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Gait analysis plays a key role in the diagnosis of Parkinson’s Disease (PD), as patients
generally exhibit abnormal gait patterns compared to healthy controls. Current diagnosis
and severity assessment procedures entail manual visual examinations of motor tasks,
speech, and handwriting, among numerous other tests, which can vary between
clinicians based on their expertise and visual observation of gait tasks. Automating
gait differentiation procedure can serve as a useful tool in early diagnosis and severity
assessment of PD and limits the data collection to solely walking gait. In this research,
a holistic, non-intrusive method is proposed to diagnose and assess PD severity in its
early and moderate stages by using only Vertical Ground Reaction Force (VGRF). From
the VGRF data, gait features are extracted and selected to use as training features for
the Artificial Neural Network (ANN) model to diagnose PD using cross validation. If the
diagnosis is positive, another ANN model will predict their Hoehn and Yahr (H&Y) score
to assess their PD severity using the same VGRF data. PD Diagnosis is achieved with
a high accuracy of 97.4% using simple network architecture. Additionally, the results
indicate a better performance compared to other complex machine learning models
that have been researched previously. Severity Assessment is also performed on the
H&Y scale with 87.1% accuracy. The results of this study show that it is plausible to use
only VGRF data in diagnosing and assessing early stage Parkinson’s Disease, helping
patients manage the symptoms earlier and giving them a better quality of life.

Keywords: gait analysis, artificial neural {network (ANN)}, Parkinson’s Disease, machine learning, SMOTE

INTRODUCTION

Parkinson’s Disease (PD) is a highly prevalent neuro-degenerative disease that affects more than
10 million people worldwide. While PD usually occurs in adults aged 50 and above, there have
been cases of young onsets of this disease, where individuals as young as 18 years old have been
diagnosed with PD (Parkinson’s Foundation, 2019). There are five progression stages in PD, where
treatment in the early stages (Stages 1 and 2) slows down the onset of the disease, allowing patients
to experience a better quality of life (Parkinson’s Foundation, 2019). However, there is no specific
test that exists to diagnose PD, and patients will have to rely on a neurologist for a diagnosis.
Neurologists typically base their diagnosis on several factors such as the patients’ medical history,
signs and symptoms exhibited, and a neurological and physical examination. Although there
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are existing scans which may help support neurologists’ in
verifying their diagnosis, it is the exhibited symptoms and
neurological examination that carries the most weight in the
diagnosis. This makes detection of PD in the early stages difficult
as the exhibited symptoms are relatively mild and may require
several visits to the neurologist before it can be confirmed
(Parkinson’s Foundation, 2019). These procedures can be taxing
emotionally, financial and in terms of time for both patient and
caregiver (Parkinson’s Foundation, 2019).

Common symptoms observed by individuals suffering from
PD include postural instability, tremor, slowness in movement
and other forms of gait (Parkinson’s Foundation, 2019) due to
the deterioration of neurons in the brain. These symptoms start
mildly and only escalate with the progression of the disease.
Previous studies have investigated the potential of assessing
changes in patterns of alteration in gait to aid the diagnosis
and quantification of PD (Koozekanani et al., 1987; Salarian
et al., 2004; Schlachetzki et al., 2017). These alterations were
measured using non-intrusive wearable motion sensors which
allow observation of natural day-to-day movements. These
movements offer better insight into their individualized gait
characteristics. The use of Force-Resistive Sensors (FRS) at the
sole of the feet to measure gait events has been studied in
the past (Goldberger et al., 2000), and also studies of FRS
coupled with gyroscopes and accelerometers (Tadano et al., 2013;
Bhosale et al., 2016). Given the significant advancements made
in the miniaturization and processing speeds of these sensors,
there is great potential in using wearable sensors for early
diagnosis of PD.

A common conclusion from past studies of both diagnosis and
severity assessment research is that a consistently higher gait cycle

duration is observed in PD patients (Koozekanani et al., 1987;
Salarian et al., 2004; Tadano et al., 2013; Bhosale et al., 2016;
Schlachetzki et al., 2017). Recognizing this, we seek to investigate
the possibility of using only wearable sensors to identify PD in its
early stages and estimate PD severity. As a proof of concept, we
use data previously reported in Goldberger et al. (2000). A key
measurement in this dataset is the VGRF measured from the
FRSs in the insoles of the feet. Many studies in the past have
used this parameter to investigate and quantify gait variability
of PD patients (Manap et al., 2011; Abdulhay et al., 2018).
However, to the best of our knowledge, no study has explicitly
researched on the sole use of gait features for severity assessment,
as research in the area of severity assessment primarily focuses
on the use of features extracted from speech data (Salarian et al.,
2004; Benmalek et al., 2015; Schlachetzki et al., 2017; Grover
et al., 2018; Nilashi et al., 2018), in addition to VGRF data.
A successful implementation will enable early seamless diagnosis
and assessment of PD using only VGRF data.

EXPERIMENTAL SETUP

Data Description
The database (Goldberger et al., 2000) consists of 93 idiopathic
PD patients (58 male and 35 female, Age = 66.3 ± 9.5 years,
Height of 1.67 ± 0.084 m and an Weight of 72.4 ± 11.83 kg)
and 73 healthy control subjects (40 male and 33 female,
Age = 63.7 ± 8.64 years, Height of 1.68 ± 0.085 m and
Weight = 72.8± 12.26 kg).

The database includes the vertical ground reaction force
(VGRF) records of subjects as they walked at their usual,

FIGURE 1 | Positioning of the sensors on an arbitrary relative coordinate system on the foot insole.
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self-selected pace for approximately 2 min on level ground.
Underneath each foot were 8 sensors (Ultraflex Computer Dyno
Graphy, Infotronics Inc.) that measure force (in Newtons) as a
function of time. The 8 sensors are arranged on the soles of the
feet as follows- 3 sensors each are placed along the inner and
outer longitudinal arch, and a sensor each on base of the foot
and the heel bone. The approximate coordinates of the sensor
locations inside the insole are illustrated in Figure 1, whereby the
x and y axes reflect an arbitrary coordinate system (Goldberger
et al., 2000) to scale the sensor positions, with the origin in the
center between both feet and the person is facing the positive
side of the y axis. This arbitrary coordinate system is relative to
the positions of the sensors, thereby making the sensors inside
the insole remain at the same relative coordinate during walking,
but the feet are no longer parallel to each other (Goldberger
et al., 2000). The output of each of these 16 sensors has been
digitized and recorded at 100 samples per second, and the records
also include two signals that reflect the sum of the 8 sensor
outputs for each foot.

The database also includes qualitative measures of disease
severity, including the Hoehn & Yahr (H&Y) staging for subjects
suffering from PD. Clinicians use the H&Y score to quantify
the level of disability in patients (Parkinson’s Foundation, 2019).
A higher H&Y score corresponds to higher disease progression,
and thus gait impairment associated with reduced mobility is
more prevalent. The H&Y score is a gross assessment of the level
of disability through staging, and ranges from stages 0 to 5, where
0 implies no signs of disease and 5 corresponds to a subject being
fully impaired or bedridden. All the PD patients are of H&Y stage
between 2 and 3 (Average = 2.26 ± 0.34). This implies that the
patients in this database are of an early to moderate onset of PD
(Goldberger et al., 2000).

Signal Processing and Feature
Extraction
All VRGF data were first filtered through a median filter to
smoothen the signal and remove outliers (Salarian et al., 2004).

FIGURE 2 | Flowchart of the research methodology used in this study.
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FIGURE 3 | VGRF against time for healthy (Orange) vs. PD (Blue) subjects.

This filtered signal is then processed to retrieve useful gait
features. The steps to process the data and extract useful features
is illustrated in Figure 2.

Feature Extraction for PD Diagnosis
A PD subject generally records approximately 40% longer gait
cycle time compared to a healthy subject, with notable lower
stride velocity and stance periods, and as the disease progresses,
patients may exhibit a single narrow peak force plot (Gaenslen
and Daniela, 2010), characterized by a flat foot strike as opposed
to a sharp heel strike in control subjects. Severe PD subjects
may even exhibit toe-to-heel walking where the toe impacts
the ground before the heel or mid-foot (Goetz et al., 2008).
Figure 3 illustrates the difference in VGRF reading for a
control vs. PD subject.

Spatiotemporal features
These features were extracted using the equations tabulated
in Table 1, where t represents the start and end indices of
the gait cycle events, T represents time, R represents ratio,
V represents velocity and i is the corresponding gait cycle
iteration. To ensure accuracy of calculation, the summation
of the swing and stance times were cross-checked against
the stride time.

Asymmetry indices
Normalize the value of one side relative to the other, as shown in
Eq. 8 which expresses the difference in the stance times of each
foot as a fraction of the left stance time. This feature allows easy
quantification of inter-individual comparisons (Nadeau, 2014).
Using Eq. (8), the Asymmetry Index Ratio was calculated for each

TABLE 1 | Gait cycle time events.

Feature Formula

Gait cycle/ Stride time GCT (i)= tstart (i+1)-tstart (i) (1)

Stance time Tstance (i)= tend (i)-tstart (i) (2)

Swing time Tswing (i)= tstart (i+1)-tend (i)(3)

Stance ratio Rstance (i)= Tstance (i)/Tstride (i)(4)

Swing ratio Rswing (i) = Tstride (i)/Tstance (i) (5)

Swing-stance ratio Rswing−stance (i) = Tswing (i)/Tstance (i)(6)

Stride length Tstride × Vstride (7)

TABLE 2 | Highest fluctuation magnitude variability (FMV) exhibited by
sensors 3 and 7.

Sensor 1 2 3 4 5 6 7 8

FMV 0.69 0.15 2.45 1.27 2.12 1.71 2.22 0.9

gait cycle and averaged over the subjects’ entire walking duration
of 2 min to get their individual Asymmetry Index ratio.

Asymmetry Index Ratio =

|Lstride (i)− Rstride (i)| /Lstride (i) (8)

Statistical analysis
Coefficient of variation (CV), Mean and Standard Deviation
(STD) were chosen to assess gait variability in control and PD
subjects. This is calculated for Left (L1 to L8) and Right (R1 to
R8) feet for both PD and control subjects. Then, the variability
in fluctuation magnitude can be computed for each of the eight
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TABLE 3 | Summary of unique extracted input features.

Feature n Description

Primary feature vector 4 A vector consisting of: - Normalized Aggregated Left VGRF - Normalized Aggregated Right VGRF - FMV for sensor 3 -
FMV for sensor 7

Stance times 2 Left and Right Stance Times

Stride times 2 Left and Right Stride Times

Swing times 2 Left and Right Swing Times

Swing ratio 2 Left and Right Swing Ratios

Swing ratio 2 Left and Right Stance Ratios

Swing-stance ratio 2 Left and Right Swing-Stance Ratios

Initial contact force 2 Right and Left Maximum Initial Contact Force

Terminal contact force 2 Right and Left Maximum Terminal Contact Force

Statistical covariance 4 Covariance (CoV) of each of the Feature Vector Elements: - CoV(Normalized Aggregated Left VGRF) - CoV(Normalized
Aggregated Right VGRF) - CoV(FMV for sensor 3) - CoV(FMV for sensor 7)

Statistical mean 4 Mean of each of the Feature Vector Elements: - mean(Normalized Aggregated Left VGRF) - mean(Normalized
Aggregated Right VGRF) - mean(FMV for sensor 3) - mean(FMV for sensor 7)

Standard deviation 4 Mean of each of the Feature Vector Elements: - std(Normalized Aggregated Left VGRF) - std(Normalized Aggregated
Right VGRF) - std(FMV for sensor 3) - std(FMV for sensor 7)

Step distance 1 Average Step Distance of the Subjects

Asymmetry index 1 Asymmetry Index of the Stride between left and right feet

Total Features 34

sensors as shown in Figure 1 which is given by the difference in
left and right sensor readings for each sensor as shown in Eq. 9.

Fluctuation Magnitude Variability (FMV) =

|Li− Ri| /Li × 100% (9)

where Li and Ri represent the Left or Right ith sensor, and i is the
sensor number corresponding to Figure 1. We determined that
sensors number 3 and 7 demonstrate the highest variability, as
shown in Table 2 and thus were selected as inputs to the classifier.

Table 3 summarizes the total list of feature vectors composed
of the gait features and their statistical analyses to result in a total
of 34 unique features as inputs to the classifier, where n is the
unique feature count.

SMOTE and Feature Extraction for PD Severity
Assessment
During feature extraction, it was observed that the H&Y stages
of the patients were unevenly distributed in the dataset, where
each stage corresponds to a class in the dataset. A majority of the
samples belonged to H&Y stage 2 (59.14%) and stage 2.5 (30.1%)
and only 10.75% of the samples are stage 3, which is a large
imbalance of class sizes. Since a network trained on a dataset with
imbalanced classes can face problems distinguishing between
different classes (An et al., 2001), this problem was addressed
by generating synthetic samples of the minority class, known as
Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002). Table 4 shows the dataset sample distribution before
and after SMOTE was performed.

A peak detector was used on the output of Sensor 1 and
Sensor 8 to obtain the initial contact (IC) and terminal contact
(TC) magnitude and times, respectively. Subsequently, the initial
double stance period and terminal double stance period was
calculated using the formula established in Salarian et al. (2004).

TABLE 4 | Summary of dataset classes and their sample sizes before and after
synthetic sample generation.

Original SMOTE Samples After SMOTE

Stage 1: H&Y 3 10 (10.75%) 20 30 (21.27%)

Stage 2: H&Y 2.5 28 (30.1%) 28 56 (39.71%)

Stage 3: H&Y 2 55 (59.1%) 0 55 (39.00%)

A validation check is performed to ensure the gait parameters
obtained corresponds to the correct gait event. We assume that
the order of events in each gait cycle are as follows: Initial Contact
of right foot (ICR), Terminal contact of left foot (TCL), Initial
Contact of left foot (ICL) and Terminal Contact of the right foot
(TCR), as illustrated in Figure 4.

Then, the validation equation used is (9).

ICL
(
j
)

< TCR
(
j− 1

)
< ICR

(
j
)

< TCL
(
j
)

(9)

where j is the corresponding gait cycle iteration. Any cycle that
does not meet this validation condition is excluded from analysis.
Using the validated data, the following features are obtained
(Eq. 10 to 13), where j represents the gait cycle, as shown
in Table 5.

Neural Network Model for PD Diagnosis
Network Architecture and Training Parameters
A pattern recognition network was created using MATLAB
r2017b to study the performance of the extracted gait parameters.
The 34 unique input features are input into the pattern
recognition network as the input layer, which consists of one
hidden layer and a binary target (PD or Healthy) in the output
layer. The input features are normalized to [-1,1] using MATLAB
Neural Network Toolbox’s mapminmax preprocessing parameter
to remove data range differences i.e., approximations between
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FIGURE 4 | Order of Gait Cycle Events used in the validation equation.

TABLE 5 | Spatiotemporal features extracted from VGRF data.

Feature Formula Eq. No.

Initial Double Support IDS (j) = TCL (j)− ICL(j)
GCTL(j) × 100 (10)

Terminal Double Support TDS (j) = TCR (j−1) − ICR(j)
GCTL(j) × 100 (11)

Double Support DS(j) = IDS(j) + TDS(j) (12)

Limp Limp(j) = |IDS(j)− TDS(j)| (13)

large and small data values during training to reduce classification
error. The architecture of the classifier was selected iteratively
based on multiple sets of training algorithm and hidden
unit patterns, out of which the best was selected. Figure 5
illustrates the different training algorithms tested for each hidden
unit combination, where trainrp is resilient backpropagation,
trainlm is Levenberg-Marquardt, traingdm is gradient descent

with momentum, and trainscg is scaled conjugate gradient
backpropagation. The best performance occurred for the resilient
backpropagation algorithm (trainrp) with 25 hidden neurons and
was therefore chosen as the network architecture.

Neural Network Model for PD Severity
Assessment
An additional pattern classification network is used to classify
the patients’ disease progression based on spatiotemporal features
into 3 separate classes for H&Y stages of 2, 2.5, and 3, respectively
(as all the subjects in the database used fall under these three
classes). The network architecture is selected based on iterative
combinations of hidden units and training algorithms, which are
shown in Figure 6. The tested algorithms include Levenberg-
Marquardt (trainlm), Scaled Conjugate Gradient (trainscg),
Gradient Descent with Momentum (traingdm) and Resilient

FIGURE 5 | Network performance vs. hidden unit count for different training algorithms for PD diagnosis.
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FIGURE 6 | Network performance vs. hidden unit count for different training algorithms for severity assessment.

Backpropagation (trainrp). The best performance was achieved
using 13 neurons in the single hidden layer and the Levenberg-
Marquardt training algorithm (trainlm) and the hyperbolic
tangent activation function.

RESULTS AND DATA ANALYSIS

Performance Analysis for PD Diagnosis
The pattern recognition network used for PD diagnosis performs
well with a classification accuracy of 97.4% and a mean square
error value of 0.0279, which is consistent with literature that
proves a high correlation between gait variability and presence
of PD (Gaenslen and Daniela, 2010), thus resulting in an accurate
classification. The accuracy (ACC), error (ERR), sensitivity (SN),
specificity (SP), precision (PR) and false positive rate (FPR) also
indicate good results, shown in Table 6.

Figure 7 shows the performance vs. loss for the chosen
architecture for PD diagnosis, where the horizontal axis is the
epoch count and the vertical axis depicts the Mean Squared Error
(MSE) loss. It can be observed that after 62 epochs the network
converges with an MSE of 0.079 on the validation and test data.

K-fold cross validation and leave-one-out cross validation
were used to ensure that the network performed as desired
and did not overfit the data. Table 7 shows the results of
cross validation performed and network performance. It can be
observed that the model still performs well on different sets

TABLE 6 | The Accuracy (ACC), error (ERR), sensitivity (SN), specificity (SP),
precision (PR) and false positive rate (FPR) for PD Diagnosis Classifier.

ACC ERR SN SP PREC FPR

0.9741 0.0258 0.9770 0.9705 0.9770 0.0294

of unseen data, which shows good generalization ability and
minimal overfitting (Cawley and Talbot, 2010).

Performance Analysis for PD Severity
Assessment
Performance measures are usually represented as a confusion
matrix for classification problems, where the rows and columns
are the predicted and target class, respectively. The diagonals
depict the correctly predicted samples (True Positive (TP) or
True Negative (TN) and the off-diagonal cells correspond to
the incorrectly classified samples (False Positive (FP) and False
Negative (FN)). Additionally, the last column on the right shows
the precision (positive predictive value) and the last row shows
the recall rate (sensitivity or true positive rate) and the false
negative rate. The cell on the bottom right depicts the overall
accuracy (Mathworks, 2019). The confusion matrix for H&Y
staging classifier is shown in Figure 8.

The H&Y staging classifier performs well, with an accuracy
of 87.1%. It is also observed from the confusion matrix in
Figure 8 that the H&Y classifier has a precision of 90.5% and
sensitivity of 67.9% for class 2 (H&Y stage 2.5). This shows that
the classifier is conservative for this class, but the opposite is
true for class 3 (H&Y stage 2) for which the classifier is biased
(Santos et al., 2018). This may be attributed to the bias in the
dataset, where more data is available for stage 2 and 2.5 compared
to stage 3, which can skew results unfairly. Figure 9 shows
the confusion matrix for the same network after implementing
SMOTE techniques to balance the dataset.

It can be observed from Figure 9 that after SMOTE the
classifier does not exhibit an unfair bias towards any particular
class, while maintaining a similar prediction accuracy.

Using the additional data obtained from SMOTE techniques,
we run multiple cross validation methods for testing and
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FIGURE 7 | Performance against mean squared error (MSE) loss of the PD diagnosis neural network.

TABLE 7 | Results of different cross validation methods on the PD
diagnosis classifier.

Cross validation method (k) MSE performance Classification accuracy

1-fold 0.0279 97.4%

2-fold 0.1195 84.0%

5-fold 0.0403 90.9%

10-fold 0.0332 87.9%

Leave-one-out 0.0287 94.9%

error analysis, including k-fold cross validation and leave-
one-out cross validation. This helps against overfitting of
the data. Table 8 shows the results of the cross validation
performed for PD severity assessment and the respective
network performance. It is observed that the network
performs consistently over multiple k-values, which shows
good generalization (Cawley and Talbot, 2010).

DISCUSSION

Good classification of PD subjects from healthy controls is
achieved with an accuracy of 97.4% using input features extracted
from VGRF data. Good accuracy of 87.1% was achieved in
H&Y staging of patients’ disease progression based on their
spatiotemporal and kinetic features. However, as shown in
Figure 8, the severity assessment data is unevenly distributed
with majority of the samples being in H&Y stage 2 (59.14%)
and stage 2.5 (30.1%) and only 10.75% of the samples are

FIGURE 8 | Confusion matrix for the H&Y staging classifier before SMOTE.

stage 3. Therefore, the classifier is biased towards the majority
sample class, and this could affect the generalization ability of
the classifier. This is dealt with using SMOTE (Chawla et al.,
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FIGURE 9 | Confusion matrix for the H&Y staging classifier after SMOTE.

TABLE 8 | Results of different cross validation methods on the severity
assessment classifier.

Cross validation method (k) MSE performance Classification accuracy

1-fold 0.0261 86.5%

5-fold 0.1063 73.06%

10-fold 0.0905 76.08%

15-fold 0.0873 77.3%

Leave-one-out 0.0688 87.69%

2002), and the result is shown in Figure 9. It can be observed
that the test accuracy improved due to the introduction of
new samples in Class 1 (H&Y Stage 3). This resulted due to
the availability of more data samples for training, validation,
and testing. Furthermore, as the dataset becomes more equally
represented using SMOTE, the network was able to perform
better on unseen data, with a test accuracy of 76.9%, which is
an improvement of 21.3%. The network also exhibits lesser bias
towards any particular class, and the overall accuracy is 87.2%,
which is also an improvement.

In comparison to the performance reported by (Manap et al.,
2011; Lee and Lim, 2012; Perumal and Sankar, 2016; Zeng et al.,
2016; Alam et al., 2017; Khoury et al., 2019), the proposed
methodology in this work builds on and improves previous
studies that use this VGRF database. This may be attributed to the
extra analysis done to ensure the optimum network architecture
was selected, and the combination of multiple features that
proved successful in various past work, in addition to a new
feature (Asymmetry Index) extracted using the same VGRF data.

The result achieved in this work also outperforms work that
requires data to be collected via multiple sensors located at
different parts of the patients’ physique (Manap et al., 2011; Md
Tahir and Manap, 2012; Klucken et al., 2013; Abdulhay et al.,
2018). This is an added advantage for the proposed method,
that it is able to prospectively diagnose PD with good accuracy
using minimal data that may be obtained in a non-intrusive
way via foot-worn sensors alone, for example embedded in
subjects’ shoes.

However, in 2018 (Aşuroğlu et al., 2018) proposed a Hybrid
Machine Learning (ML) model (Locally Weighted Random
Forest) and achieved a classification accuracy of 99%. Though
our classifier does not outperform this, it is worth noting that
the work presented in this paper achieves a relatively close result
using a comparatively less complicated network architecture.
The classifier achieves an accuracy of 97.4% with a lightweight
architecture and results that surpass or are competent with those
achieved by complex methods such as Support Vector Machines
(SVM) and Hybrid ML models.

Furthermore, the proposed method also carries out severity
assessment corresponding to the H&Y scale using features
extracted VGRF data only, which is a scarcely researched area, as
most researchers use additional information apart from VGRF,
such as speech data to quantify disease progression (Salarian
et al., 2004; Benmalek et al., 2015; Schlachetzki et al., 2017; Grover
et al., 2018; Nilashi et al., 2018). However, there are studies
that have performed better in terms of severity assessment using
gyroscope and accelerometer data (Klucken et al., 2013) using
complex models, but to the best of our knowledge, no studies
use wearable sensor based VGRF data for this purpose. The
proposed severity assessment method achieves a high accuracy
in predicting patients’ H&Y scores using VGRF data. This was
the expected outcome as spatiotemporal gait features show good
correlation with H&Y stages (Schlachetzki et al., 2017).

Furthermore, additional data generated from this study would
also be useful in overcoming the bias exhibited by the classifier
towards earlier H&Y stages, as the current dataset is small
and prone to overfitting, and exhibits a large imbalance in the
distribution class samples.

We also successfully demonstrate the feasibility of the
proposed novel approach of assessing PD severity using
standalone VGRF data based on the H&Y scale with an accuracy
of 86.5% after SMOTE. Cross Validation methods also resulted
in promising values of 76.08% for 10-fold cross validation and
87.69% for leave-one-out cross validation. This shows that the
classifier is able to generalize without overfitting or exhibiting
bias towards any particular class.

Apart from its application in assisting clinicians in improving
the accuracy of their assessments, this framework can also be
implemented as a computational layer over smart wearables
like smart insole shoes that can collect VGRF data, so that
disease progression monitoring can be carried out remotely
without requiring frequent clinic visits. This is possible as this
is a lightweight ML architecture that does not require high
processing power, thus making an integration with wearable
sensors feasible. By reducing the frequency of clinical visits, this
framework improves patients’ and their caregiver’s quality of life.
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As our framework operates on lightweight architecture and can
be implemented online, it poses many benefits of portability,
ease of use and functionality as opposed to non-portable gait
analysis systems.

It is worth noting that this study is limited to the dataset size
of control and PD subjects, and only investigates ground reaction
forces in the vertical direction, as the dataset contains historical
data that does not capture other directions of ground reaction
forces. Although our study successfully showed that PD diagnosis
and severity assessment can be done to a reasonable extent with
VGRF only, further study is encouraged with a bigger sample size
to investigate aspects such as predictive gait pattern tracking and
integration with smart insole shoes to achieve a positive societal
impact in the monitoring of movement disorders in the future.

CONCLUSION

A holistic, non-intrusive system is proposed for PD diagnosis
and severity assessment using VGRF data from an online
database collected from 166 subjects (93 PD and 73 healthy
control subjects). A high classification accuracy of 97.4% is
achieved using a simple ANN architecture, which confirms and
extends the results of previous studies in this field that employ
complex models to perform classification. Severity assessment
is accurately carried out on the H&Y scale to an accuracy of

87.1% using features extracted only from VGRF data. The system
as a whole is a simple and effective approach to PD diagnosis
and severity assessment using only VGRF data obtained which
is non-intrusive.
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