection 
in ischemia/reperfusion-injury (Bei et  al., 2017; Hou et  al., 
2019), hypoxia/reoxygenation-assays (Hou et  al., 2019), tissue 
remodeling (Chaturvedi et  al., 2015), endothelial function (Ma 
et  al., 2018), as well as muscle remodeling and growth (Just 
et  al., 2020) potentially mediated by ExerV-cargo transported 
in response to exercise stimuli.

Interestingly, no major discrepancies in the characteristics 
of ExerVs were detected between human, mouse, or rat models. 
Though, several aspects were identified which may influence 
specific results, including exercise setting (e.g., load or type of 
exercise; Frühbeis et al., 2015; Ma et al., 2018; Whitham et al., 2018; 
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Brahmer et al., 2019; Yin et al., 2019), daytime (Bertoldi et al., 2018), 
age (Bertoldi et  al., 2018), sex (Rigamonti et  al., 2019), and 
body-mass-index (Rigamonti et  al., 2019).

Overall, these studies provide evidence that sEVs are actively 
released into the circulation upon physical exercise and may 
function as mediators of different key signaling pathways, 
possibly involved in adaptation processes triggered by exercise 
(Figure  1). However, the awareness of potential flaws in the 
isolation and characterization of blood plasma EVs suggests 
a critical reflection of data interpretation regarding the side-
effects caused by co-isolated non-EV components.

LIMITATIONS OF sEV ANALYSIS IN 
BLOOD PLASMA

Isolation
The common strategies to separate sEVs from blood plasma 
are highly susceptible to co-isolate lipoproteins, plasma proteins, 
including albumin, clotting factors, immunoglobulins, and other 
macromolecules likewise present in blood. Frequently used EV 
isolation techniques are differential ultracentrifugation (dUC; 
Théry et al., 2006) and commercial precipitation-based methods 
(e.g., “ExoQuick”; Van Deun et al., 2017). However, application 
of dUC or EV precipitation results in low-purity EVs with 
high amounts of co-isolated plasma proteins and lipoproteins 
and may promote the formation of aggregates (Linares et  al., 
2015; Lobb et al., 2015). Consequently, different EV purification 
techniques were developed aiming at separation of EVs from 
these main contaminants (for a detailed review, see Monguió-
Tortajada et  al., 2019). Lipoproteins, which are found in 
concentrations of 1016/ml plasma, share either size (chylomicrons, 
very low-density lipoprotein) or density (high-density lipoprotein) 
with EVs (Simonsen, 2017). Size exclusion chromatography (SEC) 

separates the majority of plasma proteins and small lipoprotein 
particles from EVs (Böing et al., 2014), which can be subjected 
to various downstream analysis methods. However, the remaining 
contaminants (large lipoprotein particles, among others) still 
hamper the subsequent use of SEC-EVs for sensitive downstream 
analysis like RNA-sequencing or proteome analysis and functional 
analyses. It turned out that a combination of different EV isolation 
strategies leads to high-purity EVs. Especially combination with 
density gradient centrifugation designed to separate EVs from 
large lipoproteins with lower density was successful in improving 
purity of EV preparations. For example, enrichment of EVs 
on a density cushion before purification with SEC led to reduced 
lipoprotein co-isolation and enabled detailed proteomic and 
RNA analysis (Karimi et  al., 2018). Also, purity of sEVs was 
markedly increased by sequential dUC and density gradient 
centrifugation or immuno-affinity capture (Jeppesen et  al., 
2019). However, these approaches are highly laborious and 
associated with low recovery, hampering their application in 
clinical settings. Immuno-affinity isolation (e.g., using CD63-
antibody coupled beads) including magnetic separation of 
captured EVs from plasma components offers a quick possibility 
to enrich for specific EV populations (Greening et  al., 2015; 
Kowal et  al., 2016; Nakai et  al., 2016). However, applying 
immuno-affinity isolation for specific surface proteins introduces 
a selection bias for the chosen EV-associated protein and affinity 
beads are difficult to remove from EVs for intended functional 
analyses. Conclusively, a method for complete separation of 
EV subtypes from other plasma components is presently lacking 
and the technique should be  carefully chosen based on the 
research aim and the subsequent EV analysis strategy.

Characterization
Given the complex composition of the plasma-EV pool and 
the limitations in EV isolation, plasma-EV characterization 

FIGURE 1 | Model of extracellular vesicle (EV) release and function in response to physical exercise. During or after physical exercise, platelets, endothelial cells, 
leukocyte subsets, and muscle tissue release a complex mixture of EVs into the blood stream (ExerVs). These may deliver bioactive cargo in key signaling processes 
and mediate adaptational processes leading to health benefits. This figure was created using Servier Medical Art templates, which are licensed under a Creative 
Common Attribution 3.0 Generic License.
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is similarly challenging. Western blotting, nanoparticle tracking 
analysis (NTA), and electron microscopy are the most frequently 
used methods to characterize EV size and composition (Gardiner 
et al., 2016). Electron microscopy, in particular when coupled 
with immuno-gold labeling, is a valuable technique for EV 
characterization on single-EV level (Arraud et  al., 2014; van 
der Pol et  al., 2014). However, this technique is laborious 
and only available in expertized facilities. NTA offers a fast 
possibility to estimate a size profile and concentration of an 
EV sample (Dragovic et  al., 2011). Though, this technique 
does not cover the complete size spectrum of EVs, and 
enumeration is highly influenced by co-isolates (Yuana et  al., 
2014; Jamaly et al., 2018). We noticed that intake of a high-fat 
meal had an enormous effect on particle numbers estimated 
by NTA, which were elevated by an order of magnitude under 
postprandial conditions indicating an increased co-isolation 
of lipoproteins (Brahmer et al., 2019). Similarly, flow cytometric 
analysis of large EVs is highly confounded by food-intake 
(Sódar et al., 2016). These findings indicate that EV enumeration 
using conventional NTA or flow cytometry (FC) is highly 
susceptible to lipoprotein contamination, which is dominating 
in absolute numbers even in samples derived from starved 
individuals, and thus cannot be  consulted to determine 
EV-numbers or yield. While vesicle-specific labeling may 
improve accuracy, commonly used membrane dyes seem to 
fail in labeling all EVs in a sample or additionally stain non-EV 
sample components (de Rond et  al., 2018). To circumvent 
these technical challenges, multiple innovative EV isolation 
methods, which include flow field-flow fractionation (Sitar 
et  al., 2015) and acoustic approaches (Lee et  al., 2015; Rezeli 
et  al., 2016), were introduced. In addition, the invention of 
proper EV reference material has gained increasing attention 
(Valkonen et  al., 2017; Geeurickx et  al., 2019; Lozano-Andrés 
et  al., 2019). These developments may provide the possibility 
to estimate actual ExerV concentrations and yield in 
future experiments.

Dynamics and Phenotyping
Further information about the nature of the vesicles and 
potential EV-subpopulations is provided by the presence of 
the tetraspanins CD9, CD63, and CD81, other genuine EV 
markers such as TSG101, Syntenin, or Alix (Théry et  al., 
2018; Jeppesen et  al., 2019) and cell type specific markers 
embedded in the membranes of the vesicles. These enable 
examination of EV level dynamics and the cell types of origin. 
Therefore, next to straight forward Western blotting or highly 
sensitive mass spectrometry proteome analysis, microarray, 
or FC techniques are frequently applied (Jørgensen et  al., 
2013; van der Pol et  al., 2014; Arraud et  al., 2016; Tian 
et  al., 2018). For the latter, especially the resolution of 
conventional FC devices constitutes a main obstacle since 
particles smaller than 500 nm are difficult to detect (Erdbrügger 
et  al., 2014; Welsh et  al., 2020). Technical improvements in 
FC sensitivity, the use of strategic fluorescence labeling in 
FC (e.g., immunobead-based multiplexed assay, Koliha et al., 2016), 
and combination of FC with high-resolution imaging 

(Lannigan and Erdbruegger, 2017; Görgens et  al., 2019) 
continuously advance the EV-phenotyping technology. Still, 
availability of a robust high-throughput single-EV detection 
method would be  crucial to determine the full dynamics 
and phenotypes of defined EV subpopulations in the complex 
pool of ExerVs.

Cargo
The analysis of proteomic and nucleic acid content in plasma-EVs 
by mass-spectrometric profiling or RNA-sequencing, respectively, 
is important to reveal functional properties of EVs. As introduced 
above, the choice of isolation technique may massively confound 
omics results (Van Deun et  al., 2014; Simonsen, 2017). For 
example, lipoproteins are also capable of transporting RNA 
species (Vickers et  al., 2011) and miRNA mediated results can 
easily be  misinterpreted as EV-specific while being a result of 
lipoprotein co-isolation.

In conclusion, plasma-EV and thus ExerV isolation and 
characterization are highly demanding tasks. One must carefully 
consider the combination of EV purification and subsequent 
characterization method in order to prevent contaminants 
falsifying the experimental outcomes. Existing technical limits 
need to be  considered for accurate data interpretation.

DISCUSSION

Rigorous ExerV Analysis
The present reports on sEVs or exosome-like EVs in exercise 
settings comprise a collection of multiple different EV isolation 
methods and characterization strategies. Diverse separation 
methods were used to study the amount, cargo and functions 
of ExerVs from human, mouse, and rat plasma or serum: 
centrifugation at 20,000  ×  g (Whitham et  al., 2018), dUC 
(Chaturvedi et al., 2015; Frühbeis et al., 2015; Guescini et al., 
2015; Ma et  al., 2018; Hou et  al., 2019; Rigamonti et  al., 
2019), chemical precipitation (Bei et al., 2017; Bertoldi et al., 
2018; Oliveira et  al., 2018; Hou et  al., 2019; Yin et  al., 2019; 
Just et  al., 2020), SEC (D’souza et  al., 2018; Lovett et  al., 
2018; Brahmer et al., 2019; Just et al., 2020), immuno-affinity 
capture (Guescini et  al., 2015; Ma et  al., 2018; Brahmer 
et al., 2019), and acoustic trapping (Bryl-Górecka et al., 2018). 
Importantly, these studies consistently reported increasing 
amounts of EVs during or after acute or chronic exercise, 
changes in the miRNA and proteomic cargo of ExerVs as 
well as beneficial effects of ExerVs in key signaling pathways. 
However, these observations should be  reflected regarding 
a potential co-isolation of macromolecular complexes (a) 
influencing particle enumeration, (b) contributing to RNA 
and proteins mistakenly designated as ExerV cargo, and (c) 
responsible for effects observed in functional analysis. 
Following the MISEV recommendations of the International 
Society for Extracellular Vesicles (Théry et  al., 2018), 
we  extrapolate this advice for ExerV analysis and address 
the most striking technical hindrances which could impact 
ExerV study interpretation (Figure  2).
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A solid basis for ExerV analysis is provided by careful 
selection of the preanalytical factors (Lacroix et  al., 2012; 
Théry et al., 2018). Standardized sample processing including 
the preparation of platelet-free plasma (Lacroix et  al., 2012) 
will reduce influence of preanalytical factors on ExerV 
analysis. For the separation of ExerVs from plasma, the 
use of a two-step isolation protocol (e.g., isolating for size 
and density, subsequently) or inclusion of an EV-marker 
specific isolation step (e.g., CD63-immuno-affinity capture) 
is beneficial. In interest of reproducibility, the isolation 
procedure (centrifugal forces, pore sizes, used kits, etc.) as 
well as sample storage conditions (buffer, temperature, etc.) 
should be  comprehensively reported. One should consider 
that a freezing cycle (of blood plasma or isolated vesicles) 
can lead to changes in vesicle properties (Lorincz et  al., 
2014; Yuana et  al., 2015) and that initial investigations 
should better be  performed with freshly obtained sample 
material and confirmed using frozen samples. A full basic 
ExerV characterization includes biochemical EV-marker 
analysis, single-EV imaging and single particle tracking 
(further details can be found in the MISEV-guidelines; Théry 
et  al., 2018). Consequent monitoring of the degree of 
co-isolation of non-EV material, e.g., via Western blotting 
for non-EV markers like apolipoproteins, plasma proteins, 
and RNA-binding proteins, offers improved evaluation of 
study results. Since exercise triggers many systemic changes, 
it is not sufficient to characterize pre-exercise EVs in detail 
and assume similar basic characteristics, including purity, 
of the isolated EV material under exercise conditions. 

Similarly, a modification of the EV isolation technique 
requires updated EV characterization. Importantly, we  do 
not recommend relying on non-fluorescence-NTA and 
conventional FC for EV enumeration and subsequent 
normalization in downstream experiments. The results will 
be misleading, due to a strong bias introduced by remaining 
lipoproteins. In fluorescence-NTA, antibody labeling of EVs 
may be  preferred over the use of lipophilic dyes. Likewise, 
normalization according to total protein is not recommended, 
given the high degree of plasma protein co-isolation. It 
should be  noted, that most presently available methods of 
EV-quantification operate at a semi-quantitative level.

To avoid confounders and misinterpretation of proteomic 
and transcriptomic data as well as biodistribution and functional 
analysis, it may be helpful to include control conditions utilizing 
EV-depletion or EV-degradation. These controls may indicate, 
although not absolutely confirm, EV-specificity of the results. 
Discussion of the latter is recommended for all experimental 
details. Notably, the term sEVs may be  preferred over the 
term exosomes, unless the endosomal origin of EVs has been 
verified (Witwer and Théry, 2019). We  propose using the term 
ExerVs to include small and large EV-subpopulations into 
analysis and study interpretation.

A valuable platform to report on experimental details and 
get technical information about published work on EVs and 
ExerVs is the EV-TRACK knowledgebase (Van Deun et  al., 
2017). On a long-term, optimized ExerV sample preparation 
and characterization as well as transparent reporting will lead 
to reliable results and improve inter-study comparison in the future.

FIGURE 2 | Considerations for the analysis of extracellular vesicles in physical exercise. EV, extracellular vesicle; dUC, differential ultracentrifugation; SEC, size 
exclusion chromatography; NTA, nanoparticle tracking analysis; CD, cluster of differentiation; TSG101, Tumor susceptibility gene 101; WB, Western blot analysis; 
apoA1, apolipoprotein1; AGO2, argonaute2 protein; and RNA-seq, RNA-sequencing.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Brahmer et al. Considerations for ExerV Analysis

Frontiers in Physiology | www.frontiersin.org 6 December 2020 | Volume 11 | Article 576150

FUTURE

The involvement of ExerVs in health-promoting adaptation processes 
initiated by physical exercise suggested in the current literature 
represents a valid and attractive working hypothesis. In future 
studies, a well-designed strategy of improved EV isolation involving 
sequential purification steps that reduce co-isolation of non-EV 
material is instrumental to overcome the methodical challenges 
of ExerV characterization. Downstream examination of high-purity 
ExerVs will provide a more precise picture of the proteomic, 
metabolomic, and nucleic acid content of defined ExerV 
subpopulations and their multiple functions. Moreover, standardized 
EV-methodology is required to implement high-throughput analysis 
of ExerVs. We  encourage ExerV researchers to make use of 
community-driven tools provided by the International Society of 
Extracellular Vesicles, like the EV-TRACK knowledgebase, and 
to follow the regularly updated MISEV-guidelines. The EV research 
field is developing rapidly, and improved purification and analysis 
techniques will be  instrumental to unravel the role of EVs in 
the adaptation processes in response to exercise in the future.
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