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Aging imposes a barrier for tissue regeneration. In the heart, aging leads to a severe 
rearrangement of the cardiac structure and function and to a subsequent increased risk 
of heart failure. An intricate network of distinct pathways contributes to age-related 
alterations during healthy heart aging and account for a higher susceptibility of heart 
disease. Our understanding of the systemic aging process has already led to the design 
of anti-aging strategies or to the adoption of protective interventions. Nevertheless, our 
understanding of the molecular determinants operating during cardiac aging or repair 
remains limited. Here, we will summarize the molecular and physiological alterations that 
occur during aging of the heart, highlighting the potential role for long non-coding RNAs 
(lncRNAs) as novel and valuable targets in cardiac regeneration/repair.
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INTRODUCTION

Worldwide, cardiovascular diseases are the leading cause of death, causing nearly 18  million 
deaths in 2017. Cardiovascular diseases comprise several pathological conditions, including 
heart failure (Yusuf et  al., 2001; Lloyd-Jones et  al., 2009, 2010; Mensah et  al., 2019). Aging 
is probably the most important risk factor for heart failure (Li et  al., 2020a). As opposed 
to the neonatal heart, adult mammalian hearts lose their capacity to fully regenerate after 
an exogenous or endogenous harm (Lam and Sadek, 2018). This may be  mediated through 
several interconnected processes, including cellular senescence and secreted factors, telomere 
attrition, mitochondrial damage, cell death, or inflammation (for a comprehensive review 
on age-related pathways affecting the heart, see Li et  al., 2020a). Although a partial myocyte 
turnover has been observed in adult heart after damage (e.g., myocardial infarction), it 
only partially and slightly restores heart function. For instance, it has been recently 
demonstrated that manipulation of telomere length through the expression of telomerase, 
whose expression is silenced in the mouse heart from day 5 to 7 (Blasco et  al., 1995; 
Borges and Liew, 1997; Richardson et  al., 2012), may be  beneficial in heart healing and 
healthspan (Bernardes de Jesus and Blasco, 2011; Bar et  al., 2014).

Long non-coding RNAs (lncRNAs) have emerged as important regulators of epigenetic 
modulation and gene expression. Although deprived from coding potential, lncRNAs have 
been associated with several biological processes, including dosage compensation, genomic 
imprinting, aging, and cell differentiation (Mercer et  al., 2009; Rinn and Chang, 2012; 
Sousa-Franco et  al., 2019; Yao et  al., 2019). Furthermore, lncRNAs have been linked to 
several diseases including cardiovascular diseases (Hobuß et  al., 2019; Abbas et  al., 2020). 
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In this review, we will discuss the cardiac regeneration properties 
of neonatal and adult hearts. We  will focus on lncRNAs and 
their potential role in cardiac regeneration briefly discussing 
the potential of fibroblasts as a source of cardiomyocytes for 
regenerative medicine purposes.

CARDIAC REGENERATION IN 
NEONATAL AND ADULT HEARTS

There is a general consensus on the capacity of neonatal hearts 
to regenerate, after distinct types of damage (Supplementary  
Figure  1 – Porrello et  al., 2011, 2013; Haubner et  al., 2012, 
2016; Jesty et  al., 2012; Mahmoud et  al., 2013, 2014, 2015; 
Rubin et  al., 2013; Andersen et  al., 2014, 2016; Aurora et  al., 
2014; Sadek et  al., 2014; Bryant et  al., 2015; Darehzereshki 
et  al., 2015; Han et  al., 2015; Jiang et  al., 2015; Konfino et  al., 
2015; Aix et  al., 2016; Blom et  al., 2016; Kang et  al., 2016; 
Tao et  al., 2016; Valiente-Alandi et  al., 2016; Xiong and Hou, 
2016; Yu et  al., 2016; Ai et  al., 2017; Bassat et  al., 2017; Malek 
Mohammadi et  al., 2017; Zebrowski et  al., 2017; Ahmed et  al., 
2018; Ingason et  al., 2018; Sampaio-Pinto et  al., 2018; Sereti 
et  al., 2018; Cai et  al., 2019; Elhelaly et  al., 2019; Wang et  al., 
2019b; Fan et  al., 2020; Pei et  al., 2020; Li et  al., 2020b, 
2020c). A comprehensive overview of neonatal heart 
regeneration studies has been previously and elegantly detailed 
by Lam and Sadek (2018). Heart regeneration seems to 
be  dependent on the type of injury that causes loss of 
cardiomyocytes. For example, cryoinjury does not induce the 
same level of regeneration as apical resection or myocardial 
infarction. Furthermore, it is likely that neonatal heart 
regeneration is mediated by the proliferation of pre-existing 
cardiomyocytes, and not by cardiac stem or progenitor cells. 
This regenerative state occurs in an extremely short time 
frame (<10days; Eschenhagen et  al., 2017) and, just a few 
days after birth, cardiomyocytes exit the cell cycle resulting 
in a decline in heart regeneration capacity. This is accompanied 
by other alterations in the cardiomyocytes, including their 
metabolic needs or changes in the expression of both coding 
and non-coding genes. Subsequently, several strategies have 
been designed for regenerating the adult heart. Those 
approaches may include the forced re-entering in the cell 
cycle of the pre-existing cardiomyocytes, or may include cell 
transdifferentiation strategies, in which somatic cells can 
be  converted into functional cardiomyocytes for cell 
replacement therapy (Qian et  al., 2012; Addis and Epstein, 
2013; Nam et  al., 2013; Wada et  al., 2013; Ghiroldi et  al., 
2017; Amin et  al., 2018; Engel and Ardehali, 2018a).

A ROLE FOR lncRNAs IN HEART 
REGENERATION

The importance of lncRNAs in heart regeneration has been 
brought to light recently (Bar et  al., 2016; Abbas et  al., 2020). 
LncRNAs are a vast category of non-coding, poorly conserved, 
and tissue- and developmental stage-specific transcripts with 

distinct functions in several biological processes, including 
epigenetic, transcriptional, and post-transcriptional regulation. 
Regarding the role of lncRNAs in heart regeneration, we  will 
discuss some recent studies describing lncRNAs directly acting 
(promoting or inhibiting) on heart regeneration (Table  1).

LncRNAs That Promote Cardiomyocyte 
Proliferation and Cardiac Regeneration
P7 mice subjected to LAD ligation and injected with adenovirus 
containing NR_045363 exhibited improved left ventricular ejection 
fraction and reduced infarct size compared to the control-injected 
group (Wang et  al., 2019a). Mice overexpressing NR_045363 
showed higher expression of cardiomyocyte mitotic markers, 
such as Ki67 and phosphorylated histone H3 (pH3), suggesting 
that improved heart function after MI was due to cardiomyocyte 
proliferation. The authors reported that NR_045363 acted as a 
competing endogenous RNA (ceRNA), binding to miR-216a 
(Wang et al., 2019a). miR-216a is known to repress JAK2, leading 
to decreased levels of phosphorylation of STAT3 (Hou et  al., 
2015). Furthermore, deletion of STAT3 was shown to impair 
cardiomyocyte proliferation after apical resection (Kurdi et  al., 
2018), suggesting that NR_045363 promoted cardiomyocyte 
proliferation by modulating the JAK2-STAT3 pathway. So, the 
absence of NR_045363 (which results in an upregulation of 
miR216a) led to reduced activity of the JAK2-STAT3, whilst 
NR_045363 overexpression (which leads to a downregulation 
of miR-216a) resulted in an increase of the phosphorylation 

TABLE 1 | LncRNAs with reported roles in cardiac regeneration..

LncRNA Reported role in cardiac regeneration Reference

Negative regulators

AZIN2-sv

↓ cardiomyocyte proliferation by 
sequestering miR-214 and leading to a 
decrease in the phosphorylation of Akt 
and Cyclin D

Li et al., 2018b

CAREL
↓ cardiomyocyte proliferation by 
sequestering miR-296 and activating 
Trp53inp1 and Itm2a

Cai et al., 2018

CPR

↓ cardiomyocyte proliferation by the 
recruitment of DNMT3A, leading to 
increased levels of methylation of the 
MCM3 promoter

Ponnusamy et al., 
2019

CRRL
↓ cardiomyocyte proliferation by 
sequestering miR-199a-3p, leading to an 
increased expression of Hopx

Chen et al., 2018

LncDACH1
↓ cardiomyocyte proliferation by 
regulating PP1A/YAP1 signaling

Cai et al., 2020a

SARRAH
↑ cardiomyocyte apoptosis by increasing 
caspase activity

Trembinski et al., 
2020

Positive regulators

NR_045363

↑ cardiomyocyte proliferation via the miR-
216a/JAK-STAT3 pathway Wang et al., 2019a; 

Chen et al., 2020↓ cardiomyocyte apoptosis by blocking 
p53 activation

ECRAR
↑ cardiomyocyte proliferation by 
promoting phosphorylation of ERK1/2 to 
activate Cyclins D1 and E1

Chen et al., 2019

Sirt1 antisense 
lncRNA

↑ cardiomyocyte proliferation and ↓ 
cardiomyocyte apoptosis by stabilizing 
Sirt1

Li et al., 2018a
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levels of JAK2 and STAT3, thus promoting cardiomyocyte 
proliferation (Wang et  al., 2019a). More recently, NR_045363 
was associated with cardiomyocyte apoptosis. Chen et al. (2020) 
reported that loss of NR_045363 led to the activation of the 
p53 signaling pathway, promoting apoptosis. On the other hand, 
overexpressing NR_045363 inhibited apoptosis and improved 
cardiac function after MI, thus potentially mediating the cardiac 
functions observed after NR_045363 modulation.

Long non-coding RNA endogenous cardiac regeneration-
associated regulator (ECRAR) was found to be  upregulated in 
the fetal heart, and its expression gradually decreased in postnatal 
hearts. Overexpression of ECRAR in postnatal rat cardiomyocytes, 
both in vitro and in vivo, resulted in an increase of DNA 
synthesis, and an increase of cytokinesis (pH3 and aurora B 
kinase), suggesting a direct involvement in cardiomyocytes 
proliferation (Chen et  al., 2019). Overexpression of ECRAR 
resulted in the phosphorylation of ERK1/2, their subsequent 
translocation to the nucleus and the transcription of cell 
proliferation and cell cycle-related genes (Chen et  al., 2019).  
Li et  al. (2018a) identified Sirt1 antisense lncRNA (Sirt1-as), 
whose expression was high during heart development. 
Overexpression of this lncRNA resulted in an increase of Ki67- 
and pH3-positive cardiomyocytes. On the other hand, silencing 
of Sirt1-as, both in vitro and in vivo, led to a decrease of Ki67- 
and pH3-positive cardiomyocytes, indicating a potential decline 
in cell division (Li et  al., 2018a). Furthermore, overexpression 
of Sirt1-as after MI in adult mice resulted in an increased expression 
of cell-cycle specific factors Ki67 and pH3, thus suggesting a 
potential implication in cardiac health (Li et  al., 2018a).

More recently, Wilson et  al. (2020) described BANCR, a 
lncRNA exclusively expressed in primate fetal cardiomyocytes. 
BANCR promotes cardiomyocyte migration in vitro and 
ventricular enlargement in vivo. To elucidate the regulation of 
BANCR in cardiomyocytes, the authors suggested that TBX5 
binding was responsible for the fetal heart-specific expression 
of BANCR. Additionally, the authors identified TEAD4 and 
YAP1 (two factors involved in the HIPPO pathway) in the 
same enhancer, promoting BANCR expression. Finally, the 
authors identified a role for BANCR in heart disease, 
demonstrating higher expression in pediatric but not adult 
dilated cardiomyopathy (Nelakanti and Xiao, 2020; Wilson 
et al., 2020). Other lncRNAs associated with aged hearts include 
lncRNA H19 (downregulated in aged or ischemic heart; Hofmann 
et al., 2019), and MALAT1 a lncRNA which, itself, is regulated 
by an antisense lncRNA transcript (TALAM1; Zong et  al., 
2016; Gomes et  al., 2019), was also shown to be  decreased 
in aged hearts (Bink et  al., 2019; Gomes et  al., 2019), and 
this decrease was shown to be  involved in cardiac dysfunction 
(Zhu et  al., 2019; Li et  al., 2020a).

LncRNAs That Inhibit Cardiomyocyte 
Proliferation and Cardiac Regeneration
Cai et  al. (2018) explored the role of lncRNAs during heart 
regeneration after ischemic injury, in both neonatal and adult 
mice. CAREL, a lncRNA whose expression gradually increased 
in the neonatal hearts from P1 to P10 mice, with P7 corresponding 
to the time point at which the heart regenerative capacity is 

lost in mice (Cai et  al., 2018). Cardiac-specific overexpression 
of CAREL led to a decrease of cardiomyocyte proliferation and 
reduced heart regeneration in neonatal mice after injury. On 
the contrary, silencing CAREL promoted cardiac regeneration 
and improved heart functional parameters after myocardial 
infarction in neonatal and adult mice (Cai et  al., 2018). CAREL 
was found to be a ceRNA, sequestering miR-296. It was suggested 
that the CAREL-miR-296 interaction led to the activation of 
Trp53inp1 and Itm2a, leading to a decrease in cardiomyocyte 
proliferation, thus resulting in a reduction of regeneration. 
Intramyocardial administration of CAREL to p1 neonatal mice 
inhibited cardiomyocyte mitosis and increased the formation of 
cardiac scar and, on the other hand, overexpression of miR-256 
promoted cardiomyocyte proliferation and cardiac regeneration 
after injury. Similarly, lncRNA cardiomyocyte proliferation 
regulator (CPR) was shown to be  a negative regulator of 
cardiomyocyte proliferation and cardiac repair. Ponnusamy et al. 
(2019) observed that higher levels of CPR hampered cardiomyocyte 
proliferation, whilst silencing CPR resulted in cardiomyocyte 
proliferation in postnatal and adult hearts. CPR expression levels 
were found to be  higher in the adult heart, which is consistent 
with their lack of regeneration. The authors reported that CPR 
recruits DNMT3A to several locus leading, in particular, to 
increased levels of methylation in the MCM3 promoter (Ponnusamy 
et  al., 2019). In dividing tissues, MCM3 promotes the initiation 
of DNA replication and cell cycle progression (Lin et  al., 2008), 
something halted by CPR in the heart and leading to the 
inhibition of cardiomyocytes proliferation.

Another lncRNA that negatively regulates cardiac regeneration 
is LncDACH1. This lncRNA was found to be gradually upregulated 
in postnatal hearts, which is in accordance with the loss of 
myocardial regenerative capacity soon after birth (Cai et  al., 
2020). The authors suggest that LncDACH1 binds protein 
phosphatase 1 catalytic subunit alpha (PP1A), reducing its 
dephosphorylation capacity, and increases the phosphorylation 
of yes-associated protein 1 (YAP1), preventing its translocation 
to the nucleus and, thus, the activation of cell proliferation-
related genes (von Gise et  al., 2012; Cai et  al., 2020). Cardiac-
specific overexpression of LncDACH1 resulted in the suppression 
of neonatal heart regeneration and aggravation of cardiac function 
after apical resection. These phenotypes were accompanied by 
a decrease in the number of cardiac-cells expressing proliferative 
markers (Cai et  al., 2020). Cardiomyocyte regeneration-related 
lncRNA (CRRL) was also found to be  involved in heart 
regeneration. CRRL silencing was associated with an increased 
expression of EdU, Ki67, and pH3 in P1 and P7 rat cardiomyocytes 
(Chen et  al., 2018). Similar results were obtained in neonatal 
rats post-MI, concomitantly with better prognosis such as reduction 
of the fibrotic length of the infarct wall and fibrosis area in 
the non-infarct zone. Instead, overexpression of CRRL leads to 
a decrease in pH3-positive cardiomyocytes and inhibition of 
functional recovery post-MI. CRRL function seemed to 
be  mediated through the binding to miR-199a-3p, resulting in 
an increased expression of Hopx, which is a negative regulator 
of cardiomyocyte proliferation (Trivedi et  al., 2010).

LncRNA AZIN2-sv, a splice variant of the AZIN2 gene, was 
found to be  upregulated in human adult hearts. AZIN2-sv was 
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reported to negatively regulate cardiomyocyte proliferation, both 
in vitro and in vivo (Li et al., 2018b). Overexpression of AZIN2-sv 
led to an anti-proliferative phenotype, marked by decreased 
levels of EdU-, Ki67-, pH3-, and Aurora-B. On the other hand, 
silencing AZIN2-sv promoted cardiomyocyte proliferation and 
improved cardiac function after MI. AZIN2-sv sequesters 
miR-214, leading to the release of its target PTEN, resulting 
in a decrease in the phosphorylation of Akt and Cyclin-D, 
therefore inhibiting cardiomyocyte proliferation. Reduced levels 
of AZIN2-sv allow miR-214 to repress PTEN, leading to 
increased levels of phosphorylated Akt and Cyclin-D1, thus 
promoting cardiomyocyte proliferation.

More recently, Trembinski et  al. (2020) identified lncRNA 
SCOT1-antisense RNA regulated during aging in the heart 
(SARRAH), whose expression declines during aging. Inhibition 
of Sarrah induces caspase activity in mouse and human 
cardiomyocytes, promoting apoptosis. Gene set enrichment analysis 
after SARRAH silencing showed enrichment of apoptosis-related 
pathways, corroborating previous observations (Trembinski et al., 
2020). SARRAH was also found to directly bind to the promoters 
through RNA-DNA triplex helix structures, suggesting that its 
binding may activate gene expression. Indeed, it was reported 
that SARRAH interacted with cardiac transcription factor cysteine-
rich protein 2 (CRIP2) and p300, which acetylates histone H3 
lysine 27 to activate transcription (Trembinski et  al., 2020). On 
the other hand, overexpression of SARRAH led to a decrease 
in caspase activity. In adult mice a decline in apoptosis was 
observed after overexpressing SARRAH, suggesting that reduced 
expression levels of this lncRNA in aged mice might contribute 
to cardiomyocyte cell death in vivo. Furthermore, reduced levels 
of Sarrah were observed in the infarcted and border regions 
after acute MI (Trembinski et  al., 2020).

Furthermore, several lncRNAs have been identified as 
promoters of cardiac fibrosis (Liang et  al., 2018; Wang et  al., 
2018; Hao et  al., 2019; Zhang et  al., 2019a). Aged tissues 
accumulate signals that promote the epithelial-mesenchymal 
transition (EMT), inducing the transdifferentiation of epithelial 
cells to mesenchymal cells, such as fibroblasts, which are the 
main mediators of fibrosis through the deposition of extracellular 
matrix. In the heart, many fibroblasts derive from endothelial 
cells, leading to excessive deposition of extracellular matrix 
and causing cardiac fibrosis, which is common in patients 
with heart failure (reviewed by Santos et  al., 2019). Thus, 
targeting these lncRNAs may also be considered for improving 
heart function.

REPROGRAMMING OF FIBROBLASTS 
INTO CARDIOMYOCYTES AS A 
POTENTIAL CELL REPLACEMENT 
THERAPY – A ROLE FOR lncRNA

Cell reprogramming has emerged as a novel strategy for 
regenerative medicine and cell-based therapy. The reprogramming 
of mouse and human fibroblasts into induced pluripotent stem 
cells (iPSCs) using transcription factors (TFs) known to play 

key roles in the maintenance of embryonic stem cell identity 
suggested that patient-derived iPSCs could be  produced from 
somatic cells. This strategy allowed the conversion of fully 
differentiated cells into cells with the potency to be differentiated 
in tissues from different development lineages (Takahashi and 
Yamanaka, 2006; Takahashi et al., 2007; Yamanaka, 2009; Abad 
et al., 2013). Additionally, many of the reprogramming barriers, 
such as the obstacles imposed by aging, have been addressed 
through the direct manipulation of tumor suppressor genes, 
p53 or Ink4a/ARF (Li et  al., 2009; Marion et  al., 2009), or 
the EMT-promoting factor ZEB2 (Bernardes de Jesus et  al., 
2018; Santos et  al., 2019).

The reprogramming of fibroblasts into iPSCs opened doors 
to direct cell reprogramming. Direct cardiac reprogramming of 
fibroblasts into cardiomyocytes [usually termed induced 
cardiomyocytes (iCMs)] has emerged as an attractive strategy 
for replacing lost or damaged cells in the heart. Mouse postnatal 
cardiac and dermal fibroblasts have been transdifferentiated into 
iCMs through the combined expression of three different cardiac-
specific TFs: Gata4, Mef2c, and Tbx5 (GMT). The ectopic 
expression of GMT activates a cardiac-like gene expression 
program and promotes the conversion of fibroblasts into iCMs 
(Ieda et al., 2010; Qian et al., 2012). Comparative gene expression 
analyses reported that iCMs generated in vitro exhibited bona 
fide adult cardiomyocyte-like features, such as fatty acid oxidation 
or cell cycle exit (Muraoka et al., 2019). Remarkably, this approach 
has been adapted in vivo, where cardiac fibroblasts have been 
transdifferentiated into iCMs (Song et  al., 2012; Zhang et  al., 
2019b, 2019c), bypassing the need to revert fibroblasts to a 
pluripotent state (Liu et al., 2017; Muraoka et al., 2019). Endogenous 
cardiac fibroblasts comprise about 50% of all the cells in the 
heart, making them a potential source of cardiomyocytes for 
regenerative therapy (Ieda et al., 2010). In fact, iCMs reprogrammed 
from endogenous cardiac fibroblasts enhanced cardiac function 
after myocardial infarction, fully demonstrating the potential of 
this strategy for cardiac repair (Miyamoto et  al., 2018; Bektik 
and Fu, 2019; Lee et  al., 2020).

Despite several encouraging results, current reprogramming 
methodologies remain somewhat inefficient, as very few 
fibroblasts are fully converted into functional iCMs. Differential 
expression patterns of lncRNAs have been observed in several 
developmental stages, including cardiogenesis, and involve the 
expression of lncRNAs Braveheart, Fendrr, and Carmen. In 
fact, lncRNA ZEB2-NAT has been modulated in order to 
improve the reprogramming of fibroblasts into iPSCs (Bernardes 
de Jesus et  al., 2018). Having these concepts in mind, it seems 
reasonable to expect that modulating lncRNAs might improve 
the efficiency of direct cardiac reprogramming.

In vivo Therapeutic Delivery – Current 
Issues
Regarding phenoconversion of cardiac cells, it is important to 
mention, however, that many of the current protocols depend 
on viral vectors for gene delivery. There are a few safety issues 
associated with the use of lentiviral and retroviral vectors, as 
they integrate their genome in the host cell. They could 
potentially disturb endogenous gene expression and are associated 
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with the risk of insertional mutagenesis, hampering the clinical 
application of this method. However, non-integrative viruses, 
such as Sendai virus, and non-viral reprogramming systems 
have emerged as safer alternatives for clinical application (Engel 
and Ardehali, 2018b; Miyamoto et  al., 2018; Tani et  al., 2018; 
Chang et  al., 2019).

CONCLUSION

As previously discussed, several lncRNAs are expressed during 
the development of the heart and during heart pathologies. 
Targeting lncRNAs may be  a novel strategy against heart 
diseases (Bar et  al., 2016). Technically, the development of 
specific and deliverable antisense transcripts (e.g., 
LNA-GapmeRs) has been proved powerful and efficient carriers 
for in vivo targeting and RNase H-mediated degradation of 
specific targets (Bernardes de Jesus et  al., 2018). Similar 
approaches may be designed for expression of selected lncRNAs, 
downregulated in cardiac diseases. We  have to face, however, 
that most human lncRNAs are non-conserved between species, 
making it extremely challenging to identify the functional 
lncRNAs in vivo. The lack of sequence conservation poses a 
challenge for the translational application of human lncRNAs. 
Since lncRNAs are species-specific, we often can only visualize 
their impact when studied in their specific system. This challenge 
may only be  addressed through a humanized experimental 
model where the detailed function of non-conserved lncRNAs 

may be  tested. In conclusion, understand lncRNAs specific 
profiles in dividing vs. non-dividing cardiomyocytes may allow 
the detection of potentially druggable targets for adult 
heart repair.
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